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Abstract

Academic neural models for coreference reso-
lution (coref) are typically trained on a single
dataset, OntoNotes, and model improvements
are benchmarked on that same dataset. How-
ever, real-world applications of coref depend
on the annotation guidelines and the domain
of the target dataset, which often differ from
those of OntoNotes. We aim to quantify trans-
ferability of coref models based on the num-
ber of annotated documents available in the tar-
get dataset. We examine eleven target datasets
and find that continued training is consistently
effective and especially beneficial when there
are few target documents. We establish new
benchmarks across several datasets, including
state-of-the-art results on PreCo.

1 Introduction

Starting initially with neurally-learned features
(Clark and Manning, 2016a,b), end-to-end neu-
ral models for coreference resolution (coref) (Lee
et al., 2017, 2018) have been developed and im-
bued with the benefits from contextualized lan-
guage modeling (Joshi et al., 2019, 2020) and ad-
ditional pretraining (Wu et al., 2020). At the same
time, the number of parameters used in these mod-
els have increased, raising questions of overfitting
our research to a specific dataset. Several studies
show that fully-trained neural models on preex-
isting large datasets do not transfer well to new
domains (Aktaş et al., 2020; Bamman et al., 2020;
Timmapathini et al., 2021), and that rule-based
baselines can still be superior (Poot and van Cra-
nenburgh, 2020). Further, while prior work has
analyzed fully-trained models for mention pairs,
like gender bias (Rudinger et al., 2018; Webster
et al., 2018; Zhao et al., 2019), there has not been
a comprehensive comparison analyzing transfer
across datasets for document-level coref.

We bridge the current gap in understanding be-
tween the strength of pretrained models in contrast

to the value of annotated target data, in light of
the strong few-shot capabilities demonstrated by
pretrained language models (Brown et al., 2020;
Schick and Schütze, 2021). While transfer in other
NLP tasks have been studied more in-depth, trans-
fer in coref has scarcely been examined despite
recent models containing hundreds of millions of
parameters. We investigate model transfer across
datasets with continued training, in which a fully-
trained model on a source dataset is further trained
on a small number of target dataset examples (Sen-
nrich et al., 2016; Khayrallah et al., 2018).1

We contribute the first study of neural coref trans-
fer, showing that continued training is effective
on eleven datasets spanning different domains, an-
notation guidelines, and languages. We find evi-
dence that OntoNotes, a widely-used but license-
requiring dataset for benchmarking coref, is no
better at model transfer than the freely-available
PreCo. We establish modern benchmarks on sev-
eral understudied datasets, including state-of-the-
art results on PreCo. Additionally, we analyze
practical considerations regarding model selection,
catastrophic forgetting, and parameter sharing.2

2 Coreference Resolution

Entity coreference resolution is the task of finding
clusters of mentions within a document that all re-
fer to the same entity. It still remains a difficult
challenge in NLP due to several factors like ambi-
guity (Poesio and Artstein, 2008) and dependence
on real-world knowledge (Levesque et al., 2012).

There are several large annotated datasets for
coreference resolution. Annotation guidelines for
coref differ across these datasets based on the in-
tended goals of the creators, resulting in differ-

1We use continued training to refer to full model adapta-
tion, in contrast to finetuning which is more strongly associated
with encoders that are trained without supervision (Hinton and
Salakhutdinov, 2006).

2Code and pretrained models are available at https://
nlp.jhu.edu/coref-transfer.

https://nlp.jhu.edu/coref-transfer
https://nlp.jhu.edu/coref-transfer
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Dataset Example Comments

OntoNotes
(general)

Judging from the Americana in [[Haruki Murakami’s]1 "A Wild Sheep
Chase" [Kodansha]2, 320 pages, $18.95]3, baby boomers on both sides of
the Pacific have a lot in common.

Only coreferring mentions are
marked (no singletons).

ARRAU
(news)

Judging from [the Americana in [[Haruki Murakami’s]1 "A Wild Sheep
Chase" [[Kodansha]2, [320 pages]3, [$18.95]4]5]6]7, [baby boomers on [both
sides of [the Pacific]8]9]10 have [a lot in [common]11]12.

All mentions are marked, even if
they are singletons.

PreCo
(general)

[Writer]1: [Ralph Ellison]1 [Novel]2: [Invisible Man]2
[Invisible Man]2 is [[Ellison’s]1 best known work]2, most likely because
[it]2 was [the only novel [he]1 ever published during [[his]1 lifetime]3]2 and
because [it]2 won [him]1 [the National Book Award]4 in [1953]5.

Singleton mentions are marked.
Many documents contain the ti-
tle as its own sentence.

