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Abstract

Pre-trained multilingual language encoders,
such as multilingual BERT and XLM-R, show
great potential for zero-shot cross-lingual
transfer. However, these multilingual encoders
do not precisely align words and phrases
across languages. Especially, learning align-
ments in the multilingual embedding space
usually requires sentence-level or word-level
parallel corpora, which are expensive to be
obtained for low-resource languages. An al-
ternative is to make the multilingual encoders
more robust; when fine-tuning the encoder us-
ing downstream task, we train the encoder
to tolerate noise in the contextual embedding
spaces such that even if the representations of
different languages are not aligned well, the
model can still achieve good performance on
zero-shot cross-lingual transfer. In this work,
we propose a learning strategy for training ro-
bust models by drawing connections between
adversarial examples and the failure cases of
zero-shot cross-lingual transfer. We adopt two
widely used robust training methods, adver-
sarial training and randomized smoothing, to
train the desired robust model. The experi-
mental results demonstrate that robust train-
ing improves zero-shot cross-lingual transfer
on text classification tasks. The improvement
is more significant in the generalized cross-
lingual transfer setting, where the pair of input
sentences belong to two different languages.

1 Introduction

Zero-shot cross-lingual transfer learning aims to
learn models with data available in one or more
source languages and use them in other target lan-
guages for which there is no data (zero-resource)
available. The zero-shot cross-lingual transfer has
a great practical value for low-resource languages
since it reduces the requirement of labeled data to
learn models for downstream tasks, e.g., text clas-
sification (Conneau et al., 2018; Yang et al., 2019)
and question answering (Lewis et al., 2020).

Recently, pre-trained multilingual language en-
coders, such as multilingual BERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020a), demon-
strate promising performance on zero-shot cross-
lingual transfer learning for a wide range of down-
stream tasks (Hu et al., 2020; Liang et al., 2020).
These language encoders learn a shared multilin-
gual contextual embedding space; they are able
to represent word pairs in parallel sentences with
similar contextual representations. However, the
multilingual encoders fail to capture this similarity
when the source and target languages are less simi-
lar at levels of morphology, syntax, and semantics
(Ahmad et al., 2019a,b).

Prior studies (Cao et al., 2020; Pan et al., 2021;
Dou and Neubig, 2021) have shown that aligning
the representations of different languages in the
multilingual embedding space plays an important
role for zero-shot cross-lingual transfer learning.
As illustrated in Figure 1a, words with similar
meanings (e.g. this, ceci, and这) have similar rep-
resentations in the contextual multilingual embed-
ding space, even though these words are in different
languages. This alignment helps models transfer
the learned knowledge from source languages to
target languages. Therefore, several works focus
on improving the quality of alignments in the mul-
tilingual embedding space (Cao et al., 2020; Chi
et al., 2020; Pan et al., 2021; Dou and Neubig,
2021). Nevertheless, learning such alignments usu-
ally requires sentence-level or word-level parallel
corpora, which are expensive to be obtained for
low-resource languages. In addition, because the
meanings of words in different languages are usu-
ally not exactly matched, learn a perfect alignment
could be impossible.

In this work, we start from another point of view
to improve zero-shot cross-lingual transfer perfor-
mance. We aim to make the multilingual encoders
robust such that they can tolerate a certain amount
of noise in the input embeddings. More specifi-
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(a) Contextual representations of different words. (b) Robust regions try to cover neighbor embeddings.

Figure 1: An illustration of different words in the multilingual contextual embedding space. (a) Words with similar
meanings in different languages have similar representations but they are not exactly aligned. (b) We aim to learn
a robust classifier whose robust regions (orange circles) that cover as many neighbor words as possible.

cally, as shown in Figure 1b, we target to construct
robust regions (orange circles) for embeddings in
the multilingual embedding space. During training,
the robust model is expected to output similar pre-
dictions for embeddings in the same robust region.
Therefore, as long as similar words in different lan-
guages fall into the same robust region, even if they
are not perfectly aligned, the model can still have
similar predictions for them.

To learn the robust model, we first draw connec-
tions between adversarial examples (Li et al., 2020;
Garg and Ramakrishnan, 2020; Jin et al., 2020) and
the failure cases of zero-shot cross-lingual trans-
fer, and then study two widely used robust training
methods to learn the robust model: (1) adversar-
ial training (Goodfellow et al., 2015; Madry et al.,
2018) and (2) randomized smoothing (Cohen et al.,
2019; Ye et al., 2020). Both of them can make
the model robust against perturbations in the input
embeddings by modifying the training objective
when fine-tuning model for the downstream task.
For randomized smoothing, we also adopt the data
augmentation approach (Ye et al., 2020) to learn
the robust model.

