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Abstract

Knowledge graphs are essential for numerous
downstream natural language processing ap-
plications, but are typically incomplete with
many facts missing. This results in research
efforts on multi-hop reasoning task, which can
be formulated as a search process and current
models typically perform short distance rea-
soning. However, the long-distance reasoning
is also vital with the ability to connect the su-
perficially unrelated entities. To the best of our
knowledge, there lacks a general framework
that approaches multi-hop reasoning in mixed
long-short distance reasoning scenarios. We
argue that there are two key issues for a gen-
eral multi-hop reasoning model: i) where to
go, and ii) when to stop. Therefore, we pro-
pose a general model which resolves the is-
sues with three modules: 1) the local-global
knowledge module to estimate the possible
paths, 2) the differentiated action dropout mod-
ule to explore a diverse set of paths, and 3)
the adaptive stopping search module to avoid
over searching. The comprehensive results
on three datasets demonstrate the superiority
of our model with significant improvements
against baselines in both short and long dis-
tance reasoning scenarios.

1 Introduction

Knowledge graphs (KGs) have become the pre-
ferred technology for representing, sharing and
adding factual knowledge to many natural lan-
guage processing applications like recommenda-
tion (Wang et al., 2019; Lei et al., 2020) and ques-
tion answering (Huang et al., 2019; Zhang et al.,
2018). KGs store triple facts (head entity, relation,
tail entity) in the form of graphs, where entities are
represented as nodes and relations are represented
as labeled edges between entities (e.g., Figure 1
(a)). Although popular KGs already contain mil-
lions of facts, e.g., YAGO (Suchanek et al., 2007)
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and Freebase (Bollacker et al., 2008), they are far
from being complete considering the amount of ex-
isting facts and the scope of continuously appearing
new knowledge. This has become the performance
bottleneck of many KG-related applications, trig-
gering research efforts on the multi-hop reasoning
task.

The multi-hop reasoning task can be formu-
lated as a search process, in which the search
agent traverses a logical multi-hop path to find
the missing tail entity of an incomplete triple
in KG. As shown in Figure 1 (b), the two-hop

path Stephen Curry
plays for−−−−−−→ Golden State War-

riors
plays for←−−−−−− Klay Thompson is searched to

reason Klay Thompson as the missing entity of
(Stephen Curry, teammate, ?), where ? denotes
the missing tail entity. Multi-hop reasoning meth-
ods (Xiong et al., 2017; Das et al., 2018) have
been proposed to model the search process as a
sequential decision problem in reinforcement learn-
ing (RL) framework. (Lin et al., 2018) further opti-
mized the reward function of RL framework based
on (Das et al., 2018). However, these works have
only scratched the surface of multi-hop reasoning
as they focus only on short distance reasoning sce-
narios (e.g., the two-hop case in Figure 1 (b)).

We observe that the long distance reasoning
scenarios are vital in the development of multi-hop
reasoning and KG-related applications, because
two superficially unrelated entities may be actually
deeply connected over a long distance. With the
significant expansion of KGs, the incompleteness
of KG becomes more prominent, and long distance
scenarios are rapidly increasing. As shown in Fig-
ure 1 (c), the missing entity James Harden in the
incomplete triple (Stephen Curry, opponent, ?) is
inferred by a long reasoning process, i.e., a four-
hop path. Moreover, in practice, the long and short
distance reasoning scenarios are mixed. The ideal
multi-hop reasoning model should be competent



3438

Figure 1: Examples of (a) an incomplete knowledge graph, (b) a short distance scenario (two-hop) about the
reasoning of (Stephen Curry, teammate, ?), and (c) a long distance scenario (four-hop) about the reasoning
of (Stephen Curry, opponent, ?). The dotted lines refer to the relations of incomplete triples and solid lines refer to
existing relations. The green, blue and black boxes represent the entities of the incomplete triples, the entities in
the reasoning paths and the unrelated entities, respectively. As it can be seen, the long distance reasoning is needed
and more complex than the short distance reasoning. Best viewed in color.

on mixed short and long distances. Specifically, we
argue that there are two key issues in the traverse
of KG that need to be resolved:

i)Where to go? The search agent needs to decide
where to go at next search step, i.e., selecting an
edge connected with the current node. Selecting
the positive edge means that the agent will move
towards the target node, otherwise, it will move
away from the target. When the search distance
increases, the issue becomes more challenging
because the agent needs to make more decisions.

ii)When to stop? The search agent needs to de-
cide when to stop the search because the exact
search steps cannot be known in advance. An
ideal search agent needs to stop at a suitable time
to avoid over searching and adapt to realistic
reasoning scenarios with mixed short and long
distances.

