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Abstract

Understanding what sequence of steps are
needed to complete a goal can help artificial
intelligence systems reason about human ac-
tivities. Past work in NLP has examined the
task of goal-step inference for text. We intro-
duce the visual analogue. We propose the Vi-
sual Goal-Step Inference (VGSI) task, where a
model is given a textual goal and must choose
which of four images represents a plausible
step towards that goal. With a new dataset har-
vested from wikiHow consisting of 772,277
images representing human actions, we show
that our task is challenging for state-of-the-
art multimodal models. Moreover, the mul-
timodal representation learned from our data
can be effectively transferred to other datasets
like HowTo100m, increasing the VGSI accu-
racy by 15 - 20%. Our task will facilitate mul-
timodal reasoning about procedural events.

1 Introduction

Recently, there has been growing attention on the
representation of complex events, with renewed
interest in script learning and commonsense rea-
soning (Park and Motahari Nezhad, 2018; Mujtaba
and Mahapatra, 2019; Li et al., 2020). One aspect
of event representation is the relationship between
high-level goals and the steps involved (Zhang
et al., 2020b,a). For example, given a goal (e.g.
“change a tire”), an intelligent system should be
able to infer what steps need to be taken to accom-
plish the goal (e.g. “place the jack under the car”,
“raise the jack”). In most work, events are repre-
sented as text (Zellers et al., 2018; Coucke et al.,
2018; Zhang et al., 2019), while they could have
different modalities in the real world.

Learning goal-step relations in a multimodal
fashion is an interesting challenge since it requires
reasoning beyond image captioning. We contend
that multimodal event representation learning will
have interesting implications for tasks such as

Figure 1: An example Visual Goal-Step Inference
Task: given a text goal (bake fish), select the image (C)

that represents a step towards that goal.

schema learning (Li et al., 2020, 2021) to miti-
gate reporting bias (Gordon and Van Durme, 2013)
since steps are often not explicitly mentioned in a
body of text. For instance, if a robot is asked to “get
a slice of cake,” it has to know that it should “take
the cake out of the box”, “cut a slice”, “put it on a
plate”, and then “take the plate to the user”. Such
steps are commonsense to people and thus rarely
specified explicitly, making them hard to infer from
textual data. However, with multimodal learning,
we could obtain such details from visual signals.
This multimodal goal-step relation could also be
used for vision-enabled dialog systems1 to recog-
nize what task a user is completing and provide
helpful recommendations.

We propose a new task called Visual Goal-Step
Inference (VGSI): given a textual goal and multi-
ple images representing candidate events, a model
must choose one image which constitutes a reason-
able step towards the given goal. This means that a

1Like the Alexa Prize Taskbot Challenge.

https://www.amazon.science/academic-engagements/amazon-launches-new-alexa-prize-taskbot-challenge
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Figure 2: Hierarchical multimodality of wikiHow.

model should correctly recognize not only the spe-
cific action illustrated in an image (e.g., “turning
on the oven”, in Figure 1), but also the intent of the
action (“baking fish”).

We collect data from wikiHow articles, where
most steps are illustrated with images. Our VGSI
training set is constructed using three sampling
strategies to select negative image candidates as
distractors. In the format of multiple-choice and
image retrieval, we evaluate four state-of-the-art
multimodal models: DeViSE (Frome et al., 2013),
Similarity Networks (Wang et al., 2018), Triplet
Networks (Hoffer and Ailon, 2015), and LXMERT
(Tan and Bansal, 2019) to human performance. It is
observed that SOTA models designed for caption-
based multimodal tasks (Karpathy et al., 2014;
Johnson et al., 2016) struggle on VGSI, exhibiting
a 40% gap in accuracy from human performance
when using a challenging sampling strategy.