LitBank
(books)

And [Jo]1 shook the blue army sock till the needles rattled like castanets, and
[her]1 ball bounded across [the room]2.

Only certain ACE categories are
marked.

QBCoref
(trivia)

[This author]1 wrote [a play]2 in which [the queen]3 [Atossa]3 and [the ghost
of [Darius]4]5 react to news of a military defeat; [that play]2 is [the only
classical tragedy on a contemporary, rather than mythical, subject]2.

All characters, authors, and
works are annotated. Other
mentions are ignored.

Table 1: These examples from different datasets illustrate the differences in annotation standards, specifically for
what is markable as a mention. Mentions are bracketed and entity clusters are subscripted with the same number.

ences in what is considered a mention, how to han-
dle singleton clusters,3 and what types of links
should be annotated. Despite such differences,
OntoNotes 5.0 (Weischedel et al., 2013) emerged as
the most widely-used benchmark for the full task,
and widely used public models are based on this
dataset (Manning et al., 2014; Gardner et al., 2018).
Table 1 shows the differences between OntoNotes
and a few other datasets considered in this work.

However, OntoNotes-based models may not al-
ways be appropriate. OntoNotes is a collection of
several thousand documents across just seven gen-
res from the 2000s (or earlier), and many datasets
fall outside of the scope of those genres or time
period. Unlike other datasets, singletons are not an-
notated. In modeling OntoNotes, genre and speaker
features are needed to improve on the state-of-
the-art, both of which are idiosyncrasies of the
OntoNotes dataset. It is unclear how well these
models transfer to a new, target dataset, especially
if it is annotated and usable in (continued) training.

Prior work on domain adaptation for coref has fo-
cused on a single dataset and often with non-neural
models. Yang et al. (2012) use an adaptive ensem-
ble which adjusts members per document. Mean-
while, Zhao and Ng (2014) use an active learn-
ing approach to adapt a feature-based coref model
to be on par with one trained from scratch while
using far less data. Moosavi and Strube (2018)
study model generalization by including carefully
selected linguistic features, aiming to improve out-

3An entity cluster with only one mention.

of-the-box general performance. Aktaş et al. (2020)
adapt a model to Twitter by retraining with a target-
dependent subset of genres of OntoNotes.

While these studies shed insight on single
datasets, we aim to set broader expectations and
guidelines on effectively using new data for model
adaptation, both in terms of quantity and allocation
of data between training and model selection.

3 Methods

In this section, we describe the method, model,
datasets, and initialization methods used to investi-
gate the effectiveness of continued training.

3.1 Continued Training

We adopt the formulation of continued training
from Luong and Manning (2015) where a model is
first trained on a source dataset until convergence.
This fully-trained model is then used to initialize a
second model which is trained on a target dataset.

This framework has been used for other tasks
where annotation guidelines or domains shift sig-
nificantly between datasets, like in syntactic pars-
ing (Joshi et al., 2018), semantic parsing (Fan
et al., 2017; Lialin et al., 2021) and neural machine
translation (Luong and Manning, 2015; Khayral-
lah et al., 2018). In addition, continued training
can be staggered at different granularities (Guru-
rangan et al., 2020) or use mixed in-domain and
out-of-domain data (Xu et al., 2021).
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Dataset Training Dev Test # Folds

OntoNotesen 2,802 343 348 -
OntoNoteszh 1,810 252 218 -
OntoNotesar 359 44 44 -

PreCo 36,120 500 500 -
LitBank 80 10 10 10
QBCoref 240 80 80 5

ARRAURST 335 18 60 -
SARA 138 28 28 7

Semevalca 829 142 167 -
Semevales 875 140 168 -
Semevalit 80 17 46 -
Semevalnl 145 23 72 -

Table 2: Number of documents for each of the datasets
considered in this work. For the smaller datasets, we
perform k-fold cross-validation.

3.2 Incremental Coreference Model
End-to-end models for coreference resolution
broadly have four parts: a text encoder, a scorer
for mention detection, a scorer for mention pair
linking, and an algorithm for decoding clusters.
The incremental coreference (ICOREF) model (Xia
et al., 2020) used in this work is a constant-memory
adaptation of the end-to-end neural coreference res-
olution model (Lee et al., 2017) with improvements
from subsequent work that incorporates stronger
encoders (Joshi et al., 2019, 2020). By creating ex-
plicit clusters and performing mention-cluster link-
ing instead of mention-pair linking, ICOREF natu-
rally produces clusters from linking scores. This
memory-efficient model is conceptually similar to
other recent cluster-based models (Toshniwal et al.,
2020; Yu et al., 2020b). This model was chosen
because of its competitive performance against the
line of end-to-end neural coreference resolution
models (Joshi et al., 2019) and memory efficiency,
which allows for experiments on longer documents.

