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Abstract

Recent works have shown that powerful pre-
trained language models (PLM) can be fooled
by small perturbations or intentional attacks.
To solve this issue, various data augmenta-
tion techniques are proposed to improve the
robustness of PLMs. However, it is still chal-
lenging to augment semantically relevant ex-
amples with sufficient diversity. In this work,
we present Virtual Data Augmentation (VDA),
a general framework for robustly fine-tuning
PLMs. Based on the original token embed-
dings, we construct a multinomial mixture for
augmenting virtual data embeddings, where a
masked language model guarantees the seman-
tic relevance and the Gaussian noise provides
the augmentation diversity. Furthermore, a
regularized training strategy is proposed to bal-
ance the two aspects. Extensive experiments
on six datasets show that our approach is able
to improve the robustness of PLMs and allevi-
ate the performance degradation under adver-
sarial attacks. Our codes and data are pub-
licly available at https://github.com/
RUCAIBox/VDA.

1 Introduction

Recently, pre-trained language models (PLMs)
such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) have achieved remark-
able success in various natural language processing
(NLP) tasks (Rajpurkar et al., 2016; Wang et al.,
2019; Zhou et al., 2020b). As a general and ef-
fective approach, fine-tuning PLMs on specific
datasets has become the mainstream paradigm for
developing NLP applications. Despite the success,
researchers have found that PLMs can be easily
fooled by adversarial attacks (Jin et al., 2020; Li
et al., 2020b). Although encapsulated into a black
box, these attack strategies can detect the vulnera-
bilities of a PLM via intentional queries (He et al.,

†† Corresponding author

2021; Li et al., 2020a), and then add small pertur-
bations (e.g., synonyms substitution) into the input
texts for misleading PLMs to incorrect predictions.

As found in previous works (Schmidt et al.,
2018; Yin et al., 2019; Jiang et al., 2020), a possi-
ble reason of the vulnerability is that these PLMs
do not generalize well on semantic neighborhood
around each example in the representation space.
To solve this issue, adversarial data augmentation
(ADA) methods (Jia and Liang, 2017; Wang and
Bansal, 2018; Michel et al., 2019) have been pro-
posed by revising original data to augment attack-
related data for training. However, due to the dis-
crete nature of language, it is challenging to gen-
erate semantically relevant and sufficiently diverse
augmentations. Although attempts by leveraging
expert knowledge (Ren et al., 2019; Li et al., 2019b)
and victim models (Jin et al., 2020; Li et al., 2020b)
have achieved better performance, their generaliz-
ability and flexibility is highly limited.

Recently, virtual adversarial training (Miyato
et al., 2017; Madry et al., 2018) is applied to var-
ious NLP models for improving the performance
and robustness (Zhu et al., 2020; Jiang et al., 2020),
which usually generates gradient-based perturba-
tion on the embedding space as virtual adversarial
samples. However, it is hard to explicitly constrain
the gradient-based perturbation within the same se-
mantic space as the original sample. In addition, un-
like attacks in computer vision (Zheng et al., 2016;
Miyato et al., 2019), textual adversarial attacks are
discrete (e.g., word replacement) and are hard to
be captured by gradient-based perturbations.

To solve these challenges, we propose Virtual
Data Augmentation (VDA), a robust and general
framework for fine-tuning pre-trained models. Our
idea is to generate data augmentations at the em-
bedding layer of PLMs. To guarantee semantic
relevance, we consider a multinomial mixture of
the original token embeddings as the augmented
embedding for each position of the input. In the

https://github.com/RUCAIBox/VDA
https://github.com/RUCAIBox/VDA
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Figure 1: A comparison among synonym replacement
based data augmentation methods, virtual adversarial
training and our VDA framework.

mixture, each token embedding is weighted ac-
cording to its likelihood estimated by a masked
language model conditioned on the input. To pro-
vide sufficient diversity, we further incorporate
Gaussian noise in the above multinomial mixture,
which enhances the randomness of the augmenta-
tions. As shown in Figure 1, for a target token

“good”, we first predict the substitution probabilities
of candidate tokens via a masked language model,
then inject the Gaussian noise to produce multiple
multinomial mixtures. After that, we aggregate
the candidate embeddings with the multinomial
mixtures to generate new embeddings (virtual data
embeddings) to replace the original embedding of

“good”.
There are two major advantages to our VDA ap-

proach. First, with the original token embeddings
as the representation basis, the augmented embed-
dings stay close to the existing embeddings, which
avoids the unexpected drift of semantic space. Sec-
ond, with the injected Gaussian noise, we are able
to generate diverse variations for augmentations.
In order to enhance the relevance with the given
injected Gaussian noise, we further design a reg-
ularized training strategy that guides the learning
of the augmented virtual data towards the original
predictions of PLMs. In this way, our approach has
considered both semantic relevance and sufficient
diversity. Besides, since VDA only revises the in-
put embeddings, it is agnostic to downstream tasks,
model architectures and learning strategies.

To evaluate the effectiveness of our proposed
VDA framework, we construct extensive experi-
ments on six datasets. Results show that VDA can
boost the robustness of all the baseline models with-
out performance degradation. We also find that our
approach can be further improved by combining it
with traditional adversarial data augmentation.

Our contributions are summarized as follows:
•We propose a new data augmentation frame-

work for resisting discrete adversarial attacks on
PLMs, which is general to improve the robustness
of various PLMs on downstream tasks.
• Our approach utilizes a masked language

model with Gaussian noise to augment virtual
examples for improving the robustness, and also
adopts regularized training to further guarantee the
semantic relevance and diversity.
• Extensive experiments on six datasets have

demonstrated that the proposed approach is able to
effectively improve the robustness of PLMs, which
can be further improved by combining with exist-
ing adversarial data augmentation strategies.