We perform experiments on two cross-lingual
text classification tasks, paraphrase identification
and natural language inference1. The experimental
results demonstrate that robust training indeed im-
proves the performance of zero-shot cross-lingual
transfer on the classification benchmarks: PAWS-
X (Yang et al., 2019) and XNLI (Conneau et al.,
2018). On average the cross-lingual transfer perfor-
mance improves by 2.1 and 1.6 points on PAWS-X
and XNLI, respectively. In addition, we show that
robust training remarkably improves generalized

1Our code is available at https://github.com/
uclanlp/Robust-XLT

cross-lingual transfer (Lewis et al., 2020). In this
setting, the pair of input sentences in the text clas-
sification tasks belong to two different languages,
e.g., paraphrase prediction for a pair of sentences
in English and Korean.

2 Related Work

Zero-shot cross-lingual transfer learning. In
recent years, several pre-trained multilingual lan-
guage models are proposed for zero-shot cross-
lingual transfer, including multilingual BERT (De-
vlin et al., 2019), XLM (Conneau and Lample,
2019), and XLM-R (Conneau et al., 2020a; Goyal
et al., 2021). Many studies put attentions on the ra-
tionales that make zero-shot cross-lingual transfer
work (K et al., 2020; Lauscher et al., 2020; Con-
neau et al., 2020b; Artetxe et al., 2020; Dufter and
Schütze, 2020). Various tasks and datasests are pre-
sented to facilitate zero-shot cross-lingual transfer
learning (Conneau et al., 2018; Yang et al., 2019;
Clark et al., 2020; Artetxe et al., 2020; Lewis et al.,
2020). XTREME (Hu et al., 2020) and XGLUE
(Liang et al., 2020) further provide benchmarks for
zero-shot cross-lingual transfer learning.

Embedding space alignments. Learning to
align embedding spaces have always been an im-
portant research topic to improve multilinguality.
Early works focus on word embedding spaces
(Mikolov et al., 2013; Smith et al., 2017; Artetxe
et al., 2017). Recently, many approaches are pro-
posed to align contextual word embedding spaces,
such as learning rotation projections (Schuster
et al., 2019; Aldarmaki and Diab, 2019; Conneau
et al., 2020b) and fine-tuning pre-trained multilin-
gual language models (Chi et al., 2020; Feng et al.,
2020; Cao et al., 2020; Qin et al., 2020; Liu et al.,
2020; Dou and Neubig, 2021; Wei et al., 2021).

https://github.com/uclanlp/Robust-XLT
https://github.com/uclanlp/Robust-XLT
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However, most of them require additional supervi-
sion signals, such as parallel sentence pairs (Chi
et al., 2020; Feng et al., 2020; Wei et al., 2021),
bilingual dictionary (Cao et al., 2020; Qin et al.,
2020; Liu et al., 2020), or both (Pan et al., 2021).
These additional supervised corpora are usually
expensive for low-resource languages.

Embedding misalignment handling. Instead of
directly aligning the representations, there is a line
of research making the model be aware of the em-
bedding misalignment issues by considering ad-
ditional syntactic features, such as part-of-speech
(Kozhevnikov and Titov, 2013) and dependency
parse trees (Ahmad et al., 2019b; Subburathinam
et al., 2019; Zhang et al., 2019; Liu et al., 2019;
Ahmad et al., 2021a,b), and other syntactic fea-
tures (Meng et al., 2019). However, those syntactic
features require large human efforts to obtained.

Robust training. Recently, adversarial attacks
are presented to check the robustness of NLP mod-
els, such as character manipulation (Ebrahimi et al.,
2018; Gil et al., 2019), word replacements (Alzan-
tot et al., 2018; Li et al., 2020; Garg and Ramakr-
ishnan, 2020; Jin et al., 2020), and syntactic rear-
rangements (Iyyer et al., 2018). To against those
attacks, various robust training methods are pro-
posed. For example, Alzantot et al. (2018) trains a
robust model by data augmentation with generated
adversarial examples. Other works (Ebrahimi et al.,
2018; Dong et al., 2021; Zhou et al., 2021) consider
adversarial training, which includes the adversarial
accuracy to the training objective. A few studies
propose transformations on inputs before feeding
them to models (Edizel et al., 2019; Jones et al.,
2020). Randomized smoothing (Cohen et al., 2019;
Ye et al., 2020) is presented to make models robust
against noise in input representations. Another line
of research aims at providing theoretical guarantee
of robustness, including interval bound propaga-
tion methods (Jia et al., 2019; Huang et al., 2019)
and verification methods (Shi et al., 2020). Most
of those robust training methods focus on defend-
ing adversarial attacks, while we propose to apply
robust training methods to improve the zero-shot
cross-lingual transfer performance.

3 Zero-Shot Cross-Lingual Transfer with
Robust Training

In this work, we focus on zero-shot cross-lingual
transfer for text classification tasks. Our goal is to

learn a classifier f from a set of training examples
in source languages Xsrc = {(xi, yi)}Ni=1. At test
time, we directly use the classifier f to conduct in-
ference on a set of test examples in target languages
Xtgt = {xi}Mi=1. We expect that the classifier f
can transfer the learned knowledge from the source
languages to the target languages.