To this end, we propose a General Multi-Hop
reasoning model, termed GMH, which solves the
two above-listed issues in three steps: 1) the local-
global knowledge fusion module fuses the local
knowledge learnt from history path and the global
knowledge learnt from graph structure; 2) the dif-
ferentiated action dropout module forces the search
agent to explore a diverse set of paths from a global
perspective; and 3) the adaptive stopping search
module uses a self-loop controller to avoid over
searching and resource wasting. We train the pol-
icy network with RL and optimize the reward to
find the target entity effectively. In summary, the
main contributions of this work are as follows:
•We observe that the long distance reasoning sce-
narios are vital in the development of multi-hop
reasoning, and argue that an ideal multi-hop rea-

soning model should be competent on mixed long-
short distance reasoning scenarios.

•We propose a general multi-hop reasoning model,
GMH, which can solve two key issues in mixed
long-short distance reasoning scenarios: i) where
to go and ii) when to stop.

•We evaluate GMH on three benchmarks, FC17,
UMLS and WN18RR. The results demonstrate
the superiority of GMH with significant improve-
ments over baselines in mixed long-short distance
reasoning scenarios and with competitive perfor-
mances in short distance reasoning scenarios.

2 Related Work

In this section, we summarize the related work and
discuss their connections to our model. Firstly, we
introduce the two lines of work on the KG comple-
tion task: multi-hop reasoning and KG embedding.

The multi-hop reasoning task focuses on learn-
ing logical multi-hop paths reasoned from KG. The
multi-hop reasoning models distill deep informa-
tion from paths thereby generating further directly
interpretable results. (Lao et al., 2011; Das et al.,
2017; Jiang et al., 2017; Yin et al., 2018) predicted
the missing relations of incomplete triples based
on pre-computed paths. (Xiong et al., 2017) firstly
adopted the RL framework to improve the reason-
ing performance. The task of finding a missing
entity is orthogonal to the prediction of the missing
relation in a complementary manner. (Das et al.,
2018) used the history path to facilitate the search
agent finding the missing entity and (Lin et al.,
2018) optimized the reward function of RL frame-
work based on (Das et al., 2018). (Lv et al., 2019)
adopted the meta learning framework for multi-hop
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Figure 2: An illustration of the GMH Model. We reuse the example in Figure1 (c) for explanation. The input
includes the head entity and the relation of the incomplete triple (Stephen Curry, opponent, ?) with the background
KG, and the output is the tail entity James Harden. The subgraph (a) is the initial state of the search process. The
subgraphs (b-d) show the search process at step 4. Specifically, 1) we develop the local-global knowledge fusion
module to estimate the possible paths, 2) the differentiated action dropout module to dilute the negative paths, and
3) the adaptive stopping search module to avoid over searching. Best viewed in color.

reasoning over few-shot relations. These works are
conditioned in short distance scenarios, and tend to
rapidly lose effectiveness as the distance increases.
In contrast, we propose a general model which can
be sufficiently utilized in both the short and long
distance reasoning scenarios.

The KG embedding task is another line of
work carried to alleviate the incompleteness of KG.
Embedding-based models project KGs in the em-
bedding space and estimate the likelihood of each
triple using scoring functions. (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015; Ji et al., 2016)
defined additive scoring functions based on the
translation assumption. (Yang et al., 2015; Trouil-
lon et al., 2016) defined multiplicative scoring
functions based on linear map assumption. More-
over, recent models introduce special neural net-
works like neural tensor network (Socher et al.,
2013), convolution neural network (Dettmers et al.,
2018) and graph convolutional network (Nathani
et al., 2019). Due to the neglection of deep in-
formation within multi-hop paths, the results of
the embedding-based models lack interpretability,
which is critical for KG-related applications. How-
ever, embedding-based models are less sensitive
to the reasoning distance because they learn KG
structure from the global perspective. Thus, we
take advantage of this strength to learn the global
knowledge from graph structure and retain the in-
terpretability by reasoning from the history paths.

Secondly, we discuss the community research

on long distance reasoning scenarios. (Tuan et al.,
2019) formed a transition matrix for reasoning over
six-hop path in KG for the conversational reason-
ing task. It is however not suitable for large-scale
KGs, because the matrix multiplication requires
large calculation space. (Wang et al., 2019) pro-
posed a long-term sequential pattern to encode long
distance paths for the recommendation task. Be-
cause there is no real reasoning process for the long
distance paths, it is not suitable for the KG com-
pletion. To summary, we are the first to study long
distance reasoning scenarios in the KG completion.
We propose a general model that tackles both short
and long distance reasoning scenarios and works
effectively on large-scale KGs.

3 Methodology

Figure 2 illustrates the entire process of the GMH
model. The input involves the head entity and
relation of the incomplete triple with the back-
ground KG. The output is the missing tail entity.
We systematize the model in three steps: 1) the
local-global knowledge fusion module to inte-
grate knowledge of history paths and graph struc-
ture; 2) the differentiated action dropout module to
diversify the reasoning paths; and 3) the adaptive
stopping search module to formulate the optimal
steps of searching. The local-global knowledge
fusion and differentiated action dropout modules
facilitate the agent to address the issue of where to
go. The adaptive stopping search module controls
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the search steps to resolve the issue of when to stop.