2 Related Work

We review the related work in the following three
aspects.

2.1 Adversarial Attack in NLP

Inspired by the success in compute vision (Goodfel-
low et al., 2015; Kurakin et al., 2017), adversarial
attack in NLP tasks has become an emerging re-
search topic in recent years (Gao et al., 2018; Yang
et al., 2020; Chen et al., 2020). Early works usu-
ally adopt heuristic rules to revise the input text for
producing adversarial samples, including character
modification (Ebrahimi et al., 2018), synonyms re-
placement (Alzantot et al., 2018), word insertion
or deletion (Zhang et al., 2019). However, with the
revolution of large-scale PLMs, these attack strate-
gies can be defended (Jones et al., 2020; Gui et al.,
2021; Zhou et al., 2020a) to some extent. To attack
PLMs, TextFooler (Jin et al., 2020) designs an at-
tack algorithm to revise the input data and queries
the PLM several times to find important words for
replacement, which greatly reduces the accuracy of
BERT. Following it, recent works (Li et al., 2020b;
He et al., 2021) continuously improve the quality
of the adversarial samples and the attack success
ratio. In our approach, we consider improving the
robustness of PLMs against these adversarial attack
methods via a new fine-tuning framework VDA.

2.2 Data Augmentation

Data augmentation has been extensively studied
in NLP tasks for improving the robustness (Wang
and Yang, 2015; Fadaee et al., 2017; Wei and
Zou, 2019). Similar to adversarial attack, early
works mostly try heuristic rules to revise the in-
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put data for augmentation, such as synonym re-
placement (Wang and Bansal, 2018), grammar
induction (Min et al., 2020), word insert and
delete (Wei and Zou, 2019). With the development
of text generation techniques, back translation (Xie
et al., 2020; Ribeiro et al., 2018) and variant auto-
encoder (Wang et al., 2020; Li et al., 2019c) are
used to augment new data. Besides, a surge of
works (Hou et al., 2018; Li et al., 2019a; Zhou
et al., 2019) focus on augmentation for specific
tasks with special rules or models. Although they
perform well, these methods have lost the gener-
ality. In this paper, we propose a new data aug-
mentation framework VDA that utilizes a masked
language model with Gaussian noise to augment
virtual examples for improving the robustness. our
VDA is agnostic to downstream tasks, model archi-
tectures and learning strategies.

2.3 Virtual Adversarial Training

To improve the robustness of neural networks
against adversarial examples, virtual adversarial
training (VAT) (Miyato et al., 2015; Kurakin et al.,
2017; Qin et al., 2019) has been widely used in
compute vision. It formulates a class of adver-
sarial training algorithms into solving a minimax
problem, which can be achieved reliably through
multiple projected gradient ascent steps (Qin et al.,
2019). Recently, VAT has shown its effectiveness
in NLP tasks, where the gradient-based noise is
able to improve the performance and smoothness
of the pre-trained models (Zhu et al., 2020; Jiang
et al., 2020). However, due to the discrete nature of
language, it has been shown that VAT methods are
not very effective in defending against adversarial
attacks (Si et al., 2020; Li and Qiu, 2021).

3 Preliminary

This work seeks to improve the fine-tuning perfor-
mance of pre-trained language models (PLM), in
that the fine-tuned model will become more robust
to data permutations or attacks. Specially, we take
the text classification task as an example task to
illustrate our approach, where a set of n labeled
texts {〈xi, yi〉} are available. Each labeled text
consists of a text xi and a label yi from the label set
Y . We refer to the adversarial example generated
from a text xi as adversarial text, denoted by x̂i.
The purpose of adversarial examples is to enhance
the model robustness in resisting intentional data
perturbations or attacks.

Let f denote a PLM parameterized by θ. Follow-
ing (Jia and Liang, 2017; Michel et al., 2019), we
incorporate adversarial examples to improve the
fine-tuning of PLMs. To conduct the adversarial
learning, we formulate the learning objective as
follows:

argmin
θ

n∑
i=1

Lc(f(xi), yi) + λ

m∑
j=1

Lreg(f(xj), f(x̂j)),

(1)

where m is the number of adversarial texts that we
use, λ is a trade-off parameter, Lc and Lreg try to
minimize the classification loss and reduce the pre-
diction difference between original and adversarial
texts, respectively.

For the PLM f , we assume that it is already pre-
trained on general-purpose large-scale text data,
we would like to fine-tune its parameter θ based
on some downstream task. The PLMs are usually
developed based on multi-layered Transformer ar-
chitecture such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), where a sequence of to-
kens will be encoded into a sequence of contextual
representations. Here, we take the representation of
the first token (i.e., [CLS]) as the input of the clas-
sifier, and optimize the classification performance
with the cross-entropy loss.

4 Our Approach

In this section, we describe our proposed frame-
work Virtual Data Augmentation (VDA) for ro-
bustly fine-tuning PLMs. Our framework consists
of two important ingredients, namely embedding
augmentation and regularized training.

4.1 Embedding Augmentation

To improve the model robustness, a good adversar-
ial example should adhere to the original semantic
space, as well as incorporate sufficient variations in
meanings. However, existing studies cannot make
a good trade-off between the two aspects.