3.1 Connection with Adversarial Examples
The aligned representations of different languages
have been shown as a crucial factor (Cao et al.,
2020; Chi et al., 2020; Pan et al., 2021) for mul-
tilingual embeddings to be effective for zero-shot
cross-lingual transfer. For example, assuming the
source language and the target language are En-
glish and French, respectively, and considering a
pair of parallel sentences “this is a cat” (in English)
and “Ceci est un chat” (in French), we can get the
contextual representations of the source English
sentence Esrc = (v1,v2,v3,v4) and the target
French sentence Etgt = (u1,u2,u3,u4). Let δ
denote the difference between the source and the
target contextual representations as follows.2

δ = Esrc −Etgt

= (v1 − u1,v2 − u2,v3 − u3,v4 − u4)

= (δ1, δ2, δ3, δ4).

Since words with similar meanings have similar
representations, the norm of their differences ‖δi‖
is supposed to be small. Therefore, if f(Esrc) = c,
we have a high probability for f(Etgt) = c as well,
which means that the classifier f is able to transfer
the learned knowledge from the source language to
the target language. If unfortunately, the transfer
fails, we have

f(Etgt) = f(Esrc + δ) 6= f(Esrc),

where ‖δi‖ is small.
(1)

We observe that Eq. (1) is very similar to the def-
inition of adversarial examples (Alzantot et al.,
2018; Li et al., 2020; Garg and Ramakrishnan,
2020; Jin et al., 2020). The goal of adversarial
examples is to find a small perturbation ∆ for an
instance x such that a classifier h changes the pre-
diction on x, as illustrated by the following equa-
tion.

h(x̃) = h(x + ∆) 6= h(x),

where ‖∆‖ is small.
(2)

2For the ease of describing our idea, we assume the word
orders in different languages are the same. Later in experi-
ments, we relax this condition and present a preliminary study
on the influence of word orders in Section 4.4.



1687

For the case that cross-lingual transfer fails, the
difference between the source and target represen-
tations δ behaves like an adversarial perturbation.
This inspires us to consider robust training meth-
ods, which are designed for defending adversarial
examples, to improve the zero-shot cross-lingual
transfer performance. More specifically, our goal
is to train a robust classifier that can tolerate small
perturbations on input embeddings. As shown in
Figure 1b, we aim to train a robust classifier f that
has robust regions (orange circles) such that the
robust classifier f outputs similar values for input
embeddings are in the same robust region.

We study two widely used robust training meth-
ods in literature: (1) adversarial training and (2) ran-
domized smoothing, as they have been successfully
used for defending adversarial attacks (Ebrahimi
et al., 2018; Jia et al., 2019; Huang et al., 2019;
Cohen et al., 2019).

3.2 Adversarial Training

The main idea of adversarial training is consider-
ing the most effective adversarial perturbation in
each optimization iteration. More precisely, in nor-
mal training, we learn a classifier f by solving the
following optimization problem

min
f

∑
(x,y)∈Xsrc

L(f(Enc(x)), y),

where Enc(·) is the multilingual encoder and L is
the cross-entropy loss. When considering adver-
sarial training, we solve the following min-max
optimization problem instead

min
f

∑
(x,y)∈Xsrc

max
‖δi‖≤ε

L(f(Enc(x) + δ), y),

where ε is a hyper-parameter to control the size
of robust regions which are described by several
norm balls ‖δi‖. The inner maximization finds
the most effective perturbation to change the pre-
diction, while the outer minimization tries to en-
sure the correct prediction against the perturbation.
With this min-max optimization, the classifier f
is aware of perturbations within the robust regions
‖δi‖ and becomes more robust.

3.3 Randomized Smoothing

Unlike adversarial training, which always consid-
ers the most effective perturbation, randomized
smoothing focuses on the expectation case and

aims to guarantee the local smoothness of the clas-
sifier at the same time. Following previous work
(Cohen et al., 2019; Ye et al., 2020), we let f be
the classifier learned by solving the normal opti-
mization problem and learn a smoothed classifier g
such that

g(Enc(x)) = argmax
c∈Y

Pδ(f(Enc(x) + δ) = c),

where Pδ is a prior distribution of the perturbation
δ and Y is the label space. In other words, we want
that g(Enc(x)) has a similar output value (label
predictions) to f(Enc(x)). The random perturba-
tion δ is introduced to ensure the local smoothness
of g. That is, g(Enc(x) + δ), the output for the
perturbed input, is similar to the output value of
g(Enc(x)). Compared to the original classifier f ,
the smoothed classifier g is more robust against
local perturbations.

We consider two different ways to learn the
smoothed classifier g: (1) random perturbation and
(2) data augmentation.

Random perturbation (RP). Specifically, we
focus on the following objective

min
g

∑
(x,y)∈Xsrc

Pδ(L(g(Enc(x) + δ), y)).

In each optimization step, we randomly sample a
perturbation δ from Pδ and add it to Enc(x). Then,
we use the perturbed representation as the input to
calculate the loss and update the classifier g.

Data augmentation (DA). Another common
way to approximate the smoothed classifier g is
data augmentation (Ye et al., 2020). Instead of ran-
domly sampling the perturbation δ, we consider a
predefined synonym set (Alzantot et al., 2018). For
every example x = (w1, w2, ..., wn) in Xsrc, we
generate m augmented examples by replacing each
word wi in x with one of its synonym words (in-
cluding wi itself). We allow multiple replacements
in one example. Then, we use the augmented data
to train a smoothed classifier g.

