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Abstract

Non-autoregressive neural machine translation
(NART) models suffer from the multi-modality
problem which causes translation inconsis-
tency such as token repetition. Most recent ap-
proaches have attempted to solve this problem
by implicitly modeling dependencies between
outputs. In this paper, we introduce AligNART,
which leverages full alignment information to
explicitly reduce the modality of the target
distribution. AligNART divides the machine
translation task into (i) alignment estimation
and (ii) translation with aligned decoder in-
puts, guiding the decoder to focus on sim-
plified one-to-one translation. To alleviate the
alignment estimation problem, we further pro-
pose a novel alignment decomposition method.
Our experiments show that AligNART out-
performs previous non-iterative NART models
that focus on explicit modality reduction on
WMT14 En↔De and WMT16 Ro→En. Fur-
thermore, AligNART achieves BLEU scores
comparable to those of the state-of-the-art con-
nectionist temporal classification based mod-
els on WMT14 En↔De. We also observe that
AligNART effectively addresses the token rep-
etition problem even without sequence-level
knowledge distillation.

1 Introduction

In the neural machine translation (NMT) domain,
non-autoregressive NMT (NART) models (Gu
et al., 2018) have been proposed to alleviate the low
translation speeds of autoregressive NMT (ART)
models. However, these models suffer from degen-
erated translation quality (Gu et al., 2018; Sun et al.,
2019). To improve the translation quality of NART,
several studies on NART iteratively refine decoded
outputs with minimal iterations (Ghazvininejad
et al., 2019; Kasai et al., 2020a; Lee et al., 2020;
Guo et al., 2020; Saharia et al., 2020); other recent
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works target to improve NART without iteration
(Qian et al., 2021; Gu and Kong, 2021).

One of the significant limitations of non-iterative
NART models is the multi-modality problem. This
problem originates from the fact that the models
should maximize the probabilities of multiple tar-
gets without considering conditional dependencies
between target tokens. For example, in English-to-
German translation, a source sentence "Thank you
very much." can be translated to "Danke schön."
or "Vielen Dank.". Under the conditional indepen-
dence assumption, the non-iterative NART models
are likely to generate improper translations such as
"Danke Dank." or "Vielen schön." (Gu et al., 2018).
For the same reason, other inconsistency prob-
lems such as token repetition or omission occur
frequently in non-iterative NART (Gu and Kong,
2021).

There are two main methods for non-iterative
NART to address the multi-modality problem.
Some works focus on an implicit modeling of the
dependencies between the target tokens (Gu and
Kong, 2021). For example, Ghazvininejad et al.
(2020), Saharia et al. (2020), and Gu and Kong
(2021) modify the objective function based on dy-
namic programming, whereas Qian et al. (2021)
provide target tokens to the decoder during train-
ing.

On the other hand, other works focus on an ex-
plicit reduction of the modality of the target dis-
tribution by utilizing external source or target sen-
tence information rather than modifying the objec-
tive function. For example, Akoury et al. (2019)
and Liu et al. (2021) use syntactic or semantic in-
formation; Gu et al. (2018), Zhou et al. (2020b),
and Ran et al. (2021) use the alignment informa-
tion between source and target tokens. However,
previous explicit modality reduction methods show
suboptimal performance.

Zhou et al. (2020b) and Ran et al. (2021) ex-
tract fertility (Brown et al., 1993) and ordering
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information in word alignments, which enables the
modeling of several types of mappings except for
many-to-one and many-to-many cases. We hypoth-
esize that leveraging entire mappings significantly
reduces the modality and is the key to performance
improvement.

In this work, we propose AligNART, a non-
iterative NART model that mitigates the multi-
modality problem by utilizing complete informa-
tion in word alignments. AligNART divides the ma-
chine translation task into (i) alignment estimation
and (ii) non-autoregressive translation under the
given alignments. Modeling all the type of mapping
guides (ii) more close to one-to-one translation. In
AligNART, a module called Aligner is simply aug-
mented to NAT (Gu et al., 2018) which estimates
alignments to generate aligned decoder inputs.