Considering this difficulty, we generate adver-
sarial texts at the embedding layer of PLMs. For
adversarial training, continuous embeddings are
easier to optimize and can encode more semantic
variations than discrete tokens. The key idea of
embedding augmentation is inspired by the word
replacement strategy in previous data augmentation
methods (Kobayashi, 2018; Wei and Zou, 2019).
Instead of selecting some tokens for replacement,
we use an augmented embedding to replace the
original contextual embedding of a specific token
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Figure 2: Illustration of our framework VDA. We show
the case that we generate three virtual examples for the
input sentence.

in the input sentence. To adhere to the original se-
mantic space, the augmented embedding is derived
by a probabilistic mixture of the embeddings of
the vocabulary terms, where each term is weighted
according to its substitution probability (i.e., re-
placing the original token with the candidate term)
calculated by a masked language model (MLM).

To simplify our presentation, we only discuss the
augmentation for a specific token w̃ from an input
sentence S. The same procedure will be applied to
each position of the original sentence S. Specially,
we utilize the MLM to evaluate the substitution
probabilities of all the terms in the vocabulary. For
each chosen token, we predict its probability to be
replaced by other words in the whole vocabulary
via MLM, denoted as p(ŵi|S). Finally, we obtain
the substitution probabilities of all the terms as

{p(ŵ1|S), . . . , p(ŵV |S)}, (2)

where V is the vocabulary size. Different from
previous masked prediction (Devlin et al., 2019),
we do not mask the chosen token but also keep it
as the input to compute the substitution probabili-
ties. In this way, we aim to generate very relevant

embeddings for augmentation. Such a strategy is
also very efficient in practice, since it no longer per-
forms the costly mask-and-completion operations
for each token.

To augment diverse virtual data embeddings, we
further draw a random noise from the Gaussian
distribution as

ε ∼ N (0, σ2), (3)

where the randomness can be controlled by the
standard variance σ. By mixing the random noise
with the substitution probabilities, we can produce
multiple different probability distributions for each
instance as

p
′
(ŵi|S) = softmax(p(ŵi|S) + ε). (4)

Then, for each target token w̃, we obtain its corre-
sponding substituted embedding by aggregating the
token embedding matrix according to the noised
substitution probability as

êw̃ = pw̃ ·ME , (5)

where pw̃ = {p′(ŵi|S)}Vi=1, and ME ∈ RV×d is
the token embedding matrix from the MLM. Note
that by using the output of MLM, our approach can
augment more “real” embeddings from the seman-
tic space spanned by original token embeddings.
Besides, mixing Gaussian noise brings additional
semantic diversity for augmentation.

4.2 Regularized Training
The above augmentation strategy is able to enhance
the semantic variations by continuous embeddings.
However, augmented data is likely to incorporate
unexpected semantic drift in representations. To
further improve the model robustness, instead of di-
rectly using the augmented embeddings as positive
examples, we propose a regularized training strat-
egy to prevent large changes between the predic-
tions given real and augmented embeddings. For-
mally, given the original data point (Ei, yi) and
the augmented virtual data Êi, where Ei and Êi

denote the original embeddings and augmented em-
beddings of the instance respectively, we set the
regularization loss in Equation 1:

Lreg(θ) =
1

k

k∑
i=1

DsKL

(
f(Ei; θ), f(Êi; θ)

)
,

(6)
where DsKL is the symmetric KL-divergence, k
denotes the number of augmented examples. The
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Algorithm 1 The framework of VDA.
Require: Pre-trained model f(.), a pre-trained masked lan-

guage model fMLM (.), Gaussian distributionN (0, σ2),
virtual data sampling number k, training epoch m.

1: Input: The training data {〈xi, yi〉}.
2: Output: The fine-tuned parameters θ.
3: for i = 1 . . .m do
4: for minibatch B ∈ {〈xi, yi〉} do
5: Tokenize input sentences in B into {w1, ..., wm}.
6: Generate the substitution probability of all tokens.
7: for j = 1 . . .k do
8: Sample ε from N(0, σ2).
9: Produce p

′
(ŵi|S) using Eq. 4.

10: Augment virtual data using Eq. 5.
11: Optimize θ using Eq. 1.
12: end for
13: end for
14: end for
15: return θ

regularizer enforces the model f to produce similar
scores for the original data and augmented data,
which lies in the semantic neighborhood of origi-
nal embeddings. Furthermore, we instantiate the
classification loss in Equation 1 as follows:

Lc(θ) =
1

n

n∑
i=1

CE
(
f(Ei; θ), yi

)
, (7)

where CE(·, ·) is the cross-entropy loss function,
which can be changed according to specific tasks.

4.3 Overview and Discussion
In this part, we present the overview and discus-
sions of our VDA approach.

Overview The overall framework of VDA consists
of two important parts, namely embedding aug-
mentation and regularized training. We present
the overall training algorithm in Algorithm 1. For
embedding augmentation, we utilize the output of
a MLM as the multinomial mixtures to augment
new embeddings for each token in the input sen-
tence. It is called virtual data augmentation, since
the augmented embeddings do not correspond to
actual text or tokens, but a probabilistic mixture
of all the token embeddings. Then, for regularized
training, we leverage the original predictions to
guide the learning of the augmented embeddings,
which reduces the influence from noisy or incorrect
perturbations in the augmentations.