It is worth noting that the predefined synonym
set is required for only source languages. Unlike
previous work (Qin et al., 2020; Liu et al., 2020),
which uses bilingual dictionary of both source lan-
guages and target languages, the proposed method
does not need any additional annotations of target
languages.
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Model en de es fr ja ko zh avg.

mBERT* 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
mBERT (reproduce) 93.7 85.4 88.2 87.8 75.3 74.2 79.1 83.4
mBERT-ADV 93.7 86.5 88.5 87.8 76.1 75.3 80.4 84.0
mBERT-RS-RP 94.5 87.4 90.0 89.5 77.9 77.5 82.0 85.5
mBERT-RS-DA 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4

Table 1: Averaged results of zero-shot cross-lingual transfer on PAWS-X with 10 different random seeds. Highest
scores are in bold. Underlines denote that the improvement is significant with p ≤ 0.05 for the bootstrapped paired
t-test. *We report the numbers in the previous paper (Hu et al., 2020).

Model en ar bg de el es fr hi

mBERT* 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9
mBERT (reproduce) 82.3 64.8 68.2 70.8 66.4 74.3 73.7 59.7
mBERT-ADV 81.9 64.9 68.3 71.7 66.5 74.4 74.5 59.6
mBERT-RS-RP 82.6 65.4 68.7 70.5 67.2 75.0 74.1 59.8
mBERT-RS-DA 81.0 66.4 69.9 71.8 68.0 74.7 74.2 62.7

Model ru sw th tr ur vi zh avg.

mBERT* 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
mBERT (reproduce) 68.7 50.0 53.0 60.9 57.7 70.3 69.2 66.0
mBERT-ADV 68.8 48.8 50.6 61.7 59.2 70.0 69.4 66.0
mBERT-RS-RP 69.5 48.4 50.5 59.7 57.9 70.5 69.7 66.0
mBERT-RS-DA 70.6 51.1 55.7 62.9 60.9 71.8 71.4 67.6

Table 2: Averaged results of zero-shot cross-lingual transfer on XNLI with 10 different random seeds. Highest
scores are in bold. Underlines denote that the improvement is significant with p ≤ 0.05 for the bootstrapped paired
t-test. *We report the numbers in the previous paper (Hu et al., 2020).

4 Experiments

We conduct experiments to verify that robust train-
ing indeed improves the performance of zero-shot
cross-lingual transfer.

4.1 Setup

We consider two cross-lingual text classification
datasets: Cross-lingual Paraphrase Adversaries
from Word Scrambling (PAWS-X) (Yang et al.,
2019) and Cross-lingual Natural Language Infer-
ence (XNLI) (Conneau et al., 2018). The goal of
PAWS-X is to determine whether two sentences are
paraphrases to each other or not. XNLI is designed
for natural language inference; given a premise and
a hypothesis, the classifier predicts the relation of
the two sentences from {entailment, neutral, con-
tradiction}.

For both datasets, we consider English as the
source language and treat other languages as the
target languages. We use the train, validation, and
test splits provided by XTREME framework (Hu

et al., 2020). Specifically, we conduct 10 runs of
experiments with 10 different random seeds. In
each run, we train the classifier on the English
training set, use the English validation set to search
the best parameters, and record the results of the
test sets. Finally, the averaged results of 10-run
experiments are reported.

Compared models. We consider the following
four different models:

• mBERT: the standard multilingual BERT (De-
vlin et al., 2019).

• mBERT-ADV: multilingual BERT with adver-
sarial training.

• mBERT-RS-RP: multilingual BERT with ran-
domized smoothing via random perturbation.

• mBERT-RS-DA: multilingual BERT with ran-
domized smoothing via data augmentation.

Implementation details. For adversarial train-
ing, we consider L∞-norm as the norm of pertur-
bation ‖δi‖. The size of robust regions is searched
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(a) PAWS-X (b) XNLI

Figure 2: Performance difference between mBERT-RS-DA and mBERT over different languages. We sort the
languages according to their distances to English from left (small) to right (large). Performance on languages with
larger distances to English is improved more with the robust training.

from {0.001, 0.01, 0.1, 1.0}. For the randomized
smoothing via random perturbation, we consider
uniform distribution over a L∞-norm ball. The
size of ball is searched from {0.001, 0.01, 0.1, 1.0}.
For the randomized smoothing via data augmen-
tation, we consider the synonym set provide by
previous work (Alzantot et al., 2018), which is con-
structed by searching nearest neighbors of words
in the GloVe embedding space (Pennington et al.,
2014) post-processed by the counter-fitting method
(Mrksic et al., 2016). The number of augmented
examples m is set to 10 and 3 for PAWS-X and
XNLI, respectively, while more discussion on m is
shown in Section 4.2. For other parameters, such as
the learning rate and the batch size, we follow the
training scripts provided by XTREME framework
(Hu et al., 2020).