One limitation of wikiHow is that most images
are drawings rather than photos (which are more
typically used in computer vision research). The
knowledge learned from wikiHow is nevertheless
useful when applied to real photos. We demon-
strate this by pre-training a triplet-network on our
wikiHow VGSI task and then conducting transfer
learning on out-of-domain datasets. Our experi-
ments show that pre-trained models can effectively
transfer the goal-step knowledge to task-oriented
video datasets, such as COIN (Tang et al., 2019)
and Howto100m (Miech et al., 2019). In addition,
we design an aggregation model on top of SOTA
models which treats wikiHow as a knowledge base
that further increases the transfer learning perfor-
mance (see Appendix C).

We make three key contributions: (1) We pro-

Category Goals Methods Steps Images
Health 7.8k 19.1k 97.5k 111.8k

Home and Garden 5.9k 16.0k 82.9k 85.4k
Education &

Communications
4.7k 12.4k 61.2k 66.1k

Food & Entertaining 4.6k 11.6k 62.0k 69.0k
Finance & Business 4.4k 11.8k 59.3k 66.8k

Pets & Animals 3.5k 9.5k 45.3k 48.0k
Personal Care & Style 3.4k 9.0k 46.1k 48.9k

Hobbies & Crafts 2.8k 7.5k 40.9k 42.7k
Computers & Electronics 2.6k 6.1k 31.5k 36.2k

Arts & Entertainment 2.5k 6.8k 35.4k 37.2k
Total 53.2k 155.3k 772.3k 772.3k

Table 1: Number of goals, methods, steps and images
in the top 10 wikiHow categories.

pose the VGSI task, which is more challenging
than traditional caption-based image-text matching
tasks and requires the model to have an intermedi-
ate reasoning process about goal-step relations. (2)
To study the VGSI task, we collect a multimodal
dataset from wikiHow which contains over 770k
images. (3) Through transfer learning, we show
that the knowledge learned from our dataset can be
readily applied to out-of-domain datasets, with an
accuracy improvement of 15-20% on VGSI.

2 wikiHow as Multimodal Resource

We use wikiHow as the data source for VGSI be-
cause it has been successfully adopted in prior work
for procedural learning (Zhou et al., 2019) and in-
tent detection (Zhang et al., 2020a) in the language
domain. As shown in Figure 2, each wikiHow ar-
ticle contains a high-level goal and one or more
different methods2 to achieve it. Each method then
includes a series of specific steps, typically accom-
panied with corresponding images.

The format of wikiHow articles provides a hier-
archical multimodal relationship between images
and sentences. We can obtain three types of text-
image pairs from wikiHow, in increasing speci-
ficity: goal-image, method-image, and step-image.
However, these text-image pairs are not enough
information for a system to succeed on VGSI; it
also needs the appropriate background knowledge.
For the example in Figure 2, the system needs to
know that “Trick-or-Treating” and “candies” are
Halloween traditions and that a “mask” is required
during “COVID-19”.

In total, as shown in Table 1, the corpus consists
of 53,189 wikiHow articles across various cate-
gories of everyday tasks, 155,265 methods, and
772,294 steps with corresponding images 3

2In some articles, they use parts instead of methods.
3Both datasets and code are available here.

www.wikihow.com
https://www.wikihow.com/Make-a-Shadow-Box
https://github.com/YueYANG1996/wikiHow-VGSI
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3 Methods

3.1 Problem Formulation
Given a high-level goal G—defined as a sequence
of words—and an image I ∈ R3×h×w—with the
dimension of 3 color channels, the width, and the
height—the model outputs the matching score:

match(G, I) = F (XG, XI) (1)

in which, XG ∈ RdG and XI ∈ RdI are the feature
representations of the goal and the image, respec-
tively. F is the scoring function that models the
interactions between the two representations. At
inference time, the model will choose the candidate
with the highest matching score as the prediction.