However, ICOREF, like the models before it,
is designed around OntoNotes. As a result, we
make minor modifications for compatibility with
other datasets by ignoring genre-specific embed-
dings and implementing an auxiliary objective for
entity mention detection, similar to the one adopted
by Zhang et al. (2018). For completion, we refor-
mulate the ICOREF model to more precisely de-
scribe these minor changes in Appendix A.

3.3 Data
We explore a total of two source datasets and eleven
target datasets, described in Table 2. For smaller
datasets, evaluation is performed via k-fold cross-
validation, following the original authors.

OntoNotes 5.0 (Weischedel et al., 2013) is
a dataset spanning several genres including
telephone conversations, newswire, newsgroups,
broadcast news, broadcast conversations, weblogs,
and religious text. The dataset contains annotations
of syntactic parse trees, named entities, semantic
roles, and coreference. Notably, however, it does
not annotate for singleton mentions, while it does
link events. It also includes data in English (en),
Chinese (zh), and Arabic (ar), which we refer to
using superscripts.

PreCo (Chen et al., 2018) is a dataset consist-
ing of reading comprehension passages used in test
questions. The authors argue that because its vo-
cabulary is smaller than that of OntoNotes, it is
more controllable for studying train-test overlap.
While they detail many ways in which their annota-
tion scheme differs from OntoNotes, we note that
they annotate singleton mentions and do not anno-
tate events. Furthermore, this corpus is sufficiently
large that it is possible to train a general-purpose
coreference resolution model. Finally, because the
official test set has not been released, we refer to the
official “dev” set as our test set, and use a separate
500 training examples as our “dev” set.

LitBank (Bamman et al., 2020) is an annotated
dataset of the first, on average, 2,000 words of
100 public-domain books. While they annotate
singletons, they also limit their mentions only to
those which can be assigned an ACE category.

QBCoref (Guha et al., 2015) is a set of 400 quiz
bowl4 literature questions that are annotated for
coreference resolution. This dataset also includes
singleton annotations, and it only considers a small
set of mention types. The documents are short
and dense with (nested) entity mentions, as well as
terminology specific to literature questions.

ARRAU (Uryupina et al., 2020) is the second
release5 of ARRAU, a corpus first created by Poe-
sio and Artstein (2008) which spans several genres.
The fine-grained annotations mark the explicit type
of coreference, and the dataset also includes phe-
nomena like singleton mentions and non-referential
mentions. We only use the coarsest-grained coref-
erence resolution of the RST subcorpus, which is
a subset of the Penn Treebank (PTB) newswire
documents, and therefore uses the same splits as
PTB (Poesio et al., 2018). Thus, this dataset over-

4Quiz bowl is a trivia competition where passages give
increasingly easier hints towards a common answer, such as a
book title, author, location, etc.

5LDC2013T22
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laps with OntoNotes, which also includes sections
of PTB. However, we can use ARRAU to study
annotation transfer.

SARA v2 (Holzenberger and Van Durme, 2021)
is a collection of legal statutes in which text spans
identified as arguments of legal structures are also
annotated for coreference. Each document is a sin-
gle short legal statute, and so the overall number of
clusters is low while many clusters are singletons.

SemEval 2010 Task 1 (Recasens et al., 2010) is
a dataset for multilingual coreference resolution for
studying the portability of coref systems across lan-
guages. It consists of data in English (overlapping
with OntoNotes), German, Spanish (es), Catalan
(ca), Italian (it), and Dutch (nl). Due to dataset
overlaps and licensing, we only use the latter four
languages in this paper.

3.4 Source models

ICOREF has three trained components: an encoder,
a mention scorer, and a mention linker. We explore
initializing the encoder only and the full model.

Pretrained encoders For these models, we ini-
tialize only the encoder with a pretrained one and
randomly initialize the rest of the model. Joshi
et al. (2020) trained the SPANBERT encoder on
a collection of English data with a span boundary
objective aimed at improving span representations.
In addition, they finetune SPANBERT by training a
coreference resolution system on OntoNotes (Joshi
et al., 2019), which they release separately. We
name this finetuned encoder SPANBERT-ON. Con-
neau et al. (2020) trained XLM-R, a cross-lingual
encoder, on webcrawled text in 100 languages. It is
effective at cross-lingual transfer, including corefer-
ence linking (Xia et al., 2021). We use the “large"
size of each model, except for one experiment with
the “base" size of SPANBERT-ON.

Trained models Alternatively, we can initialize
with the full model. TRANSFER (ON) is a model
downloaded directly from Xia et al. (2020). We
also train models on PreCo with SpanBERT-large
(TRANSFER (PC)) and on OntoNotesen with XLM-
R (TRANSFER (EN)).6 We also train a variant of
each model with gold mention boundaries, which
skips the mention scorer.