4.2 Zero-Shot Cross-Lingual Transfer

Table 1 shows the averaged results of PAWS-X
with 10 different random seeds. We first notice that
all mBERT-ADV, mBERT-RS-RP, and mBERT-RS-
DA perform better than the standard mBERT on
average. Especially, robust training leads to up
to 4.0% improvement on Japanese, up to 4.1% im-
provement on Korean, and up to 2.9% improvement
on Chinese. The results suggest that robust training
helps in improving the performance of zero-shot
cross-lingual transfer learning.

We observe that randomized smoothing is usu-
ally better than adversarial training. The reason is
that adversarial training always considers the most
effective adversarial perturbation during the opti-
mization process. Adversarial perturbations are
suitable for defending adversarial examples as they
are specifically designed for attacking the classifier.
However, in the zero-shot cross-lingual transfer

case, the perturbations are not explicitly designed
but reflect the natural difference between languages.
Therefore, randomized smoothing, which considers
the average case, becomes the better choice.

We have a similar conclusion for the XNLI
dataset. As shown in Table 2, robust training indeed
leads to improvements on zero-shot cross-lingual
transfer. Again, randomized smoothing performs
better than the adversarial training approach.

Finally, we compare the two different ways (ran-
dom perturbation and data augmentation) to learn
the smoothed classifier. They have competitive
performance on PAWS-X; however, data augmen-
tation performs better than random perturbation on
XNLI. We hypothesize that the ideal robust regions
in practice may not be perfect norm balls. In fact,
they are more like convex hulls composed by the
neighbor words (Dong et al., 2021). By consider-
ing a predefined synonym set, mBERT-RS-DA can
better capture the shapes of robust regions, leading
to a more stable performance.

What languages are benefited most from robust
training? We notice that cross-lingual transfer to
some languages is significantly improved by robust
training, especially those languages that are quite
different from the source language (English). To
verify this conjecture, we consider lang2vec (Lit-
tell et al., 2017), a tool that extracts features of
different languages by querying the URIEL typo-
logical database3, to calculate the distance between
English and other languages. Then, we show the
performance gaps between mBERT-RS-DA and
mBERT over all languages as well as the least
square regression line in Figure 2. Note that the

3http://www.cs.cmu.edu/~dmortens/
projects/7_project

http://www.cs.cmu.edu/~dmortens/projects/7_project
http://www.cs.cmu.edu/~dmortens/projects/7_project
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Figure 3: Performance of mBERT-RS-DA on PAWS-X
over different m (the number of augmented instances
generated by synonym replacements).

languages are sorted according to their distances to
English from left to right.

From Figure 2a, we observe an obvious trend
for PAWS-X that languages with larger distances
to English have more performance gain with robust
training. We posit that it is because languages with
larger distances have more different representations
from English in the multilingual embedding space.
The norm of the perturbation δ defined in Section 3
will be larger and thus the failure cases occur more
often. By performing robust training, we reduce
failure cases that lead to a larger improvement. Sim-
ilar trend can be observed for XNLI (Figure 2b).
Performance on languages with larger distances to
English is improved more with the robust training.

How many augmented data needed for random-
ized smoothing? Since mBERT-RS-DA seems
to be the most effective model for both PAWS-X
and XNLI, we do further ablation on the number
of augmented data for each example m. Figure 3
shows the average performance of mBERT-RS-DA
on PAWS-X over different choices of m. We can
observe that larger m leads to better performance
in general because more augmented examples help
the model better approximate the local smoothness,
resulting in more accurate robust regions. Inter-
estingly, when m ≤ 10, increasing m can signifi-
cantly improve the performance. When m > 10,
increasing m only slightly improves the perfor-
mance. This result suggests that setting m to 10
for PAWS-X. Interestingly, we observe that setting
m to 3 is good enough for XNLI. This ablation
study indicates that randomized smoothing with
data augmentation can use just a few augmented

instances per example to learn good robust regions.

4.3 Zero-Shot Generalized Cross-Lingual
Transfer Results

Next, we study the zero-shot cross-lingual trans-
fer in a generalized setting. Lewis et al. (2020)
proposed the generalized setting for the question
answering task where the question and the con-
text may belong to two different languages.4 We
consider the generalized setting for cross-lingual
text classification since the input of PAWS-X and
XNLI tasks are pairs of sentences. For example,
consider XNLI on English-Arabic sentence pairs;
the premises are in English, and the hypotheses
are in Arabic. Note that due to the parallel na-
ture of PAWS-X and XNLI dataset5, we can pair
up sentences from two different languages. No-
tice that we directly use the trained models in Sec-
tion 4.2 to conduct inference in the generalized set-
ting. In other words, all the classifiers are trained
on English-English sentence pairs, without the con-
sideration of target languages.

