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Abstract

Current NLP models are predominantly

trained through a two-stage “pre-train then

fine-tune” pipeline. Prior work has shown that

inserting an intermediate pre-training stage,

using heuristic masking policies for masked

language modeling (MLM), can significantly

improve final performance. However, it is

still unclear (1) in what cases such inter-

mediate pre-training is helpful, (2) whether

hand-crafted heuristic objectives are optimal

for a given task, and (3) whether a masking

policy designed for one task is generalizable

beyond that task. In this paper, we perform

a large-scale empirical study to investigate

the effect of various masking policies in

intermediate pre-training with nine selected

tasks across three categories. Crucially, we

introduce methods to automate the discov-

ery of optimal masking policies via direct

supervision or meta-learning. We conclude

that the success of intermediate pre-training

is dependent on appropriate pre-train corpus,

selection of output format (i.e., masked spans

or full sentence), and clear understanding of

the role that MLM plays for the downstream

task. In addition, we find our learned masking

policies outperform the heuristic of masking

named entities on TriviaQA, and policies

learned from one task can positively transfer

to other tasks in certain cases, inviting future

research in this direction.

1 Introduction

Large, neural language models (LMs) pre-trained

with masked language modeling (Devlin et al.,

2019; Raffel et al., 2020) have achieved impressive

results over a variety of NLP tasks. Studies show

that an additional intermediate pre-training stage

between general pre-training and task-specific fine-

tuning further improves downstream performance

(Fig. 1). For example, intermediate pre-training

†Work partially done while interning at Facebook AI.
‡Work partially done while working at Facebook AI.
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Figure 1: Analysis Setup. We investigate the influence

brought by different masking policies during interme-

diate pre-training, a stage between general pre-training

and task-specific fine-tuning. We apply three types

of policies (heuristic, supervised, meta-learned) on

three categories of tasks (closed-book QA, knowledge-

intensive language tasks, multiple-choice QA).

by masking and recovering named entities or dates,

known as salient span masking (SSM, Guu et al.

2020), significantly improves a model’s perfor-

mance of answering factoid questions in a closed-

book setting (Roberts et al., 2020). However, there

is a lack of systematic study on how intermediate

pre-training works, whether heuristic masking poli-

cies like SSM are near-optimal, or whether they

generalize to different NLP tasks. Additionally,

it is unclear that for tasks other than closed-book

QA, whether intermediate pre-training is helpful,

or what masking strategy should be adopted.

In this paper, we offer a large-scale, systematic

study on the effects and transferability of masking

strategies during intermediate pre-training, while

we carefully control all other aspects (§3). We first

begin our analysis with a focus on three heuristic

masking policies (§4.1). We fine-tune the models

resulting from intermediate pre-training on nine

selected tasks covering three categories (closed-

book QA, knowledge-intensive language tasks, and
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multi-choice QA). Our results suggest that success-

ful intermediate pre-training is dependent on the se-

lection of appropriate corpus. Moreover, heuristic-

based approaches are effective only when we have a

precise understanding of the role masked language

modeling (MLM) plays in downstream task. For

example, MLM serves as a sort of memorization

step (Petroni et al., 2019), whereby learning to un-

mask spans in context is analogous to memorizing

facts about the span. In the absence of such under-

standing, heuristic policies may be sub-optimal.

This motivates us to explore whether automating

the discovery of optimal masking policies is possi-

ble. We design methods to learn a masking policy

with supervised learning (§4.2) or meta-learning

(§4.3), and compare downstream task performance

using the same protocol in our previous analysis.

Notably, we observe that masking policies learned

with supervised learning and meta-learning outper-

forms the SSM policy for TriviaQA (Joshi et al.,

2017), and these policies learned from TriviaQA

also help improve performance on Web Questions

(Berant et al., 2013). We also discuss the pros and

cons of learned masking policies, such as down-

stream task learning efficiency, risks of over-fitting

and learning instability.

Finally, in hopes to better understand the heuris-

tic and learned masking policies, we provide quan-

titative analysis on the masks produced by these

policies. We visualize the distribution of part-of-

speech tags among masked tokens, and their rela-

tion to token frequency in the corpus (§5.3). We

find that the masking policies learned from Trivi-

aQA tend to mask more proper nouns and tend to

mask less frequent words when compared to SSM.

Overall, our empirical analysis provides useful

suggestions for NLP researchers who aim to im-

prove downstream task performance using inter-

mediate pre-training and heuristic masking strate-

gies. In addition, our experiments reveal that infus-

ing task-specific knowledge into LMs with learned

masking policies is a promising way to improve

downstream task performance, and invite future

research in this direction.

2 Preliminary: Masked Language

Modeling

In this section, we revisit MLM objective with

the notation that we will use throughout the pa-

per. MLM is a predominant pre-training objective

for large-scale transformers in NLP (Devlin et al.,

2019). MLM and its variants can be character-

ized with two key components: a masking policy

g(.;φ), parameterized by φ, which decides the col-

lection of tokens to be masked, and a language

model f(.; θ), parameterized by θ.

Formally, given a sequence of tokens x =
[x1, x2, ..., xm], g(x;φ) generates a sequence of bi-

nary decisions d = [d1, d2, ..., dm], where di = 1
indicates the token xi will be masked. The source

sequence for pre-training, x(src), is formulated by

replacing the selected tokens with a special <mask>

token, i.e., x(src) = [x
(src)
1 , x

(src)
2 , ..., x

(src)
m ], where

x
(src)
i = xi if di = 0 and x

(src)
i = <mask> if di = 1.