3.2 Models
DeViSE takes in the pre-trained embedding vectors
from the two modalities and maps the source vector
onto the span of the target vector. DeViSE is trained
only on the positive pairs (G, I) and projects an
image embedding onto the same dimension as the
goal with L2 normalization. Then it computes the
cosine similarity of the two normalized vectors as
the matching score.
Similarity Network Each branch of the similarity
network maps one modality to the joint span and
executes point-wise multiplication to construct a
joint vector. The last layer is fully-connected with
softmax activation and outputs an array of size
two to denote the weights of each class for binary
classification. We compute the matching score by
taking the dot product [1,−1] with the output.
Triplet Network requires the input to be the for-
mat of a triplet (G, Ipos, Ineg). Three branches in
the network map the three embeddings to the same
joint span, such that the branches of positive and
negative images share the same weight. The net-
work learns the cross-modality by minimizing the
positive pair distance and maximizing the negative
pair distance. We choose cosine distance as the
metric which is also used as the matching score.
LXMERT is a multimodal encoder that aims to
ground text to images through attention layers. The
image input is represented as a sequence of ob-
jects and the sentence input is a sequence of words.
LXMERT utilizes two single-modality transformer
encoders (language and object encoders) and a
cross-modality transformer encoder to achieve the
attention mechanism and capture the relationship
between the two modalities. Same as the similarity
network, LXMERT is trained as a binary classifier.

Model Sampling Strategy (Test Size)
Random
(153,961)

Similarity
(153,770)

Category
(153,961)

Random .2500 .2500 .2500
DeViSE .6719 .3364 .4558

Similarity Net .6895 .6226 .4983
LXMERT .7175 .4259 .2886

Triplet Net (GloVe) .7251 .7450 .5307
Triplet Net (BERT) .7280 .7494 .5360

Human .8450 .8214 .7550

Table 2: Accuracy of SOTA models on the wikiHow
VGSI test set with different sampling strategies (sample
size is shown in parentheses).

Figure 3: Accuracy of human (circles) and model (tri-
angles) on the modified wikiHow VGSI test set with
different textual input (e.g., in Fig 1, the goal prompt
will be replaced by method - “Baking the Fish.” or step
- “Preheat the oven.”).

4 Experimental Setup

4.1 Multiple-Choice Sampling
We formulate the task as a 4-way multiple choice
question, which is easy for evaluating the image-
text matching performance and is feasible for hu-
man annotation. Specifically, a model is given a
textual goal & four images to predict the most rea-
sonable step towards the goal. We utilize three
sampling strategies to obtain negative candidates:
Random Strategy We randomly pick three differ-
ent articles and select one image by chance from
each article as the negative sample.
Similarity Strategy We greedily select the most
similar images based on the feature vectors and use
FAISS (Johnson et al., 2019) to retrieve the top-3
most similar images from three different articles.
Category Strategy The three negative samples are
randomly selected from articles within the same
wikiHow category as the prompt goal.

In addition to the multiple-choice format, we
also evaluate VGSI in a more realistic goal-image
retrieval format (see Appendix B).
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4.2 Human Annotation

Considering that VGSI is a novel task, we also
evaluate how difficult it is for humans. All of our
six human annotators are graduate students with
good English proficiency. For each annotation test,
we selected 100 samples from the testing set. A
pair of annotators completed each test and their
scores were averaged.

4.3 Evaluation Metrics

We report both model and human accuracy for the
multiple-choice task. For the retrieval task, we
adopt recall at k (recall@k) and median rank (Med
r) to measure the performance (see Appendix B).

5 Results

5.1 In-Domain Results

Table 2 shows the performance of the models and
humans on the wikiHow dataset. The Triplet Net-
work with BERT embeddings has the best perfor-
mance. However, there is still a big gap between hu-
man and model performance, indicating that VGSI
is challenging for even SOTA models. LXMERT
performs badly using similarity and category strate-
gies presumably because it heavily depends on
grounding objects, and negative samples generated
by these two strategies could share similar objects
but refer to different goals. Figure 3 demonstrates
that both humans and models perform better with
lower-level texts as prompt, which reflects that our
VGSI task is more challenging.