Discussion In the background of machine learn-
ing (Schmidt et al., 2018; Yin et al., 2019), robust-
ness corresponds to the ability to resist data drift,
perturbation and attack. To improve the robustness,
a key point is that the model is able to generalize

Task Data Train Dev Test

Sentence
Classification

Yelp 25000 5000 5000
IMDB 25000 5000 5000
AG 120000 3000 3000
MR 8595 1000 1000

Sentence Pair
Classification

QNLI 100000 4743 5463
MRPC 3668 408 1725

Table 1: Statistics of the datasets.

to the semantic neighborhood of training data in-
stances (Schmidt et al., 2018). However, discrete
augmentation methods (Wei and Zou, 2019; Wang
and Bansal, 2018) (e.g., insert, delete or replace
tokens) do not have good generalization ability
for model optimization. While, virtual adversar-
ial training methods (Zhu et al., 2020; Jiang et al.,
2020) cannot well constrain the augmentations in
the original semantic space. As a comparison, our
approach utilizes original token embeddings to aug-
ment new embeddings, so that the augmentations
will stay close to the existing embeddings in the
same semantic space. For relevance, we adopt a
MLM to generate the multinomial mixture accord-
ing to the likelihood of each candidate given the
input. For diversity, we inject Gaussian noise to en-
hance the randomness. To further balance the two
aspects, we design a regularized strategy to guide
the augmentation learning towards the original pre-
dictions. By only revising the embeddings, our
approach is model-agnostic and domain-agnostic,
which is general to apply to various PLMs on dif-
ferent downstream tasks.

5 Experiment - Main Results

We demonstrate the effectiveness of VDA for fine-
tuning PLMs in the text classification task.

5.1 Experimental Setup

5.1.1 Dataset

We conduct experiments on the sentence classifica-
tion task and the sentence-pair classification task.
The dataset statistics are summarized in Table 1.

Sentence Classification We use four sentence clas-
sification datasets for evaluation.
• Yelp (Zhang et al., 2015) 1: a binary sentiment

classification dataset based on restaurant reviews.
• IMDB 2: a binary document-level sentiment

classification dataset on movie reviews.

1https://www.yelp.com/
2https://datasets.imdbws.com/
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Datasets Yelp IMDB
Metrics Ori Acc Att Acc Q Num Perturb Ori Acc Att Acc Q Num Perturb
BERT 0.957 0.487 645.878 12.291 0.938 0.310 954.852 9.745
BERTV DA 0.959 0.533 687.681 17.720 0.938 0.307 1061.656 12.483
FreeLB 0.960 0.400 604.952 17.559 0.936 0.137 784.833 10.727
FreeLBV DA 0.962 0.507 694.910 18.869 0.939 0.250 1015.518 14.400
SMART 0.960 0.437 636.523 20.356 0.940 0.110 611.279 9.232
SMARTV DA 0.962 0.527 691.941 20.372 0.938 0.143 824.192 12.785
SMix 0.957 0.557 705.042 15.305 0.935 0.210 833.642 9.816
SMixV DA 0.960 0.600 765.517 17.491 0.934 0.383 1105.819 12.733
RoBERTa 0.977 0.500 730.741 11.991 0.957 0.233 911.250 9.588
RoBERTaV DA 0.972 0.643 780.300 9.323 0.959 0.210 960.996 11.469
Datasets AG MR
Metrics Ori Acc Att Acc Q Num Perturb Ori Acc Att Acc Q Num Perturb
BERT 0.944 0.327 223.271 22.309 0.868 0.210 58.217 20.291
BERTV DA 0.946 0.450 268.981 21.757 0.878 0.339 70.519 22.775
FreeLB 0.945 0.301 215.178 21.175 0.879 0.240 60.498 20.266
FreeLBV DA 0.945 0.473 271.282 22.634 0.883 0.302 69.109 21.557
SMART 0.944 0.403 251.643 21.953 0.880 0.226 56.067 20.514
SMARTV DA 0.945 0.484 273.724 23.572 0.885 0.298 63.965 23.386
SMix 0.944 0.425 269.616 21.981 0.880 0.251 61.289 21.842
SMixV DA 0.947 0.513 278.833 24.422 0.883 0.319 68.893 20.874
RoBERTa 0.951 0.464 301.749 19.716 0.919 0.344 81.432 27.128
RoBERTaV DA 0.952 0.497 303.964 23.127 0.925 0.439 89.427 24.310

Table 2: Main results on the sentence classification task. Ori Acc, Att acc, Q Num and Perturb denote the original
accuracy, attack accuracy, query number and perturbed percentage per sample. “V DA” denotes that the model is
trained with our proposed VDA framework. The best results in each group are highlighted in bold.

• AG’s News (Zhang et al., 2015): a news-type
classification dataset, containing 4 types of news:
World, Sports, Business, and Science.
•MR (Pang and Lee, 2005): a binary sentiment

classification dataset based on movie reviews.

Sentence-Pair Classification We also use two
sentence-pair classification datasets for evaluation.
• QNLI (Demszky et al., 2018): a question-

answering dataset consisting of question-paragraph
pairs. The task is to determine whether the context
sentence contains the answer to the question.
•MRPC (Dolan and Brockett, 2005): a corpus

of sentence pairs with human annotations about the
semantic equivalence.