We denote this operation as x(src) = x ⊕ d. The

target sequence x
(tar) can be either the full origi-

nal sequence x (BART, Lewis et al. 2020), or the

sequence of masked tokens (T5, Raffel et al. 2020).

3 Analysis Setup

In this section we introduce the analysis pipeline

(§3.1) and downstream datasets we use (§3.2). We

defer the details of learned masking policies to §4.

3.1 Experiment Procedure

Our goal is to analyze the influence in downstream

task performance brought by different masking

policies g(.;φ) during intermediate pre-training.

Towards this goal, we ensure that the only vari-

able is the masking policy, while all other aspects

are controlled, so that the downstream performance

reveal the influence we aim to study. We first initial-

ize with a BART-base model (Lewis et al., 2020);

then for each masking policy, we conduct experi-

ments following a two-stage pipeline:

Stage 1. Intermediate Pre-training. We per-

form intermediate pre-training with a given mask-

ing policy g(.;φ). All intermediate pre-training is

done with input sequence length of 128, batch size

of 2048, learning rate of 0.0001, up to a total num-

ber of 100, 000 updates, using Wikipedia snapshot

from December 20, 20181.

Stage 2. Task-specific Fine-tuning. We fine-

tune each resulting checkpoint from Stage 1 on

related downstream tasks, and evaluate their perfor-

mance. We follow the same routine of hyperparam-

eter search for each checkpoint. We then run the

1The snapshot is available at https://archive.org/download/
enwiki-20181220. Wikipedia is licensed under CC BY-SA
3.0.

https://archive.org/download/enwiki-20181220
https://archive.org/download/enwiki-20181220
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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fine-tuning experiments with the best hyperparam-

eter setting and three different random seeds. See

Appendix B for details.

3.2 Downstream Tasks and Datasets

We focus our study on nine downstream tasks

across three categories. We introduce their details

and explain the rationale behind our selection in

the following.

Closed-book QA. Closed-book QA is a task

that requires a language model to directly answer

questions without access to external knowledge

(Roberts et al., 2020). This paradigm assumes that

the model memorizes large amounts of knowledge

from its pre-training data, which gets “packed” into

its parameters, and can subsequently be “retrieved”

to answer questions. Notably, Roberts et al. (2020)

reported 9%+ improvement in exact match on Triv-

iaQA when intermediate pre-training with salient

span masking (i.e., masking and recovering named

entities or dates) is performed on a T5-11B model.

This observation inspired our work. Our study

considers three datasets for closed-book QA: Natu-

ral Questions (NQ, Kwiatkowski et al. 2019), We-

bQuestions (WQ) and TriviaQA (TQA).

Knowledge-Intensive Tasks from KILT. Ex-

tending from closed-book QA, we select three tasks

from the KILT benchmark (Petroni et al., 2020)

that also aims to test a model’s implicit knowledge

capacity, while having different task formats and

goals. Aidayago2 (AY2, Hoffart et al. 2011) is an

entity linking task that requires the model to assign

a Wikipedia page to an entity mention in the text.

The output is the unique name of the Wikipedia

page in text format. Zero-shot relation extraction

(ZSRE, Levy et al. 2017) is a slot filling task that

aims to predict the object when given the subject

and the relation. The relations in the train/dev/test

splits are non-overlapping. Wizard of Wikipedia

(WoW, Dinan et al. 2019) is a dataset of dialogue

histories relevant to knowledge in Wikipedia. The

model is required to act like a chatbot and generate

the response given previous dialogue history.

Knowledge-Intensive Multiple-choice QA.

We select three multiple-choice QA datasets,

in which the questions can be answered with

commonsense/background knowledge without any

context, but the dataset provides additional context

paragraphs to explicitly state the background

knowledge used. We use WIQA (Tandon et al.,

2019) which focuses on procedural text, QuaRTz

(Tafjord et al., 2019) which focuses on qualitative

relationship, and ROPES (Lin et al., 2019) which

focuses on causes and effects. We reformat these

tasks into sequence-to-sequence format, following

UnifiedQA (Khashabi et al., 2020).

To summarize, all tasks above can be treated as

sequence-to-sequence tasks, where each example is

a source-target pair (s, t), accompanied with a con-

text paragraph c provided by the dataset. Details

for dataset splitting are in Appendix D.1.

4 Compared Masking Policies

We experiment with three categories of mask-

ing policies: heuristic policies, where g is a

fixed heuristic function (§4.1); supervised policies,

where g is a model whose weights are learned from

direct supervision on downstream tasks (§4.2);

and meta-learned policies, where g is a model

whose weights are learned through meta-learning

on downstream tasks (§4.3).

4.1 Heuristic Policy

We experiment with the following three heuris-

tic masking policies: (1) BART’s original denois-

ing objective (+Orig); (2) Masking and recover-

ing 15% randomly selected tokens (+Rand)2; (3)

Salient span masking, i.e., masking and recovering

one named entity (Roberts et al., 2020; Guu et al.,

2020) (+SSM).

4.2 Supervised Policy

When students prepare for closed-book exams, they

are likely to review and memorize what they per-

ceive as most important in the text book. Such

perception is learned from their prior experience

of taking closed-book exams. Following this in-

tuition, Ye et al. (2020) proposed to learn a mask-

ing policy for closed-book QA tasks to help the

model focus on likely answers during intermedi-

ate pre-training. The masking policy is trained

with (answer, context) examples, and the policy is

an extractive model that extracts the answer span

from the context. For example, if the context x is

[Charles, Schulz, was, the, creator, of, Snoopy] and

the answer is “Charles Schulz”, the label for the

answer start index will be [1,0,0,0,0,0,0]; for end

index it will be [0,1,0,0,0,0,0]. In the following, we

briefly recap the method with our notations.