3.1 Preliminary
We formally represent a KG as a collection of
triples T = {(eh, r, et)|eh ∈ E, et ∈ E, r ∈ R},
where eh, r and et denote the head entity, relation
and tail entity in one triple, E and R are the entity
and relation sets, respectively. Each directed link
in KG represents a valid triple (i.e., eh and et are
represented as the nodes and r as the labeled edge
between them). For an incomplete triple, multi-hop
reasoning can be perceived as searching a target tail
entity et through limited steps in KG, starting from
head entity eh and based on the relation r ∈ R. We
use query q to represent (eh, r) in the following
sections. At step s, the search agent will transfer
to the entity es updating the history path trajec-
tory Hs = {eh, r1, e1, ..., rs, es}, and the available
action set As =

{
(ris, e

i
s)|(es, ris, eis) ∈ T

}
. As

consists of all outgoing relations and the associ-
ated entities of es. The agent will select one action
from As to transfer to the next entity es+1 through
the correlated relation rs+1 at next step.

3.2 Local-Global Knowledge Fusion
In this module, we learn local knowledge lks and
global knowledge gks to resolve the “where to go"
issue, as shown in Figure 3. The local knowledge
indicates that the agent makes decisions on the
basis of the history path trajectory Hs at step s
from a local perspective. The global knowledge is
calculated through a pre-trained embedding-based
models from a global perspective. We use an ag-
gregate (abbr. AGG) block to aggregate lks and
gks, which has two types: summation (lks + gks)
and scalar product (lks ∗ gks). The distribution
p(As) ∈ R|As| is calculated through the AGG
block and represents the confidence score for each
available entity in As. The agent will select one
action from As according to the distribution p(As)
to transfer to the next entity.
Local Knowledge Learning

The local knowledge lks indicates from a local
perspective that the agent makes decisions based on
the history path trajectory Hs at step s. We adopt
long short-term memory (LSTM) neural network
and attention mechanism to encode the history path
trajectory and yield the local knowledge.

The history path trajectory Hs =
(eh, r1, e1, ..., rs, es) consists of the sequence of
entities and relations which the agent has selected
over the last s steps. We adopt an embedding layer

Figure 3: An illustration of the local-global knowledge
fusion module. We reuse the search process in Figure
2 for detailed explanation. Best viewed in color.

to generate the embedding of entities and relations.
The embedding of query is ~q = [ ~eh;~r] ∈ R2dim,
i.e., the concatenation of the embeddings of the
head entity ~eh ∈ Rdim and relation ~r ∈ Rdim,
where dim is the dimension. We use an LSTM
to encode the embedding of Hs to yield the
hidden state embedding sequence (~h0, ...,~hs),
where ~hs = LSTM(~hs−1, [~rs, ~es]) ∈ R2dim is
the hidden state at step s, es is the current entity
and rs is the relation that connects es−1 and es.

Prior works (Das et al., 2018; Lin et al., 2018)
use only the current hidden state embedding (i.e.,
~hs) to yield the next action and they neglect the dif-
ferentiated importance between the hidden states
over the last s steps. Therefore, the attention weight
value calculated between the hidden state embed-
ding sequence and the query embedding is intro-
duced to optimize the local knowledge lks. Each
weight value is derived by comparing the query ~q
with each hidden state ~hi:

α(~q,~hi) =
exp(f(~q,~hi))∑s
j=0 exp(f(~q,

~hj))
, (1)

where i and j stand for the i-th and j-th hidden state
candidate, respectively. Here, f(·) is represented
as a query-based function: f(vq, hm) = vq

>hm.
Ultimately, local knowledge lks ∈ R|As|, which
reflects the influence of the history path trajectory
on each element in As, can be obtained:

~lks = As ×W1δ1(W2

s∑
m=1

α(~q,~hm)~hm), (2)

where W1 and W2 are the weights, and δ1 is the
activation function.
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Global Knowledge Learning
Prior works (Das et al., 2018; Lin et al., 2018)

use the local knowledge and neglect the long dis-
tance cases which requires higher decision accu-
racy of the agent. We introduce the global knowl-
edge gks learnt from graph structure by a pre-
trained embedding-based model.

Embedding-based models map the graph struc-
ture in continuous vector space by using a scor-
ing function ψ(eh, r, et). We generate the new
triple (eh, r, e

i
s) by concatenating the head entity

and relation with available entity eis ∈ EA
t , where

EA
t ∈ R|As|×dim contains all available entities in

As. As we consider that the positive available en-
tity is closer to the target tail entity in vector space,
combining the positive available entity in As with
the query will get a higher score than that using neg-
ative available entities. Formally, we adopt a pre-
trained embedding-based model to calculate these
new triples to obtain the global knowledge gks:

~gks = [ψ(~eh, ~r, ~e
1
s ); ...;ψ(~eh, ~r, ~e

|As|
s )]. (3)

Concatenating each of new triples’ scores gives
the global knowledge gks ∈ R|As|. The selection
of scoring function ψ(·) is discussed in Section 4.3.