However, it is challenging to estimate the com-
plex alignment information using only source
sentence during inference. Specifically, Aligner
should simultaneously predict the number of tar-
get tokens corresponding to each source token
and their mapping. To overcome this problem, we
further propose alignment decomposition which
factorizes the alignment process into three sub-
processes: duplication, permutation, and group-
ing. Each sub-process corresponds to much feasi-
ble sub-problems: one-to-many mapping, ordering,
and many-to-one mapping, respectively.

Our experimental results show that AligNART
outperforms previous non-iterative NART models
of explicit modality reduction on WMT14 En↔De
and WMT16 Ro→En. AligNART achieves per-
formance comparable to that of the recent state-
of-the-art non-iterative NART model on WMT14
En↔De. We observe that the modality reduction
in AligNART addresses the token repetition issue
even without sequence-level knowledge distillation
(Kim and Rush, 2016). We also conduct quantita-
tive and qualitative analyses on the effectiveness of
alignment decomposition.

2 Background

Given a source sentence x = {x1, x2, ..., xM} and
its translation y = {y1, y2, ..., yN}, ART models
with encoder-decoder architecture are trained with
chained target distributions and infer the target sen-
tence autoregressively:

p(y|x) =

N∏
n=1

p(yn|y<n, x). (1)

At each decoding position n, the decoder of the
model is conditioned with previous target tokens
y<n = {y1, ..., yn−1}, which is the key factor of
performance in ART models. Previous target tokens
reduce the target distribution modality and provide
information about the target sentence. However,
the autoregressive decoding scheme enforces the
decoder to iterate N times to complete the transla-
tion and increases the translation time linearly with
respect to the length of the target sentence.

Non-iterative NART models (Gu et al., 2018;
Sun et al., 2019; Sun and Yang, 2020) assume con-
ditional independence between the target tokens to
improve the translation speed:

p(y|x) = p(N |x) ·
N∏

n=1

p(yn|x), (2)

whereN is the predicted target length to parallelize
the decoding process. Non-iterative NART models
provide only the length information of the target
sentence to the decoder, which is insufficient to
address the multi-modality problem.

3 AligNART

3.1 Model Overview
Given the word alignments between the source and
target sentences A ∈ {0, 1}N×M , we factorize the
task into (i) alignment estimation and (ii) transla-
tion with aligned decoder inputs as follows:

p(y|x) = p(A|x) ·
N∏

n=1

p(yn|x,A), (3)

where M and N are the lengths of the source
and target sentences, respectively. Although we
can also modify the negative log-likelihood loss
to model dependencies between outputs such as
connectionist temporal classification (CTC) loss
(Graves et al., 2006), we focus on the effect of the
introduction of alignment as additional informa-
tion. AligNART is based on the encoder-decoder
architecture, with an alignment estimation module
called Aligner as depicted in Figure 1a. The en-
coder maps the embedding of the source tokens
into hidden representations h = {h1, h2, ..., hM}.
Aligner constructs the aligned decoder inputs d =
{d1, d2, ..., dN} as follows:

dn =
1

rn

M∑
m=1

An,m · hm. (4)
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(b) Alignment decomposition and sub-processes of Aligner

Figure 1: (a) Given the encoder outputs h, Aligner returns aligned encoder outputs d. The decoder then translates
the aligned inputs to y. (b) The dotted lines indicate the alignment decomposition. During training, predictors are
trained with the decomposed matrices D, P, and G, and align inputs using the ground truth as indicated by the solid
lines. During inference, predictors align inputs using the estimated matrices as indicated by the dashed lines.

where rn is the number of non-zero elements in
the n-th row of A. Given the aligned decoder in-
puts, the decoder is guided to focus on a one-to-
one translation from dn to yn. One-to-one mapping
significantly reduces the modality of the target dis-
tribution.

The key component of AligNART, Aligner, mod-
els a conditional distribution of alignments A given
the source sentence x during training, and aligns
encoder outputs using the estimated alignments
during inference, as depicted in Figure 1b. The
ground truth of the alignments is extracted using
an external word alignment tool. However, align-
ment estimation given only the source sentence is
challenging since the alignment consists of two
components related with target tokens:

• The number of target tokens that correspond
to each encoder output hm.