215% is borrowed from BERT and T5. “+Orig” and
“+Rand” are different in that x(tar) = x for “+Orig”, while
x

(tar) contains the masked 15% tokens for “+Rand”.
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Model. Given context paragraph tokens x =
[x1, x2, ..., xm], we first use an embedding matrix

E to embed each token: [e1, e2, ..., en]. Then, we

use a 2-layer bi-directional LSTM model to com-

pute the hidden representation at each position.3

[h1,h2, ...,hn] = Bi-LSTM([e1, e2, ..., en]) (1)

Finally, we use two learned vectors (wst, bst)
and (wed, bed) to compute the logits for each posi-

tion being the start or end position of the potential

answer/target span. For example, the logit of po-

sition j being a start/end position is computed as

follows.

yj,st = wsthj + bst, yj,ed = wedhj + bed. (2)

Policy Inference. When deploying the policy to

intermediate pre-training, we select the potential

answer spans by ranking the sum of start and end

logits of each potential spans, in accordance to the

inference step in machine reading comprehension

models. That is, we rank the spans (i, j) according

to yi,st + yj,ed. We consider two variants when

deploying the policy: (a) masking the top 1 span or

(b) sampling 1 span from the top 5 spans.

Applicability and Limitation. Supervised pol-

icy is designed for closed-book QA, and one limi-

tation of this method is that the target span t must

appear as is in the context paragraph c. Within all

other knowledge intensive tasks, only ZSRE satis-

fies this constraint. To sum up, we apply supervised

policy method to TQA, NQ, ZSRE.

4.3 Meta-learned Policy

Conceptually, what the learned masking policy cap-

tures is closely related to the concept of “learning

to learn” (Schmidhuber, 1987; Thrun and Pratt,

1998). At a high level, the masking policy should

provide the model with the desired initialization for

the downstream task, such that the model can better

learn the downstream task in only a few fine-tuning

updates. Therefore, we construct a meta-learning

approach, which we describe below.

Overview. We formulate each (c, s, t) example

as a small “task”. For each task, the goal is to

improve the performance of generating target se-

quence t given input s, immediately after learning

3Though the masking policy can theoretically take any
form, we opt for a lightweight architecture (2-layer Bi-LSTM)
as we need to apply it to millions of pre-training instances.

Pre-train
Original sentence

Charles Schulz (November 26, 1922 – February 12, 

2000) was an American cartoonist

Masked sentence

Charles Schulz (<mask> – February 12, 

2000) was an American cartoonist

Pre-train Target

Charles Schulz (November 26, 1922 – February 12, 

2000) was an American cartoonist

Fine-tune
Query

In which year was Charles 

Schulz born?Masking Policy

BART

Answer

1922

BART

Loss

4. update

1. update

3. update

Inner Loop Outer Loop

Figure 2: Update masking policy by learning from

one context-query-answer example. (1) Inner Loop:

(a) A context paragraph c is first masked with current

policy g(.;φ), and the language model is trained to

recover masked tokens for one step; (b) the language

model is trained on (q, a) pair for one step. (2) Outer

Loop: We use the validation loss on the same (q, a)
pair to update the masking policy, by directly taking

the gradient of loss L w.r.t policy parameters φ.

from the context c. This is similar to taking quizzes,

where a student first learns from a passage c and

then is immediately tested on it by trying to answer

t given s. Studying from c strategically with an

optimal masking policy will result in better perfor-

mance (i.e., smaller loss in generating t).

Following work in gradient-based meta-learning

(Finn et al., 2017; Grefenstette et al., 2019), we

set up an inner and outer loop. We briefly sketch

the procedure in Fig. 2. In the inner loop, we

focus on the current (c, s, t) examples by applying

the current masking policy g(.;φ) and performing

pre-train/fine-tune updates to f(.; θ). In the outer

loop, we update the policy g(.;φ) with the signal

at the end of inner loop training. We denote φ(p) as

the masking policy parameters after p outer loop

optimization steps, and θ(p,q) as the LM parameters

after p outer loop optimization steps and q inner

loop optimization steps.

Inner Loop. In one inner-loop curriculum, we

first take the context as a pre-training sentence, i.e.,

x = c, and use the current masking policy g(.;φ(p))
to determine the masks d and the implied perturbed

input x(src), i.e., d = g(x;φ(p)), x(src) = x⊕ d.

We pre-train θ(p,0) for one step to recover x from

x
(src):

θ(p,1) = θ(p,0) − α0∇θ(p,0)L(f(x
(src); θ(p,0)),x),

(3)

where α0 is the learning rate, and L(., .) is the cross

entropy loss for recovering x using disturbed input
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x
(src) and model parameters θ(p,0).

Next, we take θ(p,1) as initialization and fine-

tune it for one step on the downstream objective of

predicting t given s:

θ(p,2) = θ(p,1) − α1∇θ(p,1)L(f(s; θ
(p,1)), t). (4)

Outer Loop. In outer loop, we update the mask-

ing policy g(.;φ(p)). We aim to answer query s

correctly after the inner-loop curriculum. We de-

fine the meta-loss L′ as the decrease in losses after

the one fine-tuning update, i.e.,

L′ = L(f(s; θ(p,2)), t)− L(f(s; θ(p,1)), t). (5)

L′ characterizes how fast the model has adapted it-

self to answer (s, t) within one step of optimization.