6We train the cross-lingual models separately because
XLM-R and SpanBERT use different tokenization.

4 Experiments and Results

For a single source model and target dataset, we
train several models using a different number of
input training examples. The exact details for train-
ing set sizes and preprocessing are in Appendix B
while training details and hardware are in Ap-
pendix C. We evaluate coreference using the aver-
age F1 between MUC, B3 and CEAFφ4 , following
prior work (Pradhan et al., 2012).7

4.1 How effective is continued training for
domain adaptation?

Continued training Figure 1 shows that it is al-
ways beneficial to perform continued training on
a source model, even if there is a large amount of
target data. However, intuitively the differences are
most pronounced in low-resource settings (with 10
fully-annotated documents) where it is still possible
to adapt a strong model to perform non-randomly.
These conclusions for coreference are similar to
those drawn by Gururangan et al. (2020) on the
effectiveness of domain- and task- pretraining of
encoders for language classification tasks. These
findings also support the intuition used by Urbizu
et al. (2020), who choose PreCo as a pretraining
corpus for ARRAU.

Continued training (and finetuning) is a core
component of most NLP models, as text embed-
dings are typically derived from large pretrained
models. Joshi et al. (2018) find that model adap-
tation with contextualized word embeddings only
requires a small set of partial annotations in the
new domain for syntactic parsing. Meanwhile,
Brown et al. (2020) and Schick and Schütze (2021)
find that pretrained language models can effectively
learn a broad suite of sentence-level understanding,
translation, and question-answering tasks with just
a few examples. We corroborate their findings for
a document-level information extraction task, since
our models, based on strong pretrained encoders,
perform well with just 5 or 10 training documents.

OntoNotes vs. PreCo We find that OntoNotes
(TRANSFER (ON)), despite being the benchmark
dataset, is on par (or worse) as a pretraining dataset
compared to PreCo (TRANSFER (PC)). One pos-
sibility is that because PreCo annotates for single-
tons, it is closer to the target datasets that also anno-
tate singletons. This is evident when we compare
the mention detection accuracy of the two models

7We score exact match for SARA (following prior work).
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Figure 1: Each subplot shows the test performance for each model and (English) dataset when trained with a
different number of documents. The first and second rows are coreference and mention boundary F1 in the end-
to-end setting, while the third row is the coreference F1 with gold mentions. SPANBERT is a pretrained encoder,
while the SPANBERT-ON encoders are further finetuned on OntoNotes by Joshi et al. (2020), with base and Large
designating its size. Unlike these (dashed lines) models for which we initialize the encoder, the TRANSFER models
(solid lines) use continued training and initialize the full model with one that has already been trained on a source
dataset, either OntoNotes (on) or PreCo (pc).

in low-data settings (e.g. LitBank or QBCoref at
5 examples). However, we subsequently explore
the case when all models are given gold mention
boundaries in pretraining, continued training, and
testing, which would effectively evaluate just the
linker. We find in this case that PreCo outperforms
OntoNotes even more on QBCoref, LitBank, as
well as ARRAURST. This suggests PreCo as a pre-
ferred pretraining dataset over OntoNotes when
there are few annotated documents.

Model size and pretraining The publicly avail-
able models use the “base” and “large” encoders.
While there are even larger encoders, coreference
models using them are rare. For future model devel-
opment, one may decide between using a publicly
available small model and retraining a large one
from scratch. To simulate this, we compare a small
encoder finetuned on OntoNotes, SPANBERT-ON

(B), with SPANBERT (L), which has not been

trained on the task. This is also a realistic setting if
there are hardware or compute limitations.

In all datasets, we see that there is benefit to
having some pretraining. When there is not much
training data, the smaller (finetuned) encoder out-
performs the larger encoder without finetuning.
However, with enough data, the large model ap-
pears to surpass the smaller model. Nonetheless,
there exist scenarios where continued training of a
smaller model is desirable.