3.3 Differentiated Action Dropout

In the multi-hop reasoning task, it is important to
enforce effective exploration of a diverse set of
paths and dilute the impact of negative paths. (Lin
et al., 2018) forced the agent to explore a diverse
set of paths using action dropout technique which
randomly masks some available actions in As, i.e.,
blocking some outgoing edges of the agent. How-
ever, in the case of reasoning over long distances,
the number of paths is much greater than that in the
short distance scenarios because the search space
grows exponentially. The random action dropout
technique is inefficient because it cannot discrimi-
nate paths of different qualities. We then propose
the differentiated action dropout (DAD) technique
based on the global knowledge gks to mask avail-
able actions, since we believe that higher-scoring
actions are more likely to exist in a high-quality
path. In particular, the mask matrix Mt ∈ R|As| is
sampled from the Bernoulli distribution:

~Mt ∼ Bernoulli(sigmoid( ~gks)). (4)
The element in Mt is binary, where 1 indicates

the action is reserved and 0 indicates abandonment.
The fusion of local-global knowledge and differ-
entiated action dropout modules helps the agent to
tackle the key problem where to go jointly.

Algorithm 1: Training process of GMH
Input: The training samples set Dtrain; background

KG (T, E, R); the maximum search step S;
the maximum loop number N ; the randomly
initialized parameters θ

Output: The optimized parameters θ
1 repeat
2 Sample a triple (eh, r, et) from Dtrain;
3 Initialize: s = 0; n = 0; es = eh; Hs = {eh};

As =
{
(ris, e

i
s)|(eh, ris, eis) ∈ T

}
;

4 for s < S and n < N do
5 Calculate lks (Eq. 2) and gks (Eq. 3);
6 Fuse lks and gks to yield the final score;
7 Dropout actions from As (Eq. 4);
8 Select the next entity es+1 and the related

relation rs+1;
9 if rs+1 =self-loop then

10 n← n+ 1;

11 update Hiss+1 ← Hs ∪ {rs+1, es+1};
As+1 ←{
(ris+1, e

i
s+1)|(es+1, r

i
s+1, e

i
s+1) ∈ T

}
;

12 s← s+ 1;

13 êt = es; calculate the reward R(êt|eh, r, et) and
update θ (Eq. 6);

14 until model converged;

3.4 Adaptive Stopping Search

For the second key issue of when to stop, we de-
vise the adaptive stopping search (ASS) module
inspired by the early stopping strategy (Prechelt,
1997) which is used to avoid overfitting when train-
ing a learner with an iterative method. We add a
self-loop action (self-loop, es) to give the agent an
option of not expanding from es. When the agent
chooses the self-loop action for several times, we
consider it means that the agent has found the target
tail entity, thus it can choose to end early.

In this module, we devise a self-loop controller
to avoid over searching and resource wasting. The
self-loop controller has a dual judgment mecha-
nism based on the the maximum search step S and
the maximum loop number N . When the search
step reaches the maximum S, or the agent selects
the self-loop action for N consecutive times, the
search process will be stopped. Using the ASS strat-
egy improves our model’s scalability on both short
and long distances and effectively avoids wasting
of resources caused by over-searching.

3.5 Training

Following (Das et al., 2018), we frame the search
process as a Markov Decision Process (MDP)
on the KG and adopt the on-policy RL method
to train the agent. We design a random-
ized history-dependent policy network π =
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(p(A1), ..., p(As), ..., p(AS)). The policy network
is trained by maximizing the expected reward over
all training samples Dtrain:

J(θ) =E(eh,r,et)∼Dtrain

[EA1,...,AS∼π[R(êt|eh, r, et)]].
(5)

where θ denotes the set of parameters in GMH,
R(·) is the reward function and êt is the final entity
chosen by the agent. If êt = et, then the terminal
reward is assigned +1 and 0 otherwise.

The optimization is conducted using the REIN-
FORCE algorithm (Williams, 1992) which iterates
through all (eh, r, et) triples in Dtrain and updates
θ with the following stochastic gradient:

5θJ(θ) ≈ 5θ

∑
s
R(êt|eh, r, et) log πθ. (6)

The training process is detailed in Algorithm
1. During a search process, for each search
step, the agent takes three operations: local-global
knowledge fusion (lines 5-6), differentiated action
dropout (line 7) and adaptive stopping search (lines
8-10). After finding the tail entity, the reward is
calculated and the parameters are updated (line 13).
Finally, the optimized parameters are output.