Since all computations in Eq. (3-5) are continuous4,

we optimize φ by directly taking gradients from L′,

φ(p+1) = φ(p) − α2∇φ(p)L′. (6)

Controlling Masking Budget. Higher order op-

timization is known to be unstable (Antoniou et al.,

2019). In early stages of the study, we found the

policy to be flipping between masking none or all

of the tokens. To stabilize, we add a softened L2

loss to control the portion of mask/not-mask deci-

sions output by g(.;φ). Denoting l(x) as the input

sequence length, l(d) as the number of mask deci-

sions; we define a budget γ and a tolerance factor

ǫ, and compute the regularization term Lreg,

Lreg(x,d) =

{

0, |γl(x)− l(d)| ≤ ǫl(x)

(γl(x)− l(d))2, otherwise
(7)

For example, when γ = 15%, ǫ = 5% and the

input sequence x contains 100 tokens, the policy

will not be penalized if it’s masking 15±5 of all to-

kens in the sequence. We modify the optimization

step in Eq. (6) as follows, where β is a co-efficient

balancing the regularization intensity.

φ(p+1) = φ(p)−α2∇φ(p)(L′+ βLreg(x,d)) (8)

Post-processing. When we deploy a learned pol-

icy to pre-training, we are no longer constrained by

differentiability. Based on useful techniques in pre-

vious work, we apply post-processing to predicted

masking decisions d. (1) Whole-word masking and

text infilling (Liu et al., 2019; Lewis et al., 2020):

4We use Gumbel Softmax (Jang et al., 2017) to discretize

the output of g(.;φ(p)) and formulate masking decision d,

and we use embedding mixture for x(src) = x⊕ d

whenever one subword xi within a whole word is

masked (di = 1), we expand the mask and always

mask the whole word. When consecutive tokens

are masked, we replace the sequence of <mask> in

the input sequence with exactly one <mask> token.

(2) Additional budget control: Even with our bud-

get regularization loss (Eq. 7), we find some input

sequences get too many masks (> 50%). This cre-

ates extremely challenging pre-train examples that

may prevent the model from learning useful infor-

mation. For these sentences we randomly “unmask”

tokens to keep the portion of masks below 30%.

For space concerns, we leave pseudo-code and

other implementation details in Appendix A.2.

5 Results and Discussion

Following our analysis setup (§3), we present the

results for closed-book QA in Table 1, knowledge-

intensive language tasks (KILT) in Table 2 and

multiple-choice QA in Table 3. In the following,

we aim to understand the influence brought by dif-

ferent masking policies through these results. We

also introduce several ad-hoc experiments to verify

our hypotheses raised in our analysis.

5.1 Comparison of Heuristic Policies

Continue pre-training with the original objec-

tive is helpful in general. Prior work has shown

that intermediate pre-training on encoder models

(i.e., RoBERTa, Liu et al. 2019) with in-domain

corpora helps to improve downstream classifica-

tion tasks performance (Gururangan et al., 2020).

Our experiments help to examine whether simi-

lar conclusion holds for text-to-text models and

tasks beyond classification. From our results, we

found intermediate pre-training with Wikipedia

and BART’s original objective (+Orig) improves

performance of two closed-book QA tasks (TQA

and WQ), one entity linking task (AY2), and two

multiple-choice QA tasks (WIQA and QuaRTz);

maintains performance on NQ and ZSRE; leads

to worse performance on ROPES. Overall, in-

termediate pre-training leads to improved perfor-

mance; this may be due to the common observa-

tion that language models tend to improve with

further pre-training even after validation perplex-

ity have plateaued, or that Wikipedia as a general

knowledge-intensive corpus, is more closely re-

lated to our downstream tasks, compared to the
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TQA WQ NQ

BART-Base 21.82±.15 26.23±.05 23.72±.25

+Orig 22.91±.16 27.17±.56 23.85±.37

+Rand 22.93±.14 27.25±.68 24.64±.44

+SSM 23.62±.29 28.17±.04 24.80±.06

+Supervised-NQ(Top1) 23.48±.10 27.43±.38 24.58±.10

+Supervised-NQ(Top5) 23.73±.21 28.15±.05 24.86±.28

+Supervised-TQA(Top1) 24.71±.21 27.84±.03 24.58±.19

+Supervised-TQA(Top5) 24.43±.09 28.35±.73 24.66±.22

+Meta-learned-NQ 23.50±.28 27.07±.20 24.83±.18

+Meta-learned-TQA 23.88±.04 27.49±.17 24.85±.21

BART-Large 24.28±.51 28.82±.33 24.72±.16

+Orig 24.34±.35 28.28±.35 24.91±.68

+SSM 26.29±.43 29.79±.47 25.34±.23

+Supervised-TQA(Top1) 27.18±.34 29.71±.74 24.28±.28

Table 1: Performance of Closed-book QA Tasks. We

report average and standard deviation of exact match

over three runs with different random seeds. Dark blue

highlights the best performing model. Light blue high-

lights models that are not significantly worse than the

best performing model (p>0.1 in paired t-test).