5.2 Transfer Learning

To robustly show the potential of wikiHow as a mul-
timodal transfer learning resource, we compare it
with two existing caption-based datasets, Flickr30K
(Plummer et al., 2015) and MSCOCO (Vinyals
et al., 2016), which are used as pre-training al-
ternatives. We use the official train/val split for
each dataset and pre-train two models separately
on Flickr and MSCOCO using the same multiple-
choice sampling strategies as VGSI.

5.2.1 Target Datasets & Keyframe Extraction
Our transfer targets include COIN and Howto100m,
both large-scale datasets of instructional videos.
Each video depicts the process of accomplishing
a high-level goal, mostly everyday tasks. Since
these two datasets are video-based while our task
is image-based, we apply a key frame extraction
heuristic to get critical frames from videos. We

Sampling Strategy
PT-Data FT? Random Similarity Category

- X .6649 .5085 .5216

Flickr30K
7 .4903 .5103 .3919
X .7006 .5823 .5495

MSCOCO
7 .5349 .5401 .4071
X .7481 .6180 .5536

Howto100m
7 .5694 .5811 .3989
X .6948 .6104 .5436

wikiHow 7 .6245 .6309 .4586
X .7639 .6854 .5659

Human - .9695 .8500 .8682

Table 3: Transfer performance (4-way multiple choice
accuracy) on COIN. PT stands for pre-training, FT for
fine-tuning. FT results are obtained by fine-tuning the
model on 5 examples of the COIN training set (i.e., 5-
shot). Red numbers indicate the best zero-shot perfor-
mance. Blue numbers are the best fine-tuned results.

Sampling Strategy
PT-Data FT? Random Similarity Category

- X .6005 .6096 .4434

Flickr30K
7 .4837 .5398 .3856
X .6207 .6408 .4740

MSCOCO
7 .5099 .5715 .3958
X .6340 .6640 .4794

COIN
7 .5067 .5161 .3978
X .6170 .6343 .4638

wikiHow 7 .6556 .6754 .4750
X .6855 .7249 .5143

Human - .8300 .7858 .7550

Table 4: Transfer performance (4-way multiple choice
accuracy) on Howto100m. FT results are obtained by
fine-tuning the model on the full training set.

then consider the key frames as steps, thus convert-
ing the datasets into the VGSI format.
Howto100m: We randomly select 1,000 goals and
one video for each goal. To extract key frames, we
apply k-means clustering in the feature space of the
frames of each video and select the closest frame to
each cluster center. We further filter these frames
by manually removing unrelated frames such as
the introduction, transition animations, repetitive
frames, etc. We finally obtain 869 goals4 with 24.7
frames for each goal.
COIN: We randomly select 900 videos (5 videos
per goal) to construct the test set, and use the re-
maining 9,709 videos for training. Since COIN has
annotations of textual steps and their correspond-
ing video segment, we randomly select one frame
within each video segment as a VGSI candidate,
resulting in 230.1 frames per goal.

4Some goals have no valid frames remaining after the
annotation, and are therefore removed altogether.
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Figure 4: Few-shot performance on COIN (similarity
sampling) with different pre-training datasets vs. the
number of examples per goal.

Then we use these frames to construct the
multiple-choice examples with the same three sam-
pling strategies. We also compare using wiki-
How against using COIN and Howto100m as pre-
training data to perform transfer learning to each
other since both are instructional video datasets.

5.2.2 Transfer Learning Performance
We use two different transfer learning setups for
COIN5 and Howto100m. For COIN, we formulate
the test as a K-shot learning task where K is the
number of VGSI training examples for each goal.
The 180 goals for testing are seen during training
to simulate the scenario where we have some in-
stances of a task. For Howto100m, we split the 869
goals into 8:2 for training and testing, where the
test goals are unseen during training.

Tables 3 and 4 both indicate that pre-training on
wikiHow can improve VGSI performance on out-
of-domain datasets. Especially for the Howto100m
results, the model pre-trained on wikiHow without
fine-tuning outperforms even those pre-trained on
other caption-based datasets that were fine-tuned
on wikiHow. This is strong evidence that wikiHow
can serve as a useful knowledge resource since the
learned multimodal representation can be directly
applied to other datasets.