4 Experiment

4.1 Setup

Dataset Existing popular benchmarks, such
as UMLS (Stanley and Pedro, 2007) and
WN18RR (Dettmers et al., 2018), focus on the
multi-hop reasoning in short1 distance scenarios.
Thus, they are unsuitable for evaluating com-
plex cases requiring both long and short distance
learning. To this end, we adopt the large-scale
dataset FC17 (Neelakantan et al., 2015) which con-
tains triples based on Freebase (Bollacker et al.,
2008) enriched with the information fetched from
ClueWeb (Orr et al., 2013). Because the data with
distance type larger than five is relatively small, we
maintain the data with distance type between 2 and
5. The sample number of each distance type (2-5)
is 63k, 53k, 11k, 5k, respectively. Note that, there
are extra relations served in the background KG
plus 46 relation types in the train/valid/test sets of
FC17. We also evaluate our model on the other
short distance datasets, i.e., UMLS and WN18RR.
Table 1 summarizes the basic statistics of datasets.
Baselines We compare GMH with 1) the
embedding-based models involving TransE (Bor-

1Considering that the current multi-hop reasoning works
are concentrated on two or three-hop paths, we regard the path
hop number greater than three as a long distance scenario.

Table 1: Statistics of datasets w.r.t. the number of enti-
ties and edges (the middle two columns) and the separa-
tion of the train/valid/test sets (the right three columns).

entity relation train valid test

FC17 49k 6k 125k 4k 5k
UMLS 135 46 5k 652 661
WN18RR 41k 11 87k 3k 3k

des et al., 2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), and ConvE (Dettmers
et al., 2018); as well as 2) the multi-hop reasoning
models involving MINERVA (Das et al., 2018) and
MultiHop (Lin et al., 2018).
Implementation Details GMH is implemented on
PyTorch and runs on a single TITAN XP. Follow-
ing (Das et al., 2018), we augment KG with the
reversed link (et, r

−1, eh) for each triple. We ex-
clude the triples from the training set if they occur
in the validation or testing sets. For the baselines
and GMH, we set the maximum search step S to
five because the entity pair’s distance is up to five
in FC17. For the short distance datasets, UMLS
and WN18RR, S is set to three. The maximum
loop number N for all datasets is set to two. We
employ softmax function as the activation func-
tion. All hyper-parameters are tuned on the vali-
dation set can be found in supplementary materi-
als The pre-trained embedding-based model that
we adopt is ConvE. We optimize all models with
Adam (Kingma and Ba, 2015)2.
Metrics We follow the evaluation protocol of (Lin
et al., 2018) that records the rank of the available
entities at final step in a decreasing order of con-
fidence score for each query, and adopts mean re-
ciprocal rank (MRR) and HITS@N to evaluate the
results. All results given in our experiments are
the mean and standard deviation values of three
training repetitions.

4.2 Multi-hop Reasoning
Table 2 shows the results obtained on FC17 and
two short distance datasets, UMLS and WN18RR
based on MRR (%) and HITS@N (%) measures.
On the FC17 dataset, GMH achieves 23.75% MRR
score surpassing the second-best model MultiHop
with 3.47% improvement based on the MRR metric.
This includes 3.43% improvement on short distance
samples and 4.45% improvement on long distance

2We will release the processed dataset and source code,
after the paper is published. The description of datasets and
other details can be found in supplementary materials.
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Table 2: MRR (%) and HITS@N (%) scores (± standard deviation) for multi-hop reasoning task on FC17, UMLS
and WN18RR (pairwise t-test at 5% significance level). Higher values mean better performances and the best
solution is marked in bold for each case.

FC17 UMLS WN18RR

MRR MRR(≤ 3) MRR(≥ 4) HITS@N MRR HITS@N MRR HITS@N
@1 @1 @10 @1 @10

TransE 11.91 ±0.20 12.38 ±0.16 9.37 ±0.28 6.90 ±0.13 86.3 85.9 88.2 40.2 39.9 43.2

Distmult 12.99 ±0.67 13.57 ±0.42 10.63 ±0.43 8.53 ±0.71 86.8 82.1 96.7 46.2 43.1 52.4

ComplEx 14.73 ±0.32 15.53 ±0.37 10.91 ±0.54 9.68 ±0.53 93.4 89.0 99.2 43.7 41.8 48.0

ConvE 18.98 ±0.63 19.75 ±0.63 15.31 ±0.68 10.43 ±0.85 95.7 93.2 99.4 44.9 40.3 54.0

MINERVA 18.70 ±0.42 19.92±0.36 13.84±0.45 9.08 ±0.94 82.5 72.8 96.8 46.3 41.3 51.3

MultiHop 20.28 ±0.71 21.63 ±0.65 14.07±0.76 10.53 ±0.84 94.0 90.2 99.2 47.2 43.7 54.2

GMH 23.75±0.52 25.06±0.52 18.52±0.56 12.98±0.76 96.2 93.9 99.9 46.5 45.3 55.8

Table 3: MRR (%) scores (± standard deviation) for
long distance multi-hop reasoning task (pairwise t-test
at 5% significance level). The testing samples are di-
vided into four types according to the distance.