5.1.2 Baselines
To evaluate the generalization of our framework,
we implement VDA on the following models.
• BERT-Base (Devlin et al., 2019) is the 12-

layer BERT model with 768 hidden units and 12
heads, totally 110M parameters.
• FreeLB (Zhu et al., 2020) is an adversarial

training approach for fine-tuning PLMs, which
adds gradient-based perturbations to token embed-
dings. We implement it on BERT-Base.
• SMART (Jiang et al., 2020) is a robust and

efficient computation framework for fine-tuning
PLMs. Limited by the GPU resource, we can only
implement the smooth-inducing adversarial regu-
larization on BERT-Base but remove the Bregman
Proximal Point Optimization.
• SMix (Si et al., 2020) uses mixup on [CLS]

tokens of the PLM to cover larger attack space. We
implement it on BERT-Base. For a fair compari-
son, we remove the adversarial data augmentation
strategy here, and leave it on Section 6.2.
• RoBERTa-Large (Liu et al., 2019) is a ro-

bustly optimized BERT model with more training
data and time. It owns 24 layers, 1024 hidden units
and 16 heads, totally 355M parameters.

5.1.3 Evaluation Metrics

We set up various metrics for measuring accuracy
and robustness. Original accuracy, is the accuracy
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Datasets MRPC QNLI
Metrics Ori Acc Att Acc Q Num Perturb Ori Acc Att Acc Q Num Perturb
BERT 0.826 0.163 77.276 9.601 0.909 0.342 93.515 13.451
BERTV DA 0.831 0.206 90.686 10.617 0.913 0.410 112.088 14.816
FreeLB 0.827 0.154 82.372 10.193 0.910 0.363 98.703 14.283
FreeLBV DA 0.838 0.205 87.379 10.566 0.915 0.428 111.812 15.953
SMART 0.831 0.139 81.114 10.270 0.909 0.309 91.435 14.654
SMARTV DA 0.832 0.179 85.628 11.546 0.911 0.388 105.918 14.611
SMix 0.824 0.249 116.660 11.224 0.886 0.171 71.849 10.171
SMixV DA 0.833 0.258 97.380 11.448 0.915 0.389 109.562 14.537
RoBERTa 0.850 0.179 78.905 9.357 0.934 0.408 101.977 12.112
RoBERTaV DA 0.859 0.255 97.485 11.623 0.941 0.411 103.405 11.901

Table 3: Main results on the sentence-pair classification task. “V DA” denotes that the model is trained with our
proposed VDA framework. The best results in each group are highlighted in bold.

of models on the original test set. While attack ac-
curacy is the counter-part of after attack accuracy,
which is the core metric measuring the robustness.
Larger attack accuracy reflects better robustness.
In this paper, we adopt BERT-Attack (Li et al.,
2020b) as the attack method, since it can gener-
ate fluent and semantically preserved samples. For
AG, MR, QNLI and MRPC datasets, we follow
previous works (Jin et al., 2020; Li et al., 2020b)
to randomly sample 1000 instances for robustness
evaluation. For Yelp and IMDB, we randomly sam-
ple 300 instances since the long sentences in the
two datasets are more time-consuming. Note that
for sentence-pair classification datasets (i.e., QNLI
and MRPC), we attack the second sentence in eval-
uation. Besides, we also apply the query number
and perturbed percentage per sample for evaluation.
Under the black-box setting, queries of the target
model are the only way of attack methods to access
information. The larger query number indicates
that the vulnerability of the target model is harder
to be detected, which reflects better robustness. The
perturbed percentage is the ratio of perturbed words
number to the text length, a larger percentage also
reveals more difficulty to successfully attack the
model.

5.1.4 Implementation Details
We implement all baseline models based on
HuggingFace Transformers 3, and their hyper-
parameters are set following the suggestions from
the original papers. For our proposed VDA, we
reuse the same hyper-parameter setting as the orig-
inal baseline model. All models are trained on a

3https://huggingface.co/transformers/

GeForce RTX 3090.
For hyper-parameters in VDA, the sampling

number m is set as 1, the learning rate is 1e−5.
We use 5% steps to warm up PLMs during train-
ing. The variance of Gaussian noise is mostly set
as 1e−2 and tuned in {1e−3, 4e−3, 1e−2, 4e−2},
the weight λ is mostly set as 1.0 and tuned in
{0.04, 0.1, 0.4, 1.0, 4.0}.

5.2 Main Results

Table 2 reports the evaluation results of our pro-
posed VDA framework and the baseline models on
sentence classification datasets. And the results on
sentence-pair classification datasets are shown in
Table 3. Based on these results, we can find:

First, FreeLB and SMART mostly outperform
BERT-base model on the original accuracy metric,
but perform not well on robustness-related met-
rics, especially on Yelp and IMDB datasets. These
methods adopt gradient-based perturbations and
smoothness-inducing regularization, respectively,
which are able to improve the classification accu-
racy but may be not effective in defending against
adversarial attacks. A potential reason may be that
textual adversarial attacks are discrete, which can
not be captured by virtual adversarial training.

Second, SMix improves the robustness of BERT-
base in all datasets, but performs not well in orig-
inal accuracy. It mixes hidden representations of
the BERT-base model, which increases the cov-
erage of the attack space for PLMs but may aug-
ment noised examples into training data. Besides,
RoBERTa-large outperforms all other baselines in
performance and robustness metrics. The reason is
that RoBERTa-large is pre-trained on more training
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AG
Method Ori Acc Att Acc Q Num Perturb
BERT 0.944 0.360 241.758 22.416
+V DA 0.949 0.468 284.946 22.470
+V DA− ε 0.945 0.445 280.672 21.642
+CEV DA 0.945 0.451 275.034 20.621
+Argmax 0.943 0.478 298.186 19.515
+Sample 0.946 0.459 274.553 22.479

QNLI
Method Ori Acc Att Acc Q Num Perturb
BERT 0.834 0.163 77.276 9.601
+V DA 0.838 0.206 90.686 10.617
+V DA− ε 0.833 0.184 86.914 11.075
+CEV DA 0.832 0.173 80.389 10.492
+Argmax 0.834 0.160 71.074 9.224
+Sample 0.840 0.149 74.197 9.263

Table 4: Ablation and variation study of our approach
on the developed set of AG and QNLI datasets. BERT
indicates the BERT-base model.

data with more training time, which can directly
improve the generalization and robustness to adver-
sarial attack samples.