• The positions of the target tokens to which
hm corresponds.

The Aligner decomposes the alignment for effec-
tive estimation, which is described in Section 3.2.

3.2 Aligner
To alleviate the alignment estimation problem, we
start by factorizing the alignment process as shown

in Figure 1b. First, we copy each encoder output
hm by the number of target tokens mapped to hm,
which is denoted as cm =

∑
nAn,m. Given the

duplicated encoder outputs h′, we have to predict
the positions of target tokens to which each element
in h′ is mapped.

We further decompose the remaining prediction
process into permutation and grouping, since non-
iterative NART models have no information about
the target length N during inference. In the per-
mutation process, h′ is re-ordered into d′ such that
elements corresponding to the same target token
are placed adjacent to each other. In the group-
ing process, each element in d′ is clustered into
N groups by predicting whether each element is
mapped to the same target token as the previous
element. rn =

∑
mAn,m denotes the number of el-

ements in the n-th group which is equivalent to rn
in Equation 4. Finally, we can derive the decoder
inputs d in Equation 4 by averaging the elements
in each group in d′. In summary, we decompose
the alignment estimation task into three sequential
sub-tasks: duplication, permutation, and grouping.

3.2.1 Alignment Decomposition
As shown in Figure 1b, we factorize the align-
ment matrix A into duplication, permutation, and
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grouping matrices that correspond to each pro-
cess. h′ = {h1,1, ..., h1,c1 , ..., hM,1, ..., dM,cM }
denotes the duplicated encoder outputs where
hi,j is the j-th copied element of hi. Similarly,
d′ = {d1,1, ..., d1,r1 , ..., dN,1, ..., dN,rN } denotes
the permuted encoder outputs where di,j is the j-
th element in the i-th group. The number of non-
zero elements in the alignment matrix is defined as
L =

∑
m cm =

∑
n rn.

Duplication Matrix Aligner copies hm by cm
to construct the duplicated encoder outputs h′ with
a duplication matrix D ∈ {0, 1}L×M . Let Cm =∑m

i=1 ci and C0 = 0. Then, we can define D using
cm as follows:

Dl,m =

{
1 if Cm−1 < l ≤ Cm

0 else.
(5)

We index h′ by the following rule:

• For any hm,i and hm,j (i < j), which are
matched to dxi,yi and dxj ,yj , respectively,
xi ≤ xj and yi ≤ yj .

The duplication matrix D contains similar informa-
tion to fertility (Gu et al., 2018).

Permutation Matrix Aligner re-orders h′ to
construct d′ with a permutation matrix P ∈
{0, 1}L×L. Since all the indexed elements in h′

and d′ are distinct, the permutation matrix P is
uniquely defined.

Grouping Matrix Aligner finally aggregates d′

to construct d, the aligned decoder inputs, with
a grouping matrix G ∈ {0, 1}N×L. Let Rn =∑n

i=1 ri andR0 = 0. Then,G can be defined using
rn as follows:

Gn,l =

{
1 if Rn−1 < l ≤ Rn

0 else.
(6)

We index d′ by the following rule:

• For any dn,i and dn,j (i < j), which are
matched to hxi,yi and hxj ,yj , respectively,
xi ≤ xj and yi ≤ yj .

We can derive the aligned decoder inputs by sepa-
rately estimating the decomposed matrices D, P ,
and G, which approximately correspond to one-to-
many mapping, ordering, and many-to-one map-
ping, respectively. The decomposed matrices have
an easily predictable form while recovering the
complete alignment matrix.

3.2.2 Training
Aligner consists of three prediction sub-modules:
duplication, permutation, and grouping predictors.
Each of them estimates the decomposed alignment
matrix as follows:

p(A|x) = p(G|x, P,D)·p(P |x,D)·p(D|x). (7)

The duplication predictor learns to classify the num-
ber of copies of hm. The duplication loss is defined
as follows:

LD = − 1

M

M∑
m=1

log pm(cm), (8)

where pm is the predicted probability distribution
of the duplication at the position m. To discrimi-
nate copied elements in h′, we add copy position
embedding to {hm,1, ..., hm,cm} for the next two
predictors.