Distance Type
4 5 6 7

ConvE 16.43±0.59 10.45±0.53 13.64±0.63 9.38±0.97

MINERVA 17.60±0.73 10.90±0.61 10.65±0.88 5.09±0.87

MultiHop 17.61±0.62 12.58±0.89 12.99±0.85 5.68±0.95

GMH 20.53±0.56 14.62±0.85 14.12±0.65 9.74±0.83

samples. We observe that multi-hop reasoning mod-
els outperform most embedding-based models, but
their performance declines when the distance in-
creases. We assume this may be attributed to the
significantly increasing difficulty of building long
paths when predicting long distance relations. The
embedding-based models appear to be less sen-
sitive to the distance variations, but they neglect
the deep information existing in multi-hop paths,
which limits the interpretative ability of predict-
ing results. We further evaluate the short-distance
reasoning performance on UMLS and WN18RR.
The results of the baselines are cited from (Lin
et al., 2018). GMH performs comparably well in
reasoning in the short distance scenarios, yet its
effectiveness in the long-short compound reason-
ing or long distance reasoning scenarios is more
obvious. For the WN18RR dataset, GMH performs
weaker than MultiHop. We speculate that this is
because the number of relations in WN18RR is ex-
tremely smaller than the number of entities, which
will make it difficult to accurately learn the rela-
tion embeddings. Choosing a superior pre-trained
embedding-based model is critical for our model.

Multi-Hop Reasoning in long distance scenar-
ios As we noticed in Table 2, GMH achieves new
state-of-the-art results on FC17 dataset which con-
tains both short distance and long distance types.
We further evaluate its performance in terms of rea-
soning on the relations in longer distances, which
have been rarely examined by the existing works.
Therefore, we extract the relations from FC17
whose distances span from 4 to 7 and in this way
we construct a subdataset, called FC17-8, which
contains eight query relation types . Table 3 dis-
plays the results of reasoning on the four distance
types based on the MRR metric. Compared with
GMH and the multi-hop reasoning models, the
embedding-based model seems less sensitive to
the distance variations, while its reasoning perfor-
mance is inferior to the compared models on all
distance types. GMH consistently yields the best
performance on the long distance reasoning sce-
narios. We observe that all the models perform
better on the even distance type (4 and 6) than odd
distance type (5 and 7). There are two possible rea-
sons: 1) there is an imbalance between the difficulty
and the number of different distance types; 2) the
models are better at reasoning on symmetric paths

like the four-hop path Stephen Curry
plays for−−−−−−→

Golden State Warriors
compete in−−−−−−−→ NBA

compete in←−−−−−−−
Houston Rockets

plays for←−−−−−− James Harden.

In addition to the superior reasoning capabil-
ity of GMH as demonstrated in Table 2 and Ta-
ble 3, other promising potentials pave the way for
GMH in advanced applications. First, GMH is
explainable because it considers the path infor-
mation, which is beyond the scope of the exist-
ing embedding-based models. Second, the global
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Table 4: Analysis of GMH on FC17: GKL, LKL, DAD,
and ASS represent the global knowledge learning, local
knowledge learning, differentiated action dropout, and
adaptive stopping search respectively.

MRR HITS@N
@1 @10

GKL 13.28 6.47 13.39
LKL 18.33 9.86 25.17
LKL+GKL 22.38 11.65 28.05
LKL+GKL+DAD 23.25 12.10 28.29
GMH (LKL+GKL+DAD+ASS) 23.75 12.98 29.86

knowledge learnt from graph structure, which has
been overlooked by the existing multi-hop reason-
ing models, is incorporated in GMH.

4.3 Analysis of GMH

In this section, we conducted an extensive analysis
of GMH from two aspects: 1) modules (c.f., Ta-
ble 4); 2) hyper-parameters (c.f., Figure 4); and 3)
scoring functions and aggregators (c.f., Figure 5).
Local Knowledge vs. Global Knowledge We
fuse two components (i.e., the local knowledge
lks and the global knowledge gks) to enable the
search agent to find the target tail entity. Thus,
an extensive experiment is conducted to test the
contributions of lks and gks in the multi-hop rea-
soning task. The top three lines of Table 4 reveal
that fusing lks and gks achieves the best results
under different evaluation metrics. Removing ei-
ther knowledge yields a significant performance
drop. Concretely, removing the local knowledge
causes a 9.10% MRR degradation, and removing
the global knowledge results in a 4.05% MRR
degradation. This suggests that the local knowl-
edge may be more beneficial for the search agent
than the global knowledge, and using only the local
knowledge to find a path in KG may be ineffec-
tive in the training process. Still we argue that the
importance of the global knowledge should not be
neglected, especially when it is combined with the
local knowledge to handle the “where to go” issue.
Performance w.r.t. Differentiated Action
Dropout The differentiated action dropout module
is adopted to increase the diversity of search paths
in the training stage. The fourth line of Table 4
shows the validity of this module. We also test the
effect of randomly action dropout (22.15% under
MRR), and there is a gap with our model. This
illustrates that the reason why the differentiated
action dropout performs well is because the mask
operation is based on the global knowledge rather