Finally, we compare our proposed framework
with these baseline models. After being combined
with VDA, it is clear to see a significant improve-
ment in robustness metrics on most of datasets.
Our VDA utilizes a masked language model to
generate substitution probabilities, and then add
a Gaussian noise. In this way, we can augment
diverse and semantic-consistent examples, which
are able to improve the robustness of PLMs. Fur-
thermore, we can also see that the most of baseline
models combined with VDA achieve a marginal
improvement in original accuracy. It indicates that
our approach can better balance the performance
and robustness of PLMs. Among them, we can
see that our VDA can bring more improvement in
MRPC and QNLI. The reason may be that the two
tasks are more difficult and require more data for
training. The virtual augmented data via our ap-
proach is semantic-consistent and diverse, hence it
can be more helpful for these tasks.

6 Experiment - Analysis and Extension

In this section, we continue to study and analyze
the effectiveness of our proposed VDA.

6.1 Ablation and Variation Study

We devise four variations for exploring the
effectiveness of key components in our pro-
posed VDA. BERT+V DA − ε is the variation
by removing the Gaussian noise ε in Eq. 4.
BERT+CEVDA replaces the symmetric KL-

MR
Metrics Ori Acc Att Acc Q Num Perturb
BERT-base 0.866 0.215 61.886 21.243
+V DA 0.874 0.326 70.681 21.577
+ADA 0.862 0.287 72.635 22.627
+V DA+ADA 0.869 0.386 77.586 20.781

MRPC
Metrics Ori Acc Att Acc Q Num Perturb
BERT-base 0.834 0.163 77.276 9.601
+V DA 0.838 0.206 90.686 10.617
+ADA 0.828 0.214 89.721 10.317
+V DA+ADA 0.837 0.215 95.786 10.623

Table 5: The study of combining VDA and ADA on
the developed set of MR and MRPC datasets, BERT
indicates the BERT-base model.

divergence by cross-entropy loss. BERT+Argmax
and BERT+Sample adopt argmax and sample op-
erators to select the substituted token according to
the substitution probability, respectively. We con-
duct the experiments on AG and QNLI datasets.

As shown in Table 4, most of the variations per-
form better than BERT in robustness metrics, since
they all augment virtual data for improving the ro-
bustness. Among them, BERT+V DA outperforms
most of the variations in both accuracy and robust-
ness metrics. It indicates that the Gaussian noise,
symmetric KL-divergence loss and weighted ag-
gregated embeddings are all useful to improve the
robustness and stabilize the accuracy. However,
we can see BERT+Argmax and BERT+Sample
achieve better results than BERT+V DA in part of
metrics, but cause a dramatic drop in other metrics.
It indicates that the two variations can not balance
the trade-off between accuracy and robustness well.

6.2 Virtual Data Augmentation with
Adversarial Data Augmentation

Our proposed VDA is general to various methods,
including conventional adversarial data augmenta-
tion (ADA). In this part, we collect the adversarial
examples curated from the MR and MRPC train-
ing sets, and add them to the original training set,
respectively. Then we test the accuracy and the
robustness of BERT-base model and our VDA af-
ter training with the adversarial data. As seen in
Table 5, although augmented adversarial data im-
proves the robustness of BERT, the performance
on original accuracy also drops. The reason may
be that there are noised instances in the adversarial
data. As a comparison, our proposed VDA can aug-
ment diverse and semantic-consistent virtual data,
which better balances accuracy and robustness. Be-
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Figure 3: Performance comparison w.r.t. noise vari-
ance and sample number on the developed set of MR
and MRPC datasets.
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Figure 4: Performance comparison of BERT and
BERTV DA w.r.t. training epochs on the developed set
of AG and MRPC datasets.

sides, after combining with ADA, our VDA can be
further improved on accuracy and robustness met-
rics. It indicates that our approach is also general
to ADA methods.

6.3 Hyper-parameter Analysis

Our framework includes a few parameters to tune.
Here, we report the tuning results of two parame-
ters on MR and MRPC datasets, i.e., the variance
of the Gaussian noise η and the number of argu-
mented virtual data. We show the change curves
of original accuracy and attack accuracy in Fig-
ure 3. We can see that our model achieves the best
performance when the variance is nearby 0.05. It
indicates that too small or too large noise may in-
fluence the quality of the augmented virtual data.
Besides, our model also achieves the best perfor-
mance when the sampling number is nearby 3. It
shows that augmenting 3 examples per sample is
enough to improve the robustness.

6.4 Performance Change during
Regularizing Fine-tuning

In this part, we investigate how the accuracy and
robustness change during regularizing fine-tuning
with our VDA. We conduct experiments on AG
and MRPC datasets and report the original accu-
racy and attack accuracy metrics. As shown in
Figure 4, the original and attack accuracy of the
model can be improved with the increasing of train-

ing epochs. When reaching the optimal point, the
accuracy and robustness start to shock, and even
decrease to some extent. The reason may be that
the model has overfitted. An interesting finding
is that the optimal points of the original accuracy
and attack accuracy are usually not the same one.
A possible reason is that accuracy and robustness
are not always consistent objectives for deep mod-
els. Besides, we can see that after combined with
our VDA, BERT is able to achieve a better optimal
point with higher original and attack accuracy. It
indicates that VDA is an effective regularization
approach for BERT.