The permutation predictor takes the duplicated
encoder outputs h′ as inputs. We simplify the per-
mutation prediction problem into a classification of
the re-ordered position. For the permutation loss,
we minimize the KL-divergence between the pre-
diction P pred and the ground truth PGT .

LP = − 1

L

∑
i

∑
j

PGT
i,j logP pred

i,j . (9)

Given the permuted encoder outputs, the grouping
predictor conducts a binary classification task of
whether d′l is assigned to the same group as d′l−1.
Let the label at the position l be gl. Then, we define
gl from G as follows:

gl =

{
1 if G∗,l = G∗,l−1 and l > 1

0 else.
(10)

The grouping loss is defined as follows:

LG = − 1

L

L∑
l=1

log pl(gl), (11)

where pl is the predicted probability distribution of
the grouping predictor at position l.

Our final loss function is defined as the sum of
the negative log-likelihood based translation loss
LT and alignment loss LA:

L = LT +LA = LT +αLD +βLP +γLG, (12)

where we set α = β = γ = 0.5 for all the experi-
ments.



5

3.2.3 Inference
During inference, Aligner sequentially predicts the
duplication, permutation, and grouping matrices to
compute the aligned decoder inputs d as depicted
in Figure 1b. The duplication predictor in Aligner
infers ĉm at each position m; then, we can directly
construct a duplication matrix D̂ using Equation 5.
The permutation predictor predicts the distribution
of the target position P pred. We obtain a permuta-
tion matrix P̂ that minimizes the KL-divergence as
follows:

P̂ = arg min
P

(−
∑
i

∑
j

Pi,j logP pred
i,j ). (13)

We utilize the linear sum assignment problem
solver provided by Jones et al. (2001) to find P̂ .
The grouping predictor infers the binary predic-
tions ĝl from the permuted encoder outputs. We
construct a grouping matrix Ĝ using ĝl and Equa-
tions 6 and 10. With a predicted alignment matrix
Â = Ĝ · P̂ · D̂, Aligner constructs the decoder
inputs using Equation 4, and the decoder performs
translation from the aligned inputs.

3.2.4 Decoding Strategies
For the re-scoring based decoding method, we se-
lect candidates of alignments using the predicted
distributions in the duplication and grouping pre-
dictors.

We identify m′ positions in the outputs of the
duplication predictor, where the probability of the
predicted class is low. We then construct a 2m

′
-

candidate pool where the predictions in part of the
m′ positions are replaced with the second proba-
ble class. Next, we identify the top-a candidates
with the highest joint probabilities. Similarly, we
construct a 2l

′
-candidate pool and identify b candi-

dates in the grouping predictor for the a candidates.
Finally, we rank a ·b translations for the alignments
candidates using a teacher ART model and select
the best translation among them.

3.3 Architecture of AligNART
We use the deep-shallow (12-1 for short) Trans-
former (Vaswani et al., 2017) architecture (i.e., 12-
layer encoder and 1-layer decoder) proposed by
Kasai et al. (2020b) for two reasons. First, a deeper
encoder assists Aligner to increase the estimation
accuracy of the alignment matrix during inference.
Second, the deep-shallow architecture improves
the inference speed since the encoder layer has no
cross-attention module compared to the decoder

layer. The architecture of the duplication, permu-
tation, and grouping predictor is shown in the Ap-
pendix.

3.4 Alignment Score Filtering

Some alignment tools such as GIZA++ (Och and
Ney, 2003) provide an alignment score for each
sentence pair as a default. Samples with low align-
ment scores are more likely to contain noise caused
by sentence pairs or alignment tools. For GIZA++,
we filter out a fixed portion of samples with low
alignment scores to ease the alignment estimation.
Since the pair of long sentences tends to be aligned
with a low score, we apply the same filtering por-
tion for each target sentence length.