New benchmarks Table 3 shows the test scores
of our best model compared to prior work. For
PreCo, we directly evaluate on the fully-trained
model without continued training, as the full
dataset is sufficiently large. Since some of these
datasets are understudied, we present these as
stronger baselines for future work.8 The purpose is

8Contemporaneous work has established even stronger
baselines for LitBank (Thirukovalluru et al., 2021).
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Dataset Prior work Previous Model Previous Score Our best Our Model

PreCo Wu and Gardner (2020) SpanBERT + C2F 85.0 88.0 PC
LitBank Thirukovalluru et al. (2021) SpanBERT + C2F 78.4 76.7 ON
QBCoref Guha et al. (2015) Berkeley < 35 78.1 ON

ARRAURST Yu et al. (2020b) BERT + cluster ranking 77.9 79.1* PC
SARA Holzenberger and Van Durme (2021) string match baselines 55.1 72.9 ON

OntoNoteszh Chen and Ng (2012) Multi-pass sieve 62.2 69.0 EN
OntoNotesar Aloraini et al. (2020) AraBERT + C2F 63.9 58.5 EN
SemEvalca Attardi et al. (2010) feature-based + MaxEnt 48.2 51.0 EN
SemEvales Attardi et al. (2010) feature-based + MaxEnt 49.0 51.3 EN

SemEvalit Kobdani and Schütze (2010) feature-based + decision tree 60.8 36.7 EN

SemEvalnl Kobdani and Schütze (2010) feature-based + decision tree 19.1 55.4 EN

Table 3: Test F1 on all datasets and the previous state-of-the-art on each dataset, to the best of our knowledge.
Again, we are benchmarking the general method of continued training described in this paper, which will not
necessarily outperform models that incorporate domain or language specific knowledge. Our best TRANSFER
model is determined by the dev set (Appendix C). *ARRAURST is not directly comparable to prior work as we test
on a slightly differently-preprocessed subset. Multi-pass sieve (Raghunathan et al., 2010), Berkeley (Durrett and
Klein, 2013), and C2F (Lee et al., 2018) refer to widely-used coreference resolution models.
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Figure 2: Like Figure 1, this plot demonstates the effectiveness of continued training across different languages.
XLM-R uses a pretrained encoder (dashed line), while TRANSFER (EN) is first trained on OntoNotesen (solid line).
Trends on mention accuracy and using gold mentions look similar and are in Appendix D.

to quantify the effectiveness of continued training
and highlight PreCo as an alternative pretraining
dataset. Note that we achieve this strong perfor-
mance without hyperparameter tuning or incorpo-
rating any language or domain specific features.

Cross-lingual transfer We present the results
for multilingual coreference resolution in Figure 2.
The gap in performance at low-data conditions (and
the high initial starting point) shows that trans-
fer via continued training is also effective cross-
lingually in the end-to-end document-level task.
Our results corroborate prior work (Conneau et al.,
2020) by providing more evidence for XLM-R’s
cross-lingual transfer ability, in this case on the full
end-to-end task. Given these results, we expect
joint multilingual pretraining followed by contin-
ued training to be an even more effective recipe in
creating the best models for each language. This

is out of scope for this work, which is focused on
transfer from single datasets.

4.2 How to allocate annotated documents?

In Figure 1, the experiments for each dataset used
the same dev set for model selection to improve
comparability. At the same time, we observe that
adding even a few more training examples can lead
to improved performance. For some datasets, like
PreCo, the size of the dev set used for model se-
lection in our experiments greatly outnumbers the
number of training documents. Here, we explore
allocating fewer documents for model selection.

We compare 20 models for PreCo trained with a
different number of examples using SPANBERT-
ON (L) and TRANSFER (ON). We train each
model for 60 epochs and make predictions on all
500 dev examples. Next, for each dev set size, we
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Figure 3: The expected test F1 (and standard deviation) on the PreCo dataset for a given number of training
documents and 20 sampled subsets of dev documents for two models described in Section 3.4. The number of runs
matching the best full dev checkpoint is in the lower-right. We find that the dev set size has relatively little impact.

sample a subset of the full predictions and deter-
mine, post-hoc, the checkpoint at which the model
would have stopped had we used that sampled sub-
set. We sample 20 such subsets and compute the
expected scores and standard deviation for each
model, along with how frequently the subset agreed
with the full dev set.

Figure 3 summarizes the results, showing re-
markable stability in expectation even with tiny
dev sets, often less than a couple points behind
using the full dev set. Given a fixed budget of doc-
uments or annotations, these results suggest that
it is beneficial to allocate as many documents as
possible towards training, leaving behind a small
set for model selection.

4.3 How much do the source models forget?

To measure the degree of catastrophic forgetting
(McCloskey and Cohen, 1989), we revisit the
source datasets of each TRANSFER model and track
its performance in the presence of more training
data.9 In Figure 4, we see that on some datasets, the
performance difference is especially pronounced af-
ter training on just 10 examples in the target dataset.