To further validate whether the advantages of
pre-training on wikiHow persist with the increas-
ing number of fine-tuning examples, we report the
performance with K ∈ {0, 5, 10, 15, 20, 25} for
COIN and training examples ranging from 50 to
9,249 (full) for Howto100m. Shown in Figure 4 &
5, the model pre-trained on wikiHow consistently

5The small number of goals in COIN leads to an extreme
imbalance between video frames and texts, which makes it
hard for training. Thus there is no train/test split on goals.
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Figure 5: Transfer performance on Howto100m (simi-
larity sampling) with different pre-training datasets vs.
the number of training examples.

outperforms those pre-trained on the other datasets
by significant margins with the increase of fine-
tuning examples. The curve of wikiHow does not
converge with the other curves even with the maxi-
mum number of training examples, which reflects
that wikiHow could be a reliable pre-training data
source for both low- and rich-resource scenarios.

6 Conclusion

In this paper, we propose the novel Visual Goal-
Step Inference task (VGSI), a multimodal chal-
lenge for reasoning over procedural events. We
construct a dataset from wikiHow and show that
SOTA multimodal models struggle on it. Based
on the transfer learning results on Howto100m and
COIN, we validate that the knowledge harvested
from our dataset could transfer to other domains.
The multimodal representation learned from VGSI
has strong potential to be useful for NLP applica-
tions such as multimodal dialog systems.
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A Model Implementation Details

A.1 Architecture and Loss Function
A.1.1 DeViSE
The Deep-Visual Semantic Embedding (DeViSE)
model takes in the pre-trained embedding vectors
from two modalities and maps the source vector
onto the span of the target vector representation.
First, the DeViSE model is only trained on the re-
lated (positive) pairs (G, I), and we map the image
to the goal (I → G). Then, the model projects the
image embedding onto the same dimension as the
goal and we apply L2 normalization to obtain the
unit vectors:

X̂I = L2N(XIWI→G)

X̂G = L2N(XG)
(2)

where, L2N stands for L2 normalization and
WI→G ∈ RdI×dG is the weight.

Then the DeViSE model uses a similarity func-
tion (here we choose cosine distance) to compute
the distance between X̂I and X̂G as the loss:

LDeV iSE = cos(X̂I , X̂G)

match(G, I)DeV iSE = 1− cos(X̂I , X̂G)
(3)

In which cos means the cosine distance. For De-
ViSE, the matching score is the cosine similarity
between the two unit vectors.

A.1.2 Similarity Network
A Similarity Network is one type of two-branch
networks for matching an image and text. It is
a supervised model which takes in (Gi, Ii, yi),
and yi ∈ {0, 1} is the binary label that indicates
whether Gi and Ii are related or not.

Each branch of the network maps one modality
to the cross-modality span and executes pointwise
multiplication to construct a joint vector:

X̂I = L2N(XIWI→J)

X̂G = L2N(XGWG→J)

XJ = X̂I � X̂G

(4)

in which, WI→J ∈ RdI×dJ and WG→J ∈ RdG×dJ

are the weights and � represents an element-wise
product.

The similarity network can be viewed as a binary
classifier, and therefore we could use binary cross-
entropy (BCE) as the loss function:

Lsim =− ΣN
i yi · log p(yi)

+ (1− yi) · log(1− p(yi))
(5)

The last layer of the similarity network is a fully-
connected layer with a softmax activation function,
and the output is an array of size two, in which
the elements denote the weight for each class. We
compute the matching score by multiplying +1
(matched) and −1 (unmatched) on these two ele-
ments:

α = softmax(fc(XJ))

match(G,I)sim = 1 · α[0] + (−1) · α[1]
(6)

where fc stands for fully-connected layer.