4 Experimental Setups

4.1 Datasets and Preprocessing

We evaluate our method on two translation
datasets: WMT14 English-German (En-De) and
WMT16 English-Romanian (En-Ro). WMT14 En-
De/WMT16 En-Ro datasets contain 4.5M/610K
training pairs, respectively.

For WMT14 En-De dataset, we use preprocess-
ing pipelines provided by fairseq1 (Ott et al., 2019).
For WMT16 En-Ro dataset, we use the prepro-
cessed corpus provided by Lee et al. (2018). Pre-
processed datasets share a vocabulary dictionary
between the source and target languages. We use
fast align (FA) (Dyer et al., 2013) and GIZA++
(GZ), which is known to be more accurate than fast
align, as word alignment tools. All the corpus are
passed to the alignment tools at the subword-level.
We filter out samples where the maximum number
of duplications exceed 16. We explain the details
of the alignment processing in the Appendix.

We use the sequence-level knowledge distillation
method (KD) for the distillation set. Transformer
ART models are trained to generate the distillation
set for each translation direction.

4.2 Models and Baselines

We compare our model with several non-iterative
NART baselines, and divide the non-iterative
NART models into two types as aforementioned:
implicit dependency modeling and explicit modal-
ity reduction (see Table 1). We also train the ART
models and deep-shallow NAT for the analysis. Our
models are implemented based on fairseq.

1https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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WMT14 En-De WMT16 En-Ro
Models En→ De→ Time Speedup En→ Ro→ Time Speedup

Autoregressive Models
Transformer (Vaswani et al., 2017) 27.3 - - - - - - -
Transformer (ours) 27.4 31.4 314 ×1.0 34.1 33.9 307 ×1.0

Non-iterative Non-autoregressive Models (implicit dependency modeling)
FlowSeq (Ma et al., 2019) 21.5 26.2 - - 29.3 30.4 - -
AXE (Ghazvininejad et al., 2020) 23.5 27.9 - - 30.8 31.5 - -
NAT-EM (Sun and Yang, 2020) 24.5 27.9 24 ×16.4 - - - -
NARLVM (Lee et al., 2020) 25.7 - 19 ×15.0 - 28.4 18 ×34.0
GLAT (Qian et al., 2021) 25.2 29.8 - ×15.3 31.2 32.0 - ×15.3
Imputer (Saharia et al., 2020) 25.8 28.4 - ×18.6 32.3 31.7 - -
CTC (Gu and Kong, 2021) 26.5 30.5 - ×16.8 33.4 34.1 - ×16.8

Non-iterative Non-autoregressive Models (explicit modality reduction)
NAT-FT (Gu et al., 2018) 17.7 21.5 39 ×15.6 27.3 29.1 39 ×15.6
Distortion (Zhou et al., 2020b) 22.7 - - - 29.1 - - -
ReorderNAT (Ran et al., 2021) 22.8 27.3 - ×16.1 29.3 29.5 - ×16.1
SNAT (Liu et al., 2021) 24.6 28.4 27 ×22.6 32.9 32.2 27 ×22.6
AligNART (FA, ours) 25.7 29.1 23 ×13.6 31.7 32.2 22 ×13.9
AligNART (GZ, ours) 26.4 30.4 24 ×13.4 32.5 33.1 24 ×13.0

Table 1: BLEU scores and inference speed of baselines and our model on four translation tasks. Time is an average
sentence-wise latency in milliseconds. Speedup is a relative speedup ratio compared to the Transformer-based ART
model with beam width 5.

AligNART is implemented based on the
deep-shallow Transformer architecture. We set
dmodel/dhidden to 512/2048 and the dropout rate
to 0.3. The number of heads in multi-head attention
modules is 8 except for the last attention module
of the permutation predictor which is 1. We set
the batch size to approximately 64K tokens for all
the models we implement. All these models we
implement are trained for 300K/50K steps on En-
De/En-Ro datasets, respectively. For AligNART,
we average 5 checkpoints with the highest valida-
tion BLEU scores in the 20 latest checkpoints.