AY2 ZSRE WoW

Metric EM EM F1

BART-Base 81.07±.15 1.89±.15 15.14±.22

+Orig 81.38±.06 1.67±.15 15.20±.13

+Rand 81.67±.13 2.29±.19 14.69±.21

+SSM 81.74±.19 3.52±.03 14.68±.16

+Supervised-ZSRE(Top1) 81.57±.03 2.84±.15 14.58±.01

+Supervised-ZSRE(Top5) 81.90±.22 2.90±.03 14.50±.38

+Meta-learned-ZSRE 81.31±.22 1.99±.21 15.07±.09

+Meta-learned-WoW 80.90±.23 1.64±.05 15.32±.05

Table 2: Performance of KILT Tasks.

mixture of corpus5 used to pre-train BART.

A closer look at ROPES, the exception. We no-

tice that the context paragraphs in ROPES are from

science textbooks and Wikipedia. We hypothesize

that intermediate pre-training on only Wikipedia

may cause catastrophic forgetting of some scien-

tific knowledge obtained during BART’s general

pre-training. To verify this, we randomly mask 15%

tokens in ROPES context paragraphs and computed

MLM loss. The BART-Base checkpoint achieves

1.97 in NLL Loss, while +Orig achieves 2.02.

This supports our hypothesis that intermediate pre-

training on a smaller corpus (e.g., Wikipedia) may

make the model forget knowledge in general pre-

training (e.g., scientific textbooks). We conclude

that it is important to pay attention to the corpus

from which the downstream dataset is created.

Select the heuristic masking policy that resem-

ble the downstream task most. So far, we limit

5Similar to RoBERTa, BART uses the combination of
BookCorpus (Zhu et al., 2015), CC-News (Nagel, 2016),
OpenWebText (Gokaslan and Cohen, 2019), and Stories (Trinh
and Le, 2018) as pre-training corpus.

ROPES WIQA QuaRTz

BART-Base 46.60±0.48 71.18±1.12 62.80±1.16

+Orig 43.68±0.67 73.06±0.72 63.35±0.52

+Rand 44.59±1.15 70.55±0.42 63.31±1.74

+SSM 50.51±1.15 69.31±0.77 64.41±1.04

+Meta-learned-ROPES 53.71±2.33 73.05±0.98 62.93±1.28

+Meta-learned-WIQA 48.30±0.69 72.38±0.37 63.14±1.26

+Meta-learned-QuaRTz 49.01±1.92 72.65±0.53 63.69±0.48

Table 3: Performance of Multiple-choice QA Tasks.

We report accuracy for each task.

the focus to the +Orig objective. Now we fur-

ther add +Rand and +SSM into the comparison.

From the results in Table 1, we first confirm that

salient span masking (SSM) is indeed very bene-

ficial for closed-book QA (Roberts et al., 2020).

In addition, SSM helps improve performance for

two entity-centric knowledge intensive tasks (AY2

and ZSRE, see Table 2) and two multiple-choice

QA tasks (ROPES and QuaRTz, see Table 3). Note

that ROPES focus on causal relationships between

entities and QuaRTz focus on qualitative relations

(involving numbers); both can be considered entity-

centric. We conclude that using heuristic masking

policies that resemble the downstream tasks, or

masking information known to be important for the

downstream task, tend to improve downstream per-

formance. When it’s difficult to design a heuristic

that satisfy these needs, using random masking may

be helpful. In this case, we recommend to decide

whether to generate full sequence (+Orig) or only

masked tokens (+Rand) based on the task output

length. If the downstream tasks requires generating

long sentences, generating full sequence is more

helpful. This is supported by the observation that

+Orig is better than +Rand for WoW. On the other

hand, if the target sequences in the downstream

dataset are shorter, generating masked tokens is

more helpful, as shown by experiments on NQ,

AY2, ZSRE and ROPES.

5.2 How Do Learned Policies Perform?

We have introduced two ways to automate the dis-

covery of better masking policies, with supervised

learning (§4.2) and meta-learning (§4.3). We now

extend our analysis to these learned policies.

Successful Cases. We observe that learned poli-

cies are most successful on TriviaQA, with both

the supervised policy and the meta-learned policy

outperforming SSM. We attribute its success to the

following reasons: (1) (context, source, target) ex-

amples are abundant, so the masking policy has
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Training Data Used 0.1% 1%

(a) BART-Base 3.69% 5.54%
(b) +SSM 5.56% 7.31%
(c) +Supervised-TQA(Top1) 6.49% 8.40%
(b) +Meta-learned-TQA 4.50% 6.44%

Table 4: Performance of TriviaQA in low-resource

settings. Exact match is reported. Supervised policy

outperforms other masking policies in low-resource set-

ting, consistent with the full-dataset setting.

sufficient supervision. TriviaQA dataset is accom-

panied with large-scale context paragraphs created

with distant supervision, so the scale of (c, s, t) ex-

amples is larger than other datasets. (2) The heuris-

tic masking policy does not “perfectly” resemble

the downstream task, and it still has room for im-

provement. SSM masks one random named entity

in the context. However, the answer to trivia ques-

tions are not necessarily named entities, and one

named entity may be more important than another.

Therefore the learned policies can better capture

the characteristics of TriviaQA than SSM. Apart

from TriviaQA, meta-learned policies outperforms

+Orig on NQ, ZSRE and ROPES, demonstrating

the effectiveness of the method. This also opens up

a promising direction for downstream tasks whose

heuristic masking policy is not intuitive (e.g., dia-

logue response generation, multiple-choice QA).