A.1.3 Triplet Network
A Triplet Network requires the input to be in the
format of a triplet (G, Ipos, Ineg). There will be
three branches in the network which map the three
embeddings to the same joint span:

X̂G = L2N(XGWG→J)

X̂Ipos = L2N(XIposWI→J)

X̂Ineg = L2N(XInegWI→J)

(7)

in which, WG→J ∈ RdG×dJ and WI→J ∈ RdI×dJ

are weights, and the branches of positive and nega-
tive images share the same weight.

The network learns the cross-modality by min-
imizing the distance between positive pairs and
maximizing the distance between negative pairs.
We choose cosine distance as the distance function
which will also be used to compute the matching
score:

Ltrip =max(0, cos(X̂G, X̂Ipos)

− cos(X̂G, X̂Ineg) + m)

match(G, I)trip = cos(X̂G, X̂I)

(8)

Where m is the margin, which is set to 0.2 in the
experiment.

A.1.4 LXMERT
LXMERT (Tan and Bansal, 2019) is a multimodal
encoder that aims to ground text to images. It takes
as an input image I and a related sentence G =
{w1, w2, . . . , wn}. The image objects are embed-
ded using a feature extractor (Anderson et al., 2018)
pre-trained on ImageNet (Deng et al., 2009). Given
I the detector finds m objects {o1, o2, . . . , om}
where: oi = {pi, fi}, s.t. pi is its bounding box and
fi is its 2048-dimensional region of interest (RoI).
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LXMERT learns a position-aware embedding as
follows:

f ′i = L2N(WF fi + bF ) (9)

p′i = L2N(WP pi + bP ) (10)

vi = (f ′i + p′i)/2 (11)

The text tokens are extracted using a tokenizer
(Wu et al., 2016) and converted to index-aware
embeddings s.t. wi and i are projected onto embed-
ding spaces w′i, u

′
i, to get a common embedding.

hi = L2N(w′i + u′i) (12)

Those inputs are then passed through a lan-
guage encoder EG, an object relationship en-
coder EI , and a cross-modality transformer en-
coder EJ . Let XI = {v1, v2, . . . , vn} and XG =
{h1, h2, . . . , hn}.

X̂G = EG(XG)

X̂I = EI(XI)

XGJ
, XGI

= EJ(X̂G, X̂I)

(13)

Then the cross-modality output XJ is extracted
from the output embedding XGJ

that corresponds
to the special token [CLS] appended to each input
text.

Similarly to A.1.2, we use BCE loss.

Llxmert =− ΣN
i yi · log p(yi)

+ (1− yi) · log(1− p(yi))
(14)

and compute the matching score:

α =softmax(fc2fc1(XJ))

match(G, I)lxmert = 1 · α[0] + (−1) · α[1]

(15)

A.2 Features
A.2.1 Vision
We select InceptionV3 (Szegedy et al., 2015) as
the feature extractor for the image. We have tried
VGG19 and Resnet50, but InceptionV3 turns out
to have the best performance. We use the second
last hidden layer of InceptionV3 to obtain a vector
of (2048, ).

A.2.2 Language
We use a pre-trained BERT sentence trans-
former (Reimers and Gurevych, 2019) with
bert-base-uncased as our base model. Then,
we use max-pooling to get the feature vector with
a dimension of (768, ).

Model Optimizer Learning
Rate

Batch
Size

n. of
Parameters

DeViSE RMSProp 5e-6 1024 2,897,664
Similarity Net RMSProp 5e-6 1024 4,424,170

Triplet Net Adam 1e-5 1024 4,984,832
LXMERT Adam 5e-7 32 209,124,098

Table 5: Hyper Parameters of All Models.

A.3 Hyper Parameters

See Table 5.

A.4 Training Details

The training of DeViSE, Similarity Network and
Triplet Network were on a single NVIDIA RTX
2080 for 200 epochs with early stopping. The train-
ing took less than 10 hours.

We used a pre-trained LXMERT model with 9
language layers, 5 cross-encoder layers, 5 vision
encoder layers, and a 2 layer linear classification
head, with GELU()(Hendrycks and Gimpel, 2016)
and ReLU() activation, with a Sigmoid final layer
and with normalization in the first layer.