7 Conclusion

In this work, we proposed the framework virtual
data augmentation (VDA), for robustly fine-tuning
pre-trained language models. It is a general frame-
work agnostic to downstream tasks, model archi-
tectures and learning strategies. In VDA, we aug-
mented new embeddings by making weighted ag-
gregation on token embedding matrix according to
a multinomial mixture distribution. To construct
the mixture distribution, we utilized a masked lan-
guage model to generate the substitution probabil-
ity for guaranteeing semantic consistency, and a
Gaussian noise to provide diversity. And we also
adopted a regularized training strategy to further
enhance the robustness. Extensive experiments on
six datasets have demonstrated that the proposed
approach can effectively improve the robustness of
various PLMs.

Acknowledgement

We are thankful to Jinhao Jiang and Hui Wang
for their supportive work and insightful sugges-
tions. This work was partially supported by the
National Natural Science Foundation of China
under Grant No. 61872369 and 61832017, Bei-
jing Academy of Artificial Intelligence (BAAI) un-
der Grant No. BAAI2020ZJ0301, Beijing Out-
standing Young Scientist Program under Grant No.
BJJWZYJH012019100020098, the Fundamental
Research Funds for the Central Universities, the
Research Funds of Renmin University of China
under Grant No.18XNLG22 and 19XNQ047, and
Public Computing Cloud, Renmin University of
China. Xin Zhao is the corresponding author.



3884

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei
Chang. 2018. Generating natural language adver-
sarial examples. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - Novem-
ber 4, 2018, pages 2890–2896.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. Seqvat: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 8801–8811. Association for Com-
putational Linguistics.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. CoRR,
abs/1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 2: Short Papers,
pages 31–36.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 2: Short Papers, pages 567–573.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversar-
ial text sequences to evade deep learning classifiers.
In 2018 IEEE Security and Privacy Workshops, SP
Workshops 2018, San Francisco, CA, USA, May 24,
2018, pages 50–56.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Tao Gui, Xiao Wang, Qi Zhang, Qin Liu, Yicheng
Zou, Xin Zhou, Rui Zheng, Chong Zhang, Qinzhuo
Wu, Jiacheng Ye, Zexiong Pang, Yongxin Zhang,
Zhengyan Li, Ruotian Ma, Zichu Fei, Ruijian Cai,
Jun Zhao, Xinwu Hu, Zhiheng Yan, Yiding Tan,
Yuan Hu, Qiyuan Bian, Zhihua Liu, Bolin Zhu,
Shan Qin, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Min-
long Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu
Wei, Xipeng Qiu, and Xuanjing Huang. 2021.
Textflint: Unified multilingual robustness evalua-
tion toolkit for natural language processing. CoRR,
abs/2103.11441.

Xuanli He, Lingjuan Lyu, Qiongkai Xu, and Lichao
Sun. 2021. Model extraction and adversarial trans-
ferability, your BERT is vulnerable! CoRR,
abs/2103.10013.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. In Proceedings of
the 27th International Conference on Computational
Linguistics, COLING 2018, Santa Fe, New Mexico,
USA, August 20-26, 2018, pages 1234–1245.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension sys-
tems. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017, pages 2021–2031.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2177–2190.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text classifi-
cation and entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 8018–8025.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy
Liang. 2020. Robust encodings: A framework for
combating adversarial typos. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2752–2765.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic rela-
tions. In Proceedings of the 2018 Conference of the

https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/2020.acl-main.777
https://doi.org/10.18653/v1/2020.acl-main.777
http://arxiv.org/abs/1809.02922
http://arxiv.org/abs/1809.02922
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://www.aclweb.org/anthology/I05-5002/
https://www.aclweb.org/anthology/I05-5002/
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2103.11441
http://arxiv.org/abs/2103.11441
http://arxiv.org/abs/2103.10013
http://arxiv.org/abs/2103.10013
https://www.aclweb.org/anthology/C18-1105/
https://www.aclweb.org/anthology/C18-1105/
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072


3885

North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 2 (Short Papers), pages 452–
457.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
2017. Adversarial examples in the physical world.
In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2020a.
Contextualized perturbation for textual adversarial
attack. CoRR, abs/2009.07502.

Guanlin Li, Lemao Liu, Guoping Huang, Conghui Zhu,
and Tiejun Zhao. 2019a. Understanding data aug-
mentation in neural machine translation: Two per-
spectives towards generalization. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5688–5694.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019b. Textbugger: Generating adversarial
text against real-world applications. In 26th An-
nual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019.

Juntao Li, Lisong Qiu, Bo Tang, Dongmin Chen,
Dongyan Zhao, and Rui Yan. 2019c. Insufficient
data can also rock! learning to converse using
smaller data with augmentation. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages
6698–6705.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020b. BERT-ATTACK: adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pages 6193–6202.

Linyang Li and Xipeng Qiu. 2021. Tavat: Token-aware
virtual adversarial training for language understand-
ing. In AAAI 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.

Towards deep learning models resistant to adver-
sarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings.

Paul Michel, Xian Li, Graham Neubig, and
Juan Miguel Pino. 2019. On evaluation of ad-
versarial perturbations for sequence-to-sequence
models. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 3103–3114.

Junghyun Min, R. Thomas McCoy, Dipanjan Das,
Emily Pitler, and Tal Linzen. 2020. Syntactic
data augmentation increases robustness to inference
heuristics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2339–
2352.