We hypothesize that this is due to easy-to-

9For datasets with k-folds, we plot the mean across folds.

learn changes between the annotation guide-
lines that are incompatible between the two
datasets, like the annotation of certain entity
types. Two pairs, (OntoNotesen→OntoNoteszh)
and (PreCo→ARRAURST) are less affected by
continued training. For OntoNotes, the same
guidelines are used for all languages. Mean-
while, PreCo and ARRAURST are more simi-
lar in annotation guidelines than any other pair
since they both include singletons. On the other
hand, (OntoNotes→ARRAURST) shows a substan-
tial drop in performance despite the two datasets
containing overlapping documents.

In the cross-lingual setting, we observe that the
drops are smaller than across English datasets. This
could be due to several factors. The XLM-R en-
coder is already trained multilingually and has
strong crosslingual performance (Conneau et al.,
2020), while English encoders are not well-suited
for all domains, like law (Chalkidis et al., 2020).
The crosslingual datasets in this study (OntoNotes
and SemEval) are primarily in the same domain
(newswire) and share similar annotation guidelines.
And, in some cases where the trend looks flatter
(SemEvalit, Semevalnl, and even SARA), the train-
ing dataset is also smaller.
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ber of documents used for the first fold of LitBank (10
vs. 80) and QBCoref (15 vs. 240).

4.4 Which encoder layers are important?

Training the entire encoder is an expensive cost of
continued training, both in terms of training time
and in the number of new parameters introduced
by a new target dataset. We consider freezing some

parameters of the encoder and training the top-k
layers, along with the rest of the model, for each of
the “large” encoders. We investigate LitBank and
QBCoref under low and high(er) data conditions.
This is motivated by prior work which uses just the
top four layers (Aloraini et al., 2020) and by find-
ings from encoder probing that higher layers are
more salient for coreference (Tenney et al., 2019).

Figure 5 shows that there are gains to training
some layers, but it is not always necessary to train
the full model. In particular, for transferred mod-
els, we observe that unfreezing more layers of the
encoder could even lead to worse performance. On
the other hand, untrained models generally benefit
from training more of the encoder. These trends
are observed in both datasets and data quantities.10

This demonstrates that continued training allows
us to freeze a substantial fraction of the model and
still achieve good performance. In a multi-dataset
scenario, this would also reduce the total number of
parameters as the lower layers of the encoder can
be shared. This is impactful for neural coref models
because recent improvements are due to encoders
that are also growing in size (340M for SpanBERT
(L) and 559M for XLM-R), which are significantly
larger than the rest of the model (40M).

10This is also observed for OntoNoteszh and in medium data
conditions, detailed in Appendix D.
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5 Conclusion

We comprehensively examine the transferability of
neural coreference resolution models. We explore
several model initialization methods across a wide
set of domains and languages, and with a different
number of training examples, to demonstrate the
universal effectiveness of continued training. Ad-
ditionally, this method results in improved perfor-
mance over prior work on many of these datasets.
Furthermore, we find that PreCo can be effectively
used for pretraining, suggesting a viable alternative
to OntoNotes.

In our analysis, we find that: given a fixed num-
ber of annotated documents, few need to be allo-
cated for model selection; continued training also
suffers from catastrophic forgetting; and continued
training is effective with partially frozen encoders.
This study and its set of benchmarks serve as a
reference for future work in coreference resolution
model adaptation, especially for scenarios where
annotation can be expensive or data may be scarce.
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A Model

A.1 The ICOREF model
The ICOREF model (Xia et al., 2020) uses an in-
cremental algorithm to perform coreference res-
olution. Given a text segment of length n with
(sub)tokens x1 . . . xn, the model enumerates all
spans xa,b ∈ X , where xa,b = [xa, xa+1, ..., xb]
up to a certain length, respecting sentence bound-
aries. The span embedding xa:b is then com-
puted as a function of the component embed-
dings, determined by the output of an encoder:
xa:b = [xa;xb; f([xa, ...,xb];φ(a, b))] where f
is an attention-weighted average and φ(a, b) is a
width feature. This is identical to the representa-
tion used by Lee et al. (2017). Like prior work, we
learn a span scoring function sm(xi) intended to
rank the likelihood the given span is a coreference
mention. We prune the number of spans considered
in the next step to a manageable number spans, kn,
for some ratio k.

The incremental algorithm iterates through the
spans, collecting a list of clusters, C (initially
empty). Each span xi is scored by a pairwise scorer,
sc(xi, c), against the clusters already found by the
model. Specifically, sc(xi, c) = sm(xi)+sa(xi, c),
which means this score is influenced by the likeli-
hood xi is a mention. This is akin to the pairwise
antecedent scorer from prior work. However, in
ICOREF, the scores are computed against clusters
instead of against spans, which reduces the need
for cluster decoding later.