We fine-tune the model for 10 epochs while al-
lowing the gradient to flow through the LXMERT
pre-trained layers. We use a binary cross-entropy
loss from the PyTorch library and an Adam
(Kingma and Ba, 2014) optimizer. Note that we
deal with imbalanced datasets by repeating the pos-
itive samples and shuffling the data.

B Goal-Image Retrieval Task

B.1 Sampling

Goal-Image Retrieval is a more practical format
that gives a high-level goal and a pool of images
and aims to rank these images based on their simi-
larity with the goal query.

In this experiment, we randomly select 1,000
high-level goals from the testing set of multiple-
choice tasks and choose 5 images for each goal,
thus building a pool of 5,000 images.

B.2 Evaluation Metrics

We perform recall at k (recall@k, higher the bet-
ter) and median rank (Med r, lower the better) to
measure the retrial performance. For the 5k image
pool, k ∈ {10, 25, 50, 100}, while for the 1k image
pool, k ∈ {1, 5, 10, 25}.

B.3 In-Domain Performance

As shown in Table 6, the triplet network with BERT
as the text embedding has the best performance.
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Model 5K Testing Images
R@10 R@25 R@50 R@100 Med r

Random 0.1 0.4 1.0 2.1 2519
DeViSE 5.2 9.8 15.2 23.8 429

Similarity Net 5.8 11.5 17.6 27.0 347
Triplet Net (GloVe) 5.9 12.2 19.9 31.2 264
Triplet Net (BERT) 6.9 13.8 21.9 32.7 249

Table 6: In-Domain Retrieval results with Different
Models.

Prompt Token
Length

Vocab
Size

1K Testing Images
R@1 R@5 R@10 R@25 Med r

Goal 3.34 19,299 4.6 14.6 22.8 36.3 49
Method 3.11 24,180 2.5 11.4 18.9 33.3 57

Step 4.67 49,999 6.1 20.1 31.4 48.7 26

Table 7: Query on Different Prompts

B.4 Query on Different Prompts

As can be seen from Table 7, the model has higher
performance when using the detailed step descrip-
tion as a prompt. Through qualitative analysis (see
Figure 8) on some samples, we discovered that
some method descriptions are very general, and
short abstract keywords are even more refined than
the goal description. To quantify this finding, we
calculate the average length of tokens (remove stop
words) and the vocabulary size of the three types of
prompts. Apparently, the step description is more
fruitful than the method and goal with higher token
length and vocab size. The method described has
a lower average length of tokens, which is in line
with our observation.

B.5 Transfer Performance on Retrieval

We also evaluate the transfer performance on a
retrieval task. For COIN, we choose 5-6 images for
each video from the 180 goals and construct a pool
of 1,000 images. For Howto100m, we randomly
select 5-6 images of each of the videos in the testing
set and also form a pool of 1K images.

Table 8 and 9 indicates the model pre-trained on
wikiHow outperforms the other dataset in the re-
trieval task and the aggregation model could further
improve the performance.

C Step-Aggregation Model

We have seen that SOTA models do not per-
form well in VGSI because of the implicit vision-
language relation. So we develop a step aggre-
gation model that takes advantage of the existing
goal-step knowledge from wikiHow. The main
idea is as follows: given an unseen textual goal,
we use k-nearest neighbors to find the most related