The results of mBERT-RS-RP and mBERT-RS-
DA on PAWS-X and XNLI over all combinations
of languages are shown in Figure 4 and Figure 5, re-
spectively. While the diagonal numbers indicate the
transfer results in the cross-lingual transfer settings,
the non-diagonal entries present the generalized
transfer performances. Note that we report the per-
formance difference between the compared model
and mBERT (exact numbers can be found in Ap-
pendix A) and the languages are sorted according to
their distances to English. We observe that the non-
diagonal numbers are much larger than the diago-
nal numbers, which suggests that robust training
results in larger performance improvements in the
generalized cross-lingual transfer setting. Given
that the input sentences in training examples are
in the same language (English), during inference,
mBERT makes more mistakes in the classification
tasks as the contextual representations for the input
sentences may not be aligned accurately. How-
ever, mBERT-RS-RP and mBERT-RS-DA can tol-
erate a certain amount of noise in input embeddings.
Therefore, they are more stable when the input sen-
tences come from different languages, leading to a
significant improvement.

4QA systems should be able to answer questions written
in French by reading an English context.

5PAWS-X and XNLI datasets consist of 7-way and 15-way
parallel sentence pairs.
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(a) mBERT-RS-RP (b) mBERT-RS-DA

Figure 4: Results for generalized zero-shot cross-lingual transfer on PAWS-X. We report the performance differ-
ence between the compared model and mBERT over different combinations of languages.

(a) mBERT-RS-RP (b) mBERT-RS-DA

Figure 5: Results for generalized zero-shot cross-lingual transfer on XNLI. We report the performance difference
between the compared model and mBERT over different combinations of languages.

4.4 Study on Syntactic Perturbations

As mentioned in Section 3, our primary focus is
on the perturbations in the multilingual embedding
space and does not consider the influence of lan-
guage syntax in cross-lingual transfer. Different
languages have linguistic differences, such as word
order. Differences in word order across languages
affect the contextual embedding space that impacts
cross-lingual transfer (Ahmad et al., 2019b). There-
fore, we conduct a preliminary experiment to study
the influence of syntax in robust training.

mBERT-RS-DA uses a predefined synonym set
to generate perturbed examples for data augmen-

tation. Following a similar strategy, we construct
syntactically perturbed examples for data augmen-
tation. More specifically, for every example x =
(w1, w2, ..., wn) in Xsrc, we generate m syntacti-
cally perturbed examples by randomly swapping
adjacent words with a probability p = 0.1. This
random swapping may result in some examples
with different word orders, which simulates the
syntactic perturbations. Then, we use those syntac-
tically perturbed examples to train the smoothed
classifier g, called mBERT-RS-syntax.

Table 3 presents the preliminary results. The av-
erage performance of mBERT-RS-syntax is similar
to the performance of standard mBERT. Interest-
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Model en de es fr ja ko zh avg.

mBERT* 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
mBERT (reproduce) 93.7 85.4 88.2 87.8 75.3 74.2 79.1 83.4
mBERT-RS-DA 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4

mBERT-RS-syntax 93.0 85.5 87.7 88.0 76.5 76.7 80.7 83.5

Table 3: Results of syntactic perturbations on PAWS-X. Highest scores are in bold. Underlines denote that the
improvement is significant with p ≤ 0.05 for the bootstrapped paired t-test. *We report the numbers in the
previous paper (Hu et al. (2020)).

ingly, the zero-shot cross-lingual transfer perfor-
mance drops when the target languages are more
similar to the source language English (German,
Spanish, and French), while the transfer perfor-
mance increases when the target languages are
more different from English (Japanese, Korean,
and Chinese). This preliminary result suggests
that it is possible to improve the zero-shot cross-
lingual transfer by considering syntactic perturba-
tions. One potential extension is adopting para-
phrase generation models (Iyyer et al., 2018; Huang
and Chang, 2021) to construct more sophisticated
syntactic perturbations and we leave this direction
for future work.

5 Conclusion

In this work, we propose a robust model by draw-
ing connections between adversarial examples and
the failure cases of zero-shot cross-lingual transfer.
We adopt two robust training methods, adversar-
ial training and randomized smoothing, to train
the desired robust model. The experimental results
demonstrate that robust training improves zero-shot
cross-lingual transfer on text classification tasks. In
addition, the improvement is more significant in
the generalized cross-lingual transfer setting.
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A Detailed Results of Zero-Shot
Generalized Cross-Lingual Transfer

Table 4, 5, and 6 show the result for mBERT,
mBERT-RS-RP, mBERT-RS-DA on PAWS-X, re-
spectively, while Table 7, 8, and 9 list the result
for mBERT, mBERT-RS-RP, mBERT-RS-DA on
XNLI, respectively. From those tables, we can
observe that mBERT-RS-RP and mBERT-RS-DA
lead to remarkable improvements.

en es de fr zh ko ja avg.

en 93.7 85.4 85.0 85.0 66.5 66.4 63.4 77.9
es 86.1 88.2 80.5 83.9 63.7 64.0 60.9 75.3
de 85.6 79.7 85.4 79.8 63.9 64.7 61.5 74.4
fr 84.8 83.0 80.3 87.8 63.7 63.9 61.1 74.9
zh 66.7 63.7 63.9 64.3 79.1 62.4 64.3 66.3
ko 67.1 64.9 65.3 65.0 62.7 74.2 65.1 66.3
ja 63.0 61.1 61.1 61.1 64.6 63.6 75.3 64.3

avg. 78.1 75.1 74.5 75.3 66.3 65.6 64.5 71.3

Table 4: Results for mBERT on PAWS-X.