Takeru Miyato, Andrew M. Dai, and Ian J. Good-
fellow. 2017. Adversarial training methods for
semi-supervised text classification. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2019. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning. IEEE Trans. Pattern Anal.
Mach. Intell., 41(8):1979–1993.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
Ken Nakae, and Shin Ishii. 2015. Distributional
smoothing with virtual adversarial training. arXiv
preprint arXiv:1507.00677.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL 2005, 43rd An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, 25-30
June 2005, University of Michigan, USA, pages 115–
124.

Chongli Qin, James Martens, Sven Gowal, Dilip
Krishnan, Krishnamurthy Dvijotham, Alhussein
Fawzi, Soham De, Robert Stanforth, and Pushmeet
Kohli. 2019. Adversarial robustness through lo-
cal linearization. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 13824–13833.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,

https://openreview.net/forum?id=HJGU3Rodl
http://arxiv.org/abs/2009.07502
http://arxiv.org/abs/2009.07502
https://doi.org/10.18653/v1/D19-1570
https://doi.org/10.18653/v1/D19-1570
https://doi.org/10.18653/v1/D19-1570
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.1609/aaai.v33i01.33016698
https://doi.org/10.1609/aaai.v33i01.33016698
https://doi.org/10.1609/aaai.v33i01.33016698
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.18653/v1/n19-1314
https://doi.org/10.18653/v1/n19-1314
https://doi.org/10.18653/v1/n19-1314
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://proceedings.neurips.cc/paper/2019/hash/0defd533d51ed0a10c5c9dbf93ee78a5-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0defd533d51ed0a10c5c9dbf93ee78a5-Abstract.html
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264


3886

Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 1085–1097.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pages 856–865.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras,
Kunal Talwar, and Aleksander Madry. 2018. Adver-
sarially robust generalization requires more data. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 5019–5031.

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan
Liu, Yasheng Wang, Qun Liu, and Maosong Sun.
2020. Better robustness by more coverage: Adver-
sarial training with mixup augmentation for robust
fine-tuning. CoRR, abs/2012.15699.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Boxin Wang, Hengzhi Pei, Boyuan Pan, Qian Chen,
Shuohang Wang, and Bo Li. 2020. T3: tree-
autoencoder constrained adversarial text generation
for targeted attack. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20,
2020, pages 6134–6150.

William Yang Wang and Diyi Yang. 2015. That’s so an-
noying!!!: A lexical and frame-semantic embedding
based data augmentation approach to automatic cat-
egorization of annoying behaviors using #petpeeve
tweets. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 2557–2563.

Yicheng Wang and Mohit Bansal. 2018. Robust ma-
chine comprehension models via adversarial train-
ing. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 2 (Short Papers), pages 575–
581.

Jason W. Wei and Kai Zou. 2019. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 6381–6387.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling
Wang, and Michael I. Jordan. 2020. Greedy attack
and gumbel attack: Generating adversarial examples
for discrete data. J. Mach. Learn. Res., 21:43:1–
43:36.

Dong Yin, Kannan Ramchandran, and Peter L. Bartlett.
2019. Rademacher complexity for adversarially ro-
bust generalization. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
pages 7085–7094.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5564–5569.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Stephan Zheng, Yang Song, Thomas Leung, and Ian J.
Goodfellow. 2016. Improving the robustness of
deep neural networks via stability training. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 4480–4488.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020a. S3-rec: Self-supervised learn-
ing for sequential recommendation with mutual in-
formation maximization. In CIKM ’20: The 29th
ACM International Conference on Information and
Knowledge Management, Virtual Event, Ireland, Oc-
tober 19-23, 2020, pages 1893–1902. ACM.

Kun Zhou, Kai Zhang, Yu Wu, Shujie Liu, and Jing-
song Yu. 2019. Unsupervised context rewriting for
open domain conversation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://proceedings.neurips.cc/paper/2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
http://arxiv.org/abs/2012.15699
http://arxiv.org/abs/2012.15699
http://arxiv.org/abs/2012.15699
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2020.emnlp-main.495
https://doi.org/10.18653/v1/2020.emnlp-main.495
https://doi.org/10.18653/v1/2020.emnlp-main.495
https://doi.org/10.18653/v1/d15-1306
https://doi.org/10.18653/v1/d15-1306
https://doi.org/10.18653/v1/d15-1306
https://doi.org/10.18653/v1/d15-1306
https://doi.org/10.18653/v1/d15-1306
https://doi.org/10.18653/v1/n18-2091
https://doi.org/10.18653/v1/n18-2091
https://doi.org/10.18653/v1/n18-2091
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://proceedings.mlr.press/v97/yin19b.html
http://proceedings.mlr.press/v97/yin19b.html
https://doi.org/10.18653/v1/p19-1559
https://doi.org/10.18653/v1/p19-1559
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.1109/CVPR.2016.485
https://doi.org/10.1109/CVPR.2016.485
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.18653/v1/D19-1192
https://doi.org/10.18653/v1/D19-1192


3887

Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 1834–1844. Association for
Computational Linguistics.

Kun Zhou, Yuanhang Zhou, Wayne Xin Zhao, Xi-
aoke Wang, and Ji-Rong Wen. 2020b. Towards
topic-guided conversational recommender system.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,

Barcelona, Spain (Online), December 8-13, 2020,
pages 4128–4139. International Committee on Com-
putational Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

https://doi.org/10.18653/v1/2020.coling-main.365
https://doi.org/10.18653/v1/2020.coling-main.365
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