Improved learning efficiency. We additionally

consider a low-resource setting for TriviaQA,

where we use 0.1% and 1% of its training set for

fine-tuning. We present the results in Table 4. We

observe that the supervised policy has better sample

efficiency than SSM. We also observe that interme-

diate pre-training by generating full sequence (a/d)

is worse than generating spans (b/c), supporting

our previous conclusion that the choice of target

sequences should be based on the downstream task

output format (span or sentence).

Overfitting on ZSRE. ZSRE dataset has a unique

setting: it is a slot filling task similar to close-

book QA; however it adds additional challenge

as the relations in train/dev/test splits are non-

overlapping. We hypothesize that this train/test

discrepancy leads to unsatisfactory behavior of

learned ZSRE policies, and we conduct a set of con-

trolled experiment to validate this hypothesis. Con-

cretely, we use 90% of its original train set as the

new train set, use the 10% remaining training ex-

amples as a “matched” dev set, and the original dev

set as a “mismatched” dev set. In our experiments,

SSM achieves 20.02%±.16% EM on match-dev,

and 3.21%±.15% on mismatch-dev. Supervised-

ZSRE(Top5) achieves 20.37%±.04% on match-dev

(outperforms SSM, p<0.05), and 2.94%±.11% on

mismatch-dev. These experiments show that our

supervised policy is learning useful information,

but has overfitted to the training data and becomes

less robust to distribution shift during inference. In

comparison, SSM is agnostic to train-test discrep-

ancy and thus achieves the strongest performance.

Generalization of learned policies. We observe

several cases where a policy learned from one

dataset positively transfer to another downstream

tasks. That includes Supervised-TQA(Top5) bring-

ing improvement to WQ, +Supervised-NQ(Top5)

bringing improvement to TQA, and +Supervised-

ZSRE(Top5) bringing improvement to AY2, com-

pared to random masking baselines. This is rea-

sonable since all these tasks are entity-centric and

are similar in nature. For tasks with significantly

different formats and goals, e.g., ZSRE and WoW,

policies learned on one does not benefit the other.

Here we only exhibit the evidence supporting that

learned masking policies can positively transfer,

and we leave the question of “when and why does

it work” as future work.

Remarks. Supervised/meta-learned masking poli-

cies are our initial attempt towards the idea of

“learning to mask”. While being successful and

exhibiting the evidence for positive transfer in cer-

tain cases, we recognize the potential risks of over-

fitting, or suffering from high instability in meta-

learning. We hope future work can investigate these

issues and design novel methods to learn better

masking policies.

5.3 Quantitative Analysis: What are

Masked? How are policies different?

In this section we aim to understand how masking

policies are different from each other in terms of

their masking decisions. We analyze the relation

between masking decisions, part-of-speech tags

and token frequency. Specifically, we take 1% of

the pre-train corpus and compare the masking deci-

sions made by each policy to facilitate our analysis.

Relation to Part-of-speech Tags. In Fig. 3, we

plot the stacked bar chart of part-of-speech tags

to visualize their distribution. Each bar represent

the portion of masks having the part-of-speech

tag, amongst all masks produced by this policy.

Notably, most supervised policies learns to focus

more on proper nouns, and less on common nouns.
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Figure 3: Part-of-speech tag distribution for masked

produced by different masking policies.

This is consistent with the goal of the entity-centric

downstream tasks. Comparing Supervised-TQA

and SSM, Supervised-TQA focuses less on nouns,

numbers and adjectives, and it focuses even more

on proper nouns. This suggests that Supervised-

TQA better characterizes the property of TQA,

and thus outperforms SSM by learning to mask

task-specific information. Due to the differences

in learning procedures, the meta-learned policies

has distributions different from supervised policies.

Still, meta-learned policies for NQ and TQA masks

more proper nouns compared to random masking,

similar to their supervised counterparts.

Relation to Token Frequency. In Fig. 4, we plot

the relation between mask frequency and token fre-

quency for masking policies learned from TQA,

along with random masking and SSM for reference.

Mask frequency is computed as the number of oc-

currences that a token was masked divided by the

number of all masked tokens. For random mask-

ing, the datapoints approximate a Zipfian distribu-

tion (Zipf, 1999), with some noise due to random

sampling of words. Secondly, for SSM, most dat-

apoints fall on a curve above the random masking

line, while a small portion of tokens are less likely

to be masked, formulating line segments in the bot-

tom area. These observations indicate that SSM

tend to mask less frequent tokens, but its behavior

is not fully explained away with token frequency.

The two learned policies, Supervised-TQA (Fig.

(a) Supervised-TriviaQA (b) Meta-learned-TriviaQA

Figure 4: Relation between token frequency rank in the

corpus and the token’s mask frequency. Best viewed in

color.

4(a)) and Meta-TQA (Fig. 4(b)) are in general sim-

ilar to SSM, while the curve for Supervised-TQA

is more scattered, indicating a weaker preference

for Zipfian behavior.

6 Related Work

Implicit Knowledge in Pre-trained Language

Models. Petroni et al. (2019) discovered that

pre-trained language models can implicitly store

relational knowledge in their parameters, and

such knowledge can be accessed with cloze-style

queries. Roberts et al. (2020) introduced the task

of closed-book QA, which breaks the convention

of retriever-reader strategy for open-domain QA,

and requires the model to directly generate answers

with its implicit knowledge. Closed-book QA per-

formance is boosted significantly when salient span

masking (Guu et al., 2020) is used. Guu et al.

(2020) maintained that SSM helps the model to

“focus on problems that require world knowledge”.