If maxcj∈C(sc(xi, cj)) ≤ 0, a new cluster,
cnew = {xi} with embedding xi, is created and
added to C. Otherwise, xi is merged into the top-
scoring cj , with the new embedding,

c′j = αxi + (1− α)cj ,

where α is a learned function of xi and cj .
The training objective aims to minimize
− log

∏
xi∈X P (c

∗
xi |xi), where c∗xi is the correct

cluster determined by the cluster containing the
most recent antecedent of xi. If no such antecedent
exists, then the correct cluster is the dummy cluster,
ε, and sc(xi, ε) = 0. Letting Cε = C ∪ {ε}, the
probability can then be computed as

P (c∗xi |xi) =
exp(sc(xi, c

∗
xi))∑

cj∈Cε exp(sc(xi, cj))
.

In this work, we instead optimize for all an-
tecedents of x, Ant(x), instead of the most recent

one:

− log
∏
xi∈X

∑
yi∈Ant(x)

1

|Ant(xi)|
P (cyi |xi). (1)

We find that this leads to comparable (or slightly
better) performance.

Finally, sa usually incorporates a genre embed-
ding determined by the genre of the document. We
retain that small set of parameters but assume all
documents have the same genre. The only model
for which this is not the case is the directly down-
loaded model, as it was trained for best perfor-
mance on OntoNotes.

For most datasets and many downstream tasks,
we want to include the singleton entity mentions in
the output predictions. For OntoNotes, all singleton
mentions are removed in postprocessing. We could
add an auxiliary objective that maximizes sm(xi)
if xi is an entity mention (Zhang et al., 2018) and
only prune out singleton mentions sm(xi) < 0
in postprocessing. Instead, we present a model
reformulation that is similar to the choices made
by Toshniwal et al. (2020).

Instead of taking the top kn spans at span prun-
ing, we prune to the top kn spans from the set
{xi ∈ X : sm(xi) > 0} (which could have fewer
than kn elements). This is both more efficient and
easier to optimize for. Now, the training objective
is to minimize sm(xi) if xi is not an entity men-
tion, and maximize sm(xi)+sa(xi, cj) if it is. This
latter term is identical to sc(xi) from the previous
model.

We can interpret this change as now modeling
the joint distribution of whether xi is an entity men-
tion (a binary random variableM ) and which entity
cluster (E) is would best match to (sa). We can
decompose the joint probability,

P (E,M | xi) =
∑

m∈{0,1}

P (E|m,xi)P (m,xi).

This can further split into the components,

P (E|M = 1, xi) =
exp(sa(xi, c

∗
xi))∑

cj∈Cε exp(sa(xi, cj))

(2)

P (E|M = 0, xi) = 1 (3)

P (M = 1, xi) =
exp(sm(xi))

1 + exp sm(xi)
(4)

P (M = 0, xi) = 1− P (M = 1, xi) (5)
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Split Total Split No “coref” No “min”

train 57,686 677 4 2
dev 3,986 40 0 0
test 10,341 145 0 0

Table 4: Statistics of markables that are either reduced
or ignored from the preprocessing of ARRAURST to
convert it into a format consistent with the ICOREF
model used for the other datasets in this work.

The M = 1 objective is the same as train-
ing without singleton mentions (as in OntoNotes),
while the M = 0 term accounts for singletons.
Note that if we know M = 0, then we always
make the correct “cluster” decision by ignoring it
for the remainder of the algorithm, which allows
for this simplification.

This is different from simply adding an objective
maximizing P (M), since that would incorrectly
handle cases when M = 0. In practice, however,
we found that this makes no difference in perfor-
mance on the task, though pruning spans earlier
resulted in a substantially faster model.

B Dataset Preprocessing

We use the scripts from Joshi et al. (2019) to con-
vert all documents into sentence-separated and
subtokenized segments of sizes at most 512. For
all English datasets, we use the SpanBERT tok-
enizer, while we use the XLM-R tokenizer for the
cross-lingual experiments.

For QBCoref, we split the dataset into five splits
after shuffling the initial dataset. For LitBank, we
use the published splits (Bamman et al., 2020).
In ARRAURST, several mentions are split. Cor-
rectly modeling split spans is an active area of on-
going work (Yu et al., 2020a, 2021). Since we use
ARRAURST primarily for intrinsic comparisons,
we defer to the minimum span if a mention is split.
This means we replaced a subset of markables,
listed in Table 4. In addition, a small number of
markables do not have an annotated coreference
cluster, while a couple split markables failed to re-
duce because there is no minimum span annotated.
These two phenomena did not affect the test set.
Nonetheless, the model’s inability to address split
markables affects comparability against prior work.

Table 5 shows the number of training examples
we use for each dataset. Since we only shuffle once
initially, larger training sets are always a superset
of a smaller one.