Figure 4: MRR (%) scores and running time of GMH
over different (a) maximum search step S and (b) max-
imum loop number N on FC17. Best viewed in color.

than on random strategy.
Performance w.r.t. Adaptive Stopping Search
As mentioned before, we have devised the adap-
tive stopping search module to avoid wasting of
resources caused by over-searching, i.e., the “when
to stop” issue. As can be seen from the bottom two
rows of Table 4, ASS also has a slight effect on
the performance. This is because the module can
partially prevent the search agent from continuing
to search when the target tail entity has been found.
Maximum Search Step As shown in Figure 4,
GMH achieves best performance at S = 5. Us-
ing a large S will cause wasting of resources, while
if using a small S, it will affect the performance on
the long distance reasoning samples. Meanwhile,
the running time rises sharply when increasing S.
Therefore, the introduction of adaptive stopping
search module is necessary and rational.
Maximum Loop Number We divide the self-loop
action into two types: positive and negative. The
positive self-loop action means the agent arrives at
the target tail entity, while the negative self-loop ac-
tion means the current entity is not the target. See
Figure 4, a small N may cause the agent to misrec-
ognize negative actions as positive actions, while
a large N may lead to lose the advantage of reduc-
ing time consumption. Compared with not using
the adaptive stopping search module (i.e., N = 1),
using it has resulted in a significant improvement
with the optimal number of 2.
Scoring Function Types The pre-trained
embedding-based model that we adopt is ConvE.
For more extensive ablation analysis, we have
conducted the experiments by incorporating
effective embedding-based models (i.e., TransE,
DistMult, ComplEx, and ConvE). As shown in
Figure 5(a), ConvE has a superb ability to learn
the global semantic representation than other
embedding-based models.
Aggregator Types We next investigate the perfor-
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(a) Scoring Function Type (b) Aggregator Type

Figure 5: MRR (%) and HITS@N (%) scores compar-
ison of GMH over different scoring functions and ag-
gregators on FC17. Best viewed in color.

mance of our model w.r.t different aggregator types.
We adopt two types of aggregators: summation and
scalar product, to fuse the local knowledge lks and
global knowledge gks. We can see from Figure 5(b)
that the scalar product outperforms the summation.
The advantage of the scalar product aggregator is
that the multiplication operation can increase the
discrimination between available actions.

5 Conclusions

We have studied the multi-hop reasoning task in
long distance scenarios and proposed a general
model which could tackle both short and long dis-
tance reasoning scenarios. Extensive experiments
showed the effectiveness of our model on three
benchmarks. We will further consider the feasibil-
ity of applying our model to complex real-world
datasets with more long distance reasoning sce-
narios and more relation types. Besides, we have
noticed that there are other “interference” in long
distance reasoning. For example, noise from the
KG itself, i.e., the fact that it lacks validity. These
noises can gradually accumulate during long dis-
tance reasoning and affect the result confidence.
We leave the further investigation to future work.

6 Acknowledgements

We sincerely thank Jun Wang and Xu Zhang for
their constructive suggestions on this paper. This
work was supported by the China Postdoctoral Sci-
ence Foundation (No.2021TQ0222).

References
Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data (SIGMOD’08), pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Con-
ference on Neural Information Processing Systems
(NeurIPS’13), pages 2787–2795.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2018.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning. In Proceedings of the 6th International
Conference on Learning Representations (ICLR’18).

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew McCallum. 2017. Chains of reasoning
over entities, relations, and text using recurrent neu-
ral networks. In Proceedings of the 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics (EACL’17), pages 132–141.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the 32nd AAAI Conference on Artificial Intelligence
(AAAI’18), pages 1811–1818.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the 12th ACM
International Conference on Web Search and Data
Mining (WSDM’19), pages 105–113.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2016. Knowledge graph completion with adap-
tive sparse transfer matrix. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI’16), pages 985–991.

Xiaotian Jiang, Quan Wang, Baoyuan Qi, Yongqin Qiu,
Peng Li, and Bin Wang. 2017. Attentive path com-
bination for knowledge graph completion. In Pro-
ceedings of The 9th Asian Conference on Machine
Learning (ACML’17), pages 590–605.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations (ICLR’15).

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP’11), pages 529–539.