Self-supervised Pre-training. Pre-trained lan-

guage models has shown its capability on a wide

variety of NLP tasks. Current self-supervised ob-

jectives are mostly heuristic, including masked lan-

guage modeling (Devlin et al., 2019), span bound-

ary representation learning (Joshi et al., 2020), cor-

rupted sentence reconstruction (Lewis et al., 2020),

etc. Raffel et al. (2020) systematically studied the

self-supervised objectives used in previous litera-

ture. Related to our goal of exploring pre-training

objectives, ELECTRA (Clark et al., 2020) propose

a replaced token prediction task which improves

pre-training efficiency. Chen et al. (2020) propose

to reduce the variance of gradients in SGD and

expedite model pre-training. Levine et al. (2020)
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propose to mask n-grams according to Pointwise

Mutual Information (PMI). These works typically

consider the efficiency of an objective when pre-

training from scratch and without preconceived

focus on a given problem; while we focus on en-

coding knowledge or adapting the model during

intermediate pre-training with a given task in mind.

Domain/Task-specific Pre-training. Gururan-

gan et al. (2020) experiment on four domains (bio-

medical, computer science, news, reviews) and

eight different datasets, where they discover that

pre-training with in-domain corpus leads to better

downstream performance. Kang et al. (2020) pro-

pose to learn a mask generator via reinforcement

learning. Closely related to us, Gu et al. (2020) pro-

pose task-guided pre-training by learning to predict

importance score for each token in pre-train cor-

pus. Vu et al. (2020); Pruksachatkun et al. (2020)

studies knowledge transfer from intermediate-task

fine-tuning, while we focus on a different problem

setting of intermediate pre-training with generic

corpus (e.g., Wikipedia). We believe both settings

have practical utility in real-world applications.

7 Conclusion

In this paper, we study the influence brought by dif-

ferent masking policies used during intermediate

pre-training, and offer two methods as our initial

attempts towards automating the discovery of opti-

mal masking policy. From extensive experiments

with heuristic and learned masking policies across

three categories of tasks, we have identified sev-

eral successful cases of intermediate pre-training,

offered in-depth analysis and insights for the mask-

ing policies we used, discussed the risks of learned

masking policies, and summarized several sugges-

tions for researchers who wish to adopt intermedi-

ate pre-training in their applications.

We also acknowledge that, despite our additional

efforts and experiments, several observations still

cannot be explained away. We invite future re-

search into this challenging and under-explored

problem, to expand on our methods, and to search

the space of pre-training objectives beyond masked

language modeling. Furthermore, we hope our

work encourages researchers to consider the type

of downstream applications they wish to deploy

their LMs in, before investing resources into large-

scale pre-training.
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A Additional Training Details

A.1 Supervised Policy

Training Details. The embedding matrix E is

initialized with the weights in BART-base model.

We optimize cross entropy loss between the logits

outputted by the model and the gold annotations.

For each source of supervision stated above, we

train the policy for 30 epochs with learning rate

of 1e-5 and batch size of 512, and select the best

checkpoint according to validation loss.

A.2 Meta-learned Policy

Design choices. We use a 1D convolution layer

with two additional linear layers as our policy net-

work g(.;φ). The linear layers output two logits

for each token in input sequence x. The two log-

its for each tokens go through Gumbel Softmax

(Jang et al., 2017) to decide whether it should be

masked (di = 1) or not (di = 0). We’ve also

experimented with Bi-LSTM as the encoder, but

find meta-learning with LSTMs to be extremely

unstable.

Intuitive Example. The PTLM f is given a

piece of context c “Charles Schulz (November

26, 1922 – February 12, 2000) was an American

cartoonist” and is expected to take an upcoming

“closed-book exam” based on this piece of context.

In the pre-train step, the current policy g predicts

masks (e.g., Charles Schulz (<mask> – February 12,

2000) was an American cartoonist) and take one

step of optimization, implicitly encoding this piece

of knowledge into its parameters. After this, the

PTLM “transit to closed-book exam mode” by fine-

tuning on (s, t) for one step. Finally the language

model “takes the closed-book exam” and the loss

for generating t given s as input can be interpreted

as the supervision for the masking decisions (i.e.,

whether masking “November 26, 1922” is helpful).

Pseudo-code. We provide pseudo-code for our

method in Algorithm 1.

B Hyperparameters

For downstream task fine-tuning, we first select

the learning rate from {5e-6, 1e-5, 2e-5, 3e-5} and

then fix learning rate to select batch size from {32,

64, 128, 256}. See Table 5 for more details.

Parameter Name Value

Max Epoch 100

Validation Interval 2 or 5

Warmup Updates 500

Learning Rate {5e-6, 1e-5, 2e-5, 3e-5}
Batch Size {32, 64, 128, 256}
Label Smoothing 0.1

Dropout 0.1

Weight Decay 0.01

Clip Norm 0.1

Generation Beam Size 4

Generation Min/Max Length 1/20

Generation Length Penalty 1.0

Table 5: Hyperparameters for Downstream Task Fine-

tuning.

C Discussion on NQ

In Table 1 we observe that performances on NQ

are close for all BART-base models; therefore it is

hard to rank all compared methods. We argue that

multiple factors leads to this phenomenon, includ-

ing dataset characteristics and evaluation protocol.

Specifically, NQ may not be an ideal testbed for

our study due to three reasons.

Firstly, intermediate pre-training in general

might not be as beneficial for this particular task.