en es de fr zh ko ja avg.

en 94.5 89.3 88.2 88.9 74.9 70.8 70.6 82.5
es 89.3 90.0 84.6 87.7 72.5 68.6 67.5 80.0
de 88.7 84.2 87.4 84.4 72.0 69.5 68.8 79.3
fr 88.6 86.9 83.9 89.5 71.8 69.3 68.3 79.7
zh 74.6 72.3 71.9 72.4 82.0 69.9 72.0 73.6
ko 70.1 68.4 68.0 69.0 69.6 77.5 72.5 70.7
ja 69.7 67.7 67.5 67.9 72.5 72.1 77.9 70.7

avg. 82.2 79.8 78.8 80.0 73.6 71.1 71.1 76.7

Table 5: Results for mBERT-RS-RP on PAWS-X.

en es de fr zh ko ja avg.

en 93.5 89.1 89.1 89.1 75.6 72.2 72.3 83.0
es 89.7 88.8 85.7 87.5 73.0 70.0 70.1 80.7
de 89.5 85.1 87.9 85.5 72.8 70.7 70.7 80.3
fr 89.2 86.9 85.5 88.8 73.4 70.5 70.3 80.7
zh 76.1 73.3 73.6 73.9 81.5 71.8 74.2 74.9
ko 72.0 70.4 70.3 70.5 71.5 78.3 74.1 72.4
ja 71.3 69.2 70.2 69.8 72.8 73.2 79.3 72.3

avg. 83.0 80.4 80.3 80.7 74.4 72.4 73.0 77.7

Table 6: Results for mBERT-RS-DA on PAWS-X.
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en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 82.3 70.3 65.8 69.7 60.5 63.1 55.3 44.6 41.1 63.9 57.7 64.6 52.0 49.5 52.3 59.5
es 73.5 74.3 62.9 69.0 60.5 63.7 57.3 44.6 40.6 61.4 57.9 60.8 50.4 47.1 51.6 58.4
de 71.8 65.5 70.8 65.6 59.5 63.3 55.8 44.3 41.0 60.2 56.5 60.1 52.5 49.4 52.0 57.9
fr 73.6 69.0 64.0 73.8 59.5 63.1 55.7 44.1 40.5 62.2 57.3 61.6 51.1 48.5 51.8 58.4
bg 67.8 63.7 60.8 62.5 68.2 64.2 56.0 44.2 39.9 57.4 56.3 57.8 51.2 47.2 50.3 56.5
ru 69.1 65.2 62.6 64.4 62.7 68.7 55.0 44.2 39.9 59.0 56.7 58.6 50.6 46.8 50.0 56.9
el 62.7 61.4 58.0 60.2 57.1 57.7 66.4 44.4 40.5 56.4 55.6 54.0 49.6 46.8 50.7 54.8
th 54.8 52.0 49.9 51.3 49.1 50.4 49.0 53.0 39.4 51.1 49.9 49.3 45.9 44.8 45.4 49.0
sw 54.2 51.2 48.7 50.5 47.2 47.9 47.9 41.8 50.0 48.5 49.1 48.5 45.4 44.4 45.8 48.1
vi 67.4 60.3 57.4 61.2 52.9 57.1 52.9 44.2 39.8 70.3 53.3 62.0 49.2 45.9 47.5 54.8
ar 63.9 60.4 57.0 59.5 54.5 57.1 53.3 43.9 40.4 55.4 64.8 55.2 50.3 48.4 49.9 54.3
zh 67.9 59.9 57.2 59.9 53.4 56.5 50.4 42.7 39.6 60.8 53.5 69.2 48.0 45.7 48.0 54.2
hi 61.4 55.5 55.0 55.3 52.6 54.4 51.9 43.8 40.3 53.8 53.1 53.7 59.7 52.7 49.9 52.9
ur 60.1 54.0 53.9 55.1 48.8 51.5 49.6 41.9 39.7 50.0 52.1 52.3 54.4 57.7 48.2 51.3
tr 61.0 55.1 53.6 55.1 52.0 52.6 50.9 42.4 40.7 52.3 52.0 53.2 49.7 47.3 60.9 51.9

avg. 66.1 61.2 58.5 60.9 55.9 58.1 53.8 44.3 40.9 57.5 55.1 57.4 50.7 48.1 50.3 54.6

Table 7: Results for mBERT on XNLI.