Wenqiang Lei, Xiangnan He, Maarten de Rijke, and
Tat-Seng Chua. 2020. Conversational recommenda-
tion: Formulation, methods, and evaluation. In Pro-
ceedings of the 43rd International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval (SIGIR’20), pages 2425–2428.

https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-rela
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-rela
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://openreview.net/forum?id=Syg-YfWCW
https://www.aclweb.org/anthology/E17-1013
https://www.aclweb.org/anthology/E17-1013
https://www.aclweb.org/anthology/E17-1013
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366/15884
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366/15884
https://dl.acm.org/doi/abs/10.1145/3289600.3290956
https://dl.acm.org/doi/abs/10.1145/3289600.3290956
https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982/11693
https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982/11693
http://proceedings.mlr.press/v77/jiang17a/jiang17a.pdf
http://proceedings.mlr.press/v77/jiang17a/jiang17a.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D11-1049
https://www.aclweb.org/anthology/D11-1049
https://doi.org/10.1145/3397271.3401419
https://doi.org/10.1145/3397271.3401419


3446

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP’18), pages 3243–3253.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI’15), pages 2181–2187.

Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li,
and Zhiyuan Liu. 2019. Adapting meta knowledge
graph information for multi-hop reasoning over few-
shot relations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP’19), pages 3376–3381.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based
embeddings for relation prediction in knowledge
graphs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics
(ACL’19), pages 4710–4723.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space mod-
els for knowledge base completion. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(ACL’15), pages 156–166.

Dave Orr, Amarnag Subramanya, Evgeniy Gabrilovich,
and Michael Ringgaard. 2013. 11 billion clues in
800 million documents: A web research corpus an-
notated with freebase concepts.

Lutz Prechelt. 1997. Early stopping - but when? Neu-
ral Networks: Tricks of the Trade, 1524(2):55–69.

Richard Socher, Danqi Chen, Christopher D. Man-
ning, and Andrew Y. Ng. 2013. Reasoning with
neural tensor networks for knowledge base comple-
tion. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
((NeurIPS’13)), page 926–934.

Kok Stanley and Domingos Pedro. 2007. Statisti-
cal predicate invention. In Proceedings of the
24th International Conference on Machine Learning
(ICML’07), pages 433–440.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Con-

ference on World Wide Web (WWW’07), pages 697–
706.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Ma-
chine Learning (ICML’16), pages 2071–2080.

Yi-Lin Tuan, Yun-Nung Chen, and Hung-yi Lee.
2019. DyKgChat: Benchmarking dialogue gen-
eration grounding on dynamic knowledge graphs.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP’19), pages
1855–1865.

Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan
He, Yixin Cao, and Tat-Seng Chua. 2019. Explain-
able reasoning over knowledge graphs for recom-
mendation. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence (AAAI’19), pages
5329–5336.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence
(AAAI’14), pages 1112–1119.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3-4):229–256.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP’17), pages 564–
573.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In Proceedings of the 3rd International Con-
ference on Learning Representations (ICLR’15).

Wenpeng Yin, Yadollah Yaghoobzadeh, and Hinrich
Schütze. 2018. Recurrent one-hop predictions for
reasoning over knowledge graphs. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics (COLING’18), pages 2369–2378.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph.
In Proceedings of the 32nd AAAI Conference on Ar-
tificial Intelligence (AAAI’18), pages 6069–6076.

https://www.aclweb.org/anthology/D18-1362
https://www.aclweb.org/anthology/D18-1362
https://aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571/9523
https://aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571/9523
https://doi.org/10.18653/v1/D19-1334
https://doi.org/10.18653/v1/D19-1334
https://doi.org/10.18653/v1/D19-1334
https://doi.org/10.18653/v1/P19-1466
https://doi.org/10.18653/v1/P19-1466
https://doi.org/10.18653/v1/P19-1466
https://www.aclweb.org/anthology/E17-1013
https://www.aclweb.org/anthology/E17-1013
https://ai.googleblog.com/2013/07/11-billion-clues-in-800-million.html
https://ai.googleblog.com/2013/07/11-billion-clues-in-800-million.html
https://ai.googleblog.com/2013/07/11-billion-clues-in-800-million.html
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_5
https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf
https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf
https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf
https://homes.cs.washington.edu/~pedrod/papers/mlc07.pdf
https://homes.cs.washington.edu/~pedrod/papers/mlc07.pdf
https://dl.acm.org/citation.cfm?Id=1242667
https://dl.acm.org/citation.cfm?Id=1242667
http://proceedings.mlr.press/v48/trouillon16.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://doi.org/10.18653/v1/D19-1194
https://doi.org/10.18653/v1/D19-1194
https://www.aaai.org/ojs/index.php/AAAI/article/view/4470/4348
https://www.aaai.org/ojs/index.php/AAAI/article/view/4470/4348
https://www.aaai.org/ojs/index.php/AAAI/article/view/4470/4348
https://aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531/8546
https://aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531/8546
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://www.aclweb.org/anthology/D17-1060
https://www.aclweb.org/anthology/D17-1060
http://scottyih.org/files/ICLR2015_updated.pdf
http://scottyih.org/files/ICLR2015_updated.pdf
http://scottyih.org/files/ICLR2015_updated.pdf
https://www.aclweb.org/anthology/C18-1200
https://www.aclweb.org/anthology/C18-1200
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983/16176
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983/16176