1k Test Images
PT-Data R@1 R@5 R@10 R@25 Med r

- 0.0 0.5 1.2 2.5 517
Flickr 1.2 4.0 7.1 14.2 240

MSCOCO 0.9 5.5 9.3 19.0 170
wikiHow 1.4 7.6 12.6 23.8 102

Table 8: Zero-shot Retrieval on COIN

1K Test Images
PT-Data FT? R@1 R@5 R@10 R@25 Med r

- X 1.1 4.4 9.5 17.4 129

Flickr30K
7 0.9 3.9 6.9 11.7 213
X 1.2 5.4 10.5 20.9 122

MSCOCO
7 0.5 4.1 7.3 13.8 202
X 1.7 6.8 11.9 22.4 98

COIN
7 1.1 4.2 7.7 15.3 193
X 1.6 6.1 11.7 21.6 118

wikiHow 7 1.6 7.3 13.5 25.1 88
X 2.0 7.9 14.7 26.7 84

Table 9: Retrieval Performance on Howto100m

article title from wikiHow, then extract the n steps
from this article as S = {s1, s2, ..., sn}. Instead of
directly using the given goal to match the images
(goal score - Scoreg), we could use the sequence of
steps to improve the matching (step score - Scores).
Then use linear interpolation to summarize these
two scores as our final matching score.

Scoreg = match(G, I)

Scores = maxi=1:n(match(si, I))

Scorefinal = λ · Scoreg + (1− λ) · Scores
(16)

where, λ adjusts the step and goal scores weights,
we choose λ = 0.5.

The main idea of the model is to break down the
high-level goal into intermediate steps via schema.
Then we use the induced sequence of steps as the
new query to improve the matching performance.
For example in Figure 6, when we want to match
the goal “Install License Plate” with two images,
the model makes a wrong choice because the neg-
ative sample (the right one) also involves the "in-
stall" action. However, we could fetch the inter-
mediate steps from wikiHow and use these steps
to match the images. The left image (the correct
choice) has a higher Step-Image similarity score
than the right one. Therefore, the model could
improve its performance with the help of this step
information. As we can see from the example steps,
they contain some useful entities such as “screw”,
“bracket”, “bumper”, etc., which are closely related
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Figure 6: The architecture of the Step-Aggregation Model.

Dataset Model Sampling Strategy
Random Similarity Category

COIN
wikiHow .7639 .6854 .5659

wikiHowagg .7657(+0.2%) .6942(+1.3%) .5764(+1.9%)

Howto100m
wikiHow .6855 .7249 .5143

wikiHowagg .6947(+1.3%) .7392(+2.0%) .5245(+2.0%)

Table 10: Apply Step-Aggregation model on multiple-choice VGSI (agg stands for aggregation model).

Dataset Model R@1 R@5 R@10 R@25 Med r

COIN
wikiHow 1.4 7.6 12.6 23.8 102

wikiHowagg 1.9(+35.7%) 7.8(+2.6%) 13.6(+7.9%) 25.9(+8.8%) 97(-4.9%)

Howto100m
wikiHow 2.0 7.9 14.7 26.7 84

wikiHowagg 2.1(+5.0%) 8.3(+5.1%) 15.8(+7.5%) 27.7(+3.7%) 80(-4.8%)

Table 11: Apply Step-Aggregation model on retrieval VGSI.

to the visual information in the image but do not
show up in the goal sentence.

We apply the aggregation model on both
multiple-choice and retrieval VGSI tasks. As
shown in Table 10 and 11, with the assistance of
the aggregation model, the accuracy of multiple-
choice increased by 0.2% - 2%, and the median
rank of retrieval decreased by 5%. Since our ap-
proach to utilize these steps is very simple, but still
achieve a marginal improvement. We hope to see
more advanced models to realize the full potential
of wikiHow steps.

D Qualitative Examples

See Figure 7, 8, 9.
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Figure 7: Qualitative Examples Using Different Sampling Strategies.
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Figure 8: Qualitative Examples Using Different Query Prompts. (Yellow bounding box is the goal’s prediction,
blue bounding box denotes the method’s prediction, red bounding box denotes the step’s prediction, green check-
mark represents the ground truth.)

Figure 9: Qualitative Examples of Transfer Learning on Howto100m. (The first row shows the multiple-choice
examples of Howto100m video frames, the yellow bounding box is the prediction of the model without pre-training
on wikiHow, blue bounding box denotes the prediction of the pre-trained model, and green checkmark represents
the ground truth. The second row shows the related images and descriptions we found in wikiHow.)