en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 82.6 71.2 65.9 70.3 62.0 65.7 57.0 44.1 40.9 64.1 58.9 65.7 52.8 49.2 51.2 60.1
es 74.9 75.0 65.4 71.2 63.0 65.6 59.5 44.5 40.8 62.9 60.1 62.6 52.5 48.7 51.7 59.9
de 72.6 68.0 70.5 67.4 61.7 64.9 58.0 44.4 41.4 61.0 58.8 61.4 53.6 50.4 52.2 59.1
fr 74.7 71.6 65.2 74.1 62.1 64.8 58.4 44.4 40.8 62.7 59.5 62.4 52.7 48.9 51.7 59.6
bg 68.5 66.0 62.9 65.1 68.7 66.8 59.4 45.1 41.1 59.7 59.4 59.7 53.5 49.6 51.8 58.5
ru 69.9 67.1 63.5 65.9 65.0 69.5 58.2 44.7 40.9 60.8 59.2 60.6 53.1 49.5 51.5 58.6
el 63.9 63.3 59.3 62.0 59.8 61.0 67.2 44.7 41.3 57.3 57.7 55.7 51.4 48.2 50.7 56.2
th 56.4 54.1 51.7 53.3 51.9 52.9 51.0 50.5 40.1 52.5 51.8 51.3 48.2 46.3 46.8 50.6
sw 54.1 52.3 49.6 50.9 49.1 49.7 48.6 41.8 48.4 48.7 49.8 48.1 45.4 44.5 47.1 48.6
vi 69.9 65.0 60.5 64.1 58.6 61.8 56.0 45.1 40.4 70.5 57.4 63.4 51.5 48.0 49.1 57.4
ar 64.9 62.8 58.7 61.7 58.7 60.7 56.3 44.7 41.1 58.1 65.4 57.1 52.2 49.6 50.3 56.1
zh 71.1 64.8 60.8 64.1 59.0 61.6 53.9 43.5 40.8 63.0 56.8 69.7 50.9 47.8 49.7 57.2
hi 62.2 58.9 56.7 57.9 56.5 58.3 54.3 44.5 40.8 55.3 55.8 55.3 59.8 54.2 50.4 54.7
ur 61.2 56.7 56.1 57.3 54.4 57.0 53.2 43.7 40.8 54.1 56.3 54.6 56.9 57.9 49.9 54.0
tr 62.4 59.2 57.0 58.6 56.7 57.9 54.2 43.7 40.9 54.8 55.1 54.9 52.2 48.8 59.7 54.4

avg. 67.3 63.7 60.3 62.9 59.1 61.2 56.4 44.6 41.4 59.0 57.5 58.8 52.4 49.4 50.9 56.3

Table 8: Results for mBERT-RS-RP on XNLI.

en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 81.0 73.7 69.0 72.8 66.2 68.6 61.2 45.5 41.9 67.1 61.6 68.4 55.9 52.4 56.8 62.8
es 75.2 74.7 66.7 71.4 65.3 67.7 62.0 45.1 41.4 64.1 61.7 64.3 53.9 50.5 55.5 61.3
de 73.4 69.2 71.9 68.7 64.1 67.1 60.4 44.6 41.6 63.2 59.9 63.4 55.4 52.4 55.8 60.7
fr 75.4 72.4 67.2 74.2 64.7 67.5 61.2 45.2 41.2 65.0 61.4 64.8 54.2 51.2 55.0 61.4
bg 70.7 68.4 64.6 66.9 69.9 68.0 61.3 44.9 41.6 61.4 60.4 61.7 54.8 51.0 55.4 60.1
ru 71.6 68.6 65.4 67.4 66.4 70.6 59.7 44.4 40.9 61.9 60.2 62.4 53.9 50.5 54.8 59.9
el 67.0 65.9 61.9 64.8 62.3 63.0 68.0 44.6 41.6 59.3 59.1 58.2 52.7 49.7 53.7 58.1
th 58.0 56.4 53.6 55.4 53.7 54.9 52.4 55.8 40.3 54.7 53.5 53.0 49.5 47.8 48.8 52.5
sw 56.7 55.3 51.7 53.9 52.2 52.6 51.0 43.2 51.1 51.6 52.5 51.5 47.4 46.8 48.9 51.1
vi 71.3 67.2 62.4 66.5 61.0 64.5 58.5 46.1 40.8 71.8 58.9 66.0 53.3 49.9 52.2 59.4
ar 66.7 64.9 60.0 63.5 59.8 61.9 57.7 44.4 41.5 59.3 66.4 58.4 52.5 50.1 53.3 57.4
zh 71.2 66.0 61.9 64.7 59.9 63.5 55.4 43.5 40.3 63.6 57.3 71.5 52.1 49.1 52.8 58.2
hi 64.6 60.9 59.0 59.9 57.9 59.5 56.2 44.5 41.4 56.9 56.6 57.8 62.8 57.4 54.1 56.6
ur 62.8 58.1 57.0 58.3 55.0 57.5 53.5 43.6 41.0 55.1 55.6 56.1 58.9 60.9 52.4 55.0
tr 64.7 61.7 58.5 60.4 58.2 59.0 55.7 44.1 41.9 56.6 56.0 57.7 54.7 51.4 62.9 56.2

avg. 68.7 65.6 62.0 64.6 61.1 63.1 58.3 45.3 41.9 60.8 58.7 61.0 54.1 51.4 54.2 58.0

Table 9: Results for mBERT-RS-DA on XNLI.