Dataset # Training examples

OntoNoteszh [0, 10, 25, 50, 100, 250, 500, 1810]
OntoNotesar [0, 10, 20, 40, 80, 160, 359]

PreCo [5, 10, 25, 50, 100, 250, 500]
LitBank [5,10, 20, 40, 80]
QBCoref [5, 15, 30, 60, 120, 240]

ARRAURST [10, 20, 40, 80, 160, 335]
SARA [10, 20, 40, 80, 138*]

SemEvalca [10, 25, 50, 100, 250, 829]
SemEvales [10, 25, 50, 100, 250, 875]
SemEvalit [10, 20, 40, 80]
SemEvalnl [10, 20, 40, 80, 145]

Table 5: Training set sizes considered for each dataset.
* For SARA, we use the entire fold, which contains 138
documents on average.

C Training Details

We follow the same hyperparameters used by Xia
et al. (2020). We use k = 0.4 to select the top
0.4n spans, use learning rates of 2e-4 for training
the non-encoder parameters (with Adam) and 1e-5
for the encoder (with AdamW). For all models, we
finetune the full encoder. We use gradient clipping
of 10, train for up to 100 epochs with a patience of
10 for early stopping, as determined by dev F1. We
consider spans up to 10 for SARA, 15 for PreCo
and ARRAURST, 20 for LitBank and QBCoref, and
30 for all other datasets. These choices are made
based on prior work or the statistics of the training
set; increasing the value would affect runtime (with
marginal gains in performance).

Each model was trained on a single 24GB Nvidia
Quadro RTX 6000s for between 20 minutes to 16
hours, depending on the number of training exam-
ples. Due to the cost of training over 500 models,
each model was trained only once. The English
models use 373M parameters, of which 334M is the
SpanBERT-large encoder. The multilingual models
use 599M parameters, of which 560M is XLM-R
large.

For Table 3, we pick the best model between
TRANSFER (ON) and TRANSFER (PC) based on
their dev scores on each dataset. These are listed
in Table 6

D Full cross-lingual results

D.1 Continued Training (4.1)
Figure 6 is the full figure, analogous to Figure 1.

D.2 Training Top Layers (4.4)
For each dataset, we include a "medium" data vol-
ume (40 for LitBank, 60 for QBCoref) and we also



5255

30

40

50

60

70

F1

OntoNotes-zh

Initialization method
XLM-R (L) Transfer (en)

30

40

50

OntoNotes-ar

30

40

50

SemEval-es

0

10

20

30

40

50
SemEval-ca

15

20

25

30

35

SemEval-it

30

40

50

SemEval-nl

Coref (pred. m
ent.)

50

60

70

80

55

60

65

70

50

55

60

0

20

40

60

30

35

40

50

55

60

65

70

75

M
entions

10 100 1000
70

75

80

85

10 30 100 300
50

60

70

80

10 100 1000

40

45

50

55

10 100 1000

30

40

50

10 30 50
25

30

35

40

45

10 30 100
# training documents

50

60

70 Coref (gold m
ent.)

Figure 6: Full version of Figure 2. Like Figure 1, this plot demonstates the effectiveness of continued training
across different languages. XLM-R uses a pretrained encoder (dashed line), while TRANSFER (EN) is first trained
on OntoNotesen (solid line).

Dataset ON PC EN

PreCo 82.4 85.2 -
LitBank 77.3 76.3 -
QBCoref 79.1 78.7 -

ARRAURST 77.7 79.3 -
SARA 77.7 75.4 -

OntoNoteszh - - 69.0
OntoNotesar - - 62.3
SemEvalca - - 51.4
SemEvales - - 52.1
SemEvalit - - 36.1
SemEvalnl - - 48.3

Table 6: Dev. F1 scores on each of the models and
datasets presented in Table 3. For the English dataset,
the test score of the model with the best performing
score is reported in Table 3.

include OntoNoteszh with 50, 500, and 1810 for the
three data volumes respectively. These plots are
presented in Figure 7. These trends follow what
is described in subsection 4.4. Notably, freezing
the lower layers when training OntoNoteszh from
scratch appears to consistently outperform training
the full model.



5256

30

40

50

60

70

Co
re

f A
vg

. F
1

LitBank

Initialization method
SpanBERT (L)
SpanBERT-On (L)

Transfer (en)
Transfer (on)

Transfer (pc)
XLM-R (L)

30
40
50
60
70

QBCoref

30

40

50

OntoNotes-zh

Low

50

60

70

50

60

70

35

40

45

50

55

M
edium

0 6 12 18 24

50

60

70

0 6 12 18 24
55
60
65
70
75
80

0 6 12 18 24
Top k layers are trainable

50

55

60

65

70

All
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methods follow those used throughout the paper.