For instance, Roberts et al. (2020) reports only

2% EM gain on NQ using T5-11B. In our exper-

iments, we use significantly smaller pre-trained

models (BART-base/large), so the effect brought

by intermediate pre-training will be even smaller.

In our case we believe the effect is hidden in the

variance brought by random seeds.

Secondly, performance on NQ may not represent

the real implicit knowledge capacity of a LM. For

reference, we observe a 20% dev set EM when fine-

tuning a randomly initialized BART-base model on

NQ. The general pre-training stage brings merely

4-5% EM improvement, and therefore the improve-

ment brought by intermediate pre-training can be

marginal.

And finally, evaluation based on exact match

may substantially underestimate the model capabil-

ity, as suggested in (Roberts et al., 2020).

D Reproducibility

D.1 Dataset Details

We obtain closed-book QA datasets

from https://github.com/facebookresearch/

DPR/blob/master/data/download data.py,

knowledge-intensive language tasks from

https://github.com/facebookresearch/KILT/blob/

master/scripts/donwload all kilt data.py. We

https://github.com/facebookresearch/DPR/blob/master/data/download_data.py
https://github.com/facebookresearch/DPR/blob/master/data/download_data.py
https://github.com/facebookresearch/KILT/blob/master/scripts/donwload_all_kilt_data.py
https://github.com/facebookresearch/KILT/blob/master/scripts/donwload_all_kilt_data.py
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Algorithm 1 Meta-learning Policy g(.;φ)

Input: Dataset S = {(c, s, t)}
Output: Masking Policy g(.;φ), A Pre-trained Language Model f(.; θ)
1: for p = 1..T do
2: {(c, s, t)} = SampleBatch(S)

3: xc; d = g(x;φ(p)); x′ = x⊕ d // Apply current masking policy g(.;φ)

4: θ(p,1) = θ(p,0) − α0∇θ(p,0)L(f(x
′; θ(p,0)),x) // Inner Loop Update 1: Pre-train on (x,x′)

5: θ(p,2) = θ(p,1) − α1∇θ(p,1)L(f(s; θ
(p,1)), t) // Inner Loop Update 2: Fine-tune on (s, t)

6: L′ = L(f(s; θ(p,2)), t)− L(f(s; θ(p,1)), t) // Compute loss measuring how fast the model adapts to (s, t)
7: Lreg = δ[|γl(x)− l(d)| > ǫl(x)](γl(x)− l(d))2 // Compute regularization loss to control masking budget

8: φ(p+1) = φ(p) − α2∇φ(p)(L′ + βLreg(x,d)) // Outer Loop Update for φ

9: θ(p+1,0) = θ(p,1) // Maintain pre-train progress at timestamp p

Category Dataset #Train #Dev #Test

Closed-book QA

Natural Questions (Kwiatkowski et al., 2019) 79,168 8,757 3,610

WebQuestions (Berant et al., 2013) 3,417 361 2,032

TriviaQA (Joshi et al., 2017) 78,785 8,837 11,313

Knowledge-Intensive

Tasks (KILT)

Aidayago2 (Hoffart et al., 2011) 18,395 4,784 4,463

Zero-shot Relation Extraction (Levy et al., 2017) 147,909 3,724 4,966

Wizard of Wikipedia (Dinan et al., 2019) 94,577 3,058 2,944

Knowledge-Intensive

Multiple-choice QA

ROPES (Lin et al., 2019) 10,924 844 844

WIQA (Tandon et al., 2019) 29,808 6,894 3,003

QuaRTz (Tafjord et al., 2019) 2,696 384 784

Table 6: Details of Datasets Used in This Study.

obtain ROPES, WIQA and QuaRTz from hug-

gingface datasets (https://huggingface.co/datasets).

For more details, see Table 6. KILT hosts the test

set evaluation on its leaderboard and the test set

annotations are not publicly available; therefore

we report performance on dev set in Table 2. The

test set annotations for ROPES is not publicly

available, so we take 50% of original dev set as the

new dev set, and the other 50% as the new test set.

D.2 Training Details

Implementation. All our experiments are imple-

mented with fairseq (Ott et al., 2019). For higher-

order optimization in the meta-learning approach

optimization, we use higher library (Grefenstette

et al., 2019). Our code will be released upon accep-

tance.

Infrastructure and Runtime. Intermediate pre-

training experiments are done with NVIDIA

Quadro GP100 or NVIDIA Tesla V100 GPUs,

based on availability. For BART-Base, we use

32 GPUs in parallel; For BART-Large, we use

64 GPUs in parallel. Pre-train job takes less than

24 hours for BART-Base models and less than 48

hours for BART-Large models. The checkpoints

from intermediate pre-training will be released

upon acceptance. Fine-tuning jobs are all done

with one single GPU, with either NVIDIA Quadro

GP100, NVIDIA Quadro RTX 8000, NVIDIA

Quadro RTX 6000, NVIDIA GeForce RTX 1080

Ti, or NVIDIA GeForce RTX 2080 Ti, based on

availability. The list the estimated maximum train-

ing time in the following: NQ (4h), WQ (2h), TQA

(40h), AY2 (4h), ZSRE (2h), ROPES (1h), WIQA

(1h), QuaRTz (1h).

Number of Parameters. BART-Base model

contains 140 million parameters, BART-Large

model contains 406 million parameters. Super-

vised policies contain 43 million parameters (where

the word embeddings take 39 millions parameters).

Meta-learned policies contain 40 million parame-

ters (where the word embeddings take 39 millions

parameters).

https://huggingface.co/datasets