For optimization, we use Adam optimizer
(Kingma and Ba, 2015) with β = (0.9, 0.98) and
ε = 10−8. The learning rate scheduling follows
that of Vaswani et al. (2017), starting from 10−7

and warms up to 5e-4 in 10K steps. We use the
label smoothing technique with εls = 0.1 for the
target token distribution and each row of permuta-
tion matrix. The translation latency is measured on
an NVIDIA Tesla V100 GPU.

5 Results

5.1 Main Results

Table 1 shows the BLEU scores, translation latency
and speedup on WMT14 En-De and WMT16 En-

WMT14 En-De WMT16 En-Ro
Models En→ De→ En→ Ro→
FlowSeq (n=15) 23.1 28.1 31.4 32.1
NAT-EM (n=9) 25.8 29.3 - -
GLAT (n=7) 26.6 31.0 32.9 33.5
ReorderNAT (n=7) 24.7 29.1 31.2 31.4
SNAT (n=9) 26.9 30.1 34.9 33.1
AligNART (FA, n=8) 26.5 30.3 32.7 33.1
AligNART (GZ, n=8) 27.0 31.0 33.0 33.7

Table 2: BLEU scores of non-iterative NART models
with re-scoring decoding scheme of n candidates.

Ro. In explicit modality reduction, AligNART (FA)
achieves higher BLEU scores than Distortion and
ReorderNAT, which utilize the same alignment tool,
since we leverage the entire alignment information
rather than partial information such as fertility or
ordering. Moreover, AligNART (GZ) significantly
outperforms previous models for explicit modal-
ity reduction except for SNAT on En→Ro. In im-
plicit dependency modeling, AligNART (GZ) out-
performs Imputer and shows performance compara-
ble to that of the state-of-the-art CTC-based model
on En↔De by simply augmenting Aligner module
to deep-shallow NAT. In this study, we focus on
introducing complete information in word align-
ments; we do not modify the objective function,
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En→De De→En
Models D P G D P G
AligNART (FA, w/o KD) 0.76/0.85 0.55/0.74 0.96/0.98 0.77/0.84 0.59/0.74 0.96/0.98
AligNART (FA, w/ KD) 0.75/0.89 0.53/0.83 0.95/1.00 0.76/0.88 0.57/0.84 0.96/1.00
AligNART (GZ, w/o KD) 0.69/0.78 0.76/0.91 1.00/1.00 0.71/0.82 0.81/0.92 1.00/1.00
AligNART (GZ, w/ KD) 0.66/0.88 0.71/0.94 1.00/1.00 0.68/0.88 0.76/0.95 1.00/1.00

Table 3: Duplication (D), permutation (P), and grouping (G) accuracy of Aligner on WMT14 En-De validation set.
Accuracy on raw and distilled datasets are written on the left and right of slash, respectively.

Source Denken Sie , dass die Medien zu viel vom PS_ G erwarten ?
Reference Do you think the media expect too much of PS_ G ?

NAT (12-1) Do you think that the expect expect much from the PS_ G ?

Ours

Duplication Denken Denken Sie , dass die Medien zu viel vom vom PSG PSG erwarten ?
Permutation Denken Sie Denken , dass die Medien erwarten zu viel vom vom PSG PSG ?
Grouping Denken Sie Denken , dass die Medien erwarten zu viel vom vom PSG PSG ?
Output Do you think that the media expect too much from the PS_ G ?

Table 4: Visualized translation example of deep-shallow NAT and AligNART (FA) on WMT14 De→En validation
set. "_" stands for subword tokenization. Highlighted tokens in duplication, permutation, and grouping processes
are modified by the each module of Aligner. Highlighted tokens in output correspond to the tokens highlighted with
the same colors in the previous processes. Note that Aligner first applies mean pooling to convert subword-level
encoder outputs into word-level, as explained in the Appendix.

fast align GIZA++
Models En→ De→ En→ De→
AligNART 25.7 29.1 26.4 30.4
- Infer with D=I 15.5 18.1 11.5 15.2
- Infer with P=I 19.4 22.2 21.5 24.7
- Infer with G=I 21.9 27.1 26.4 30.4

Table 5: BLEU scores of Aligner ablation study on
WMT14 En-De test set.

which can be explored in the future work.
Table 2 shows the BLEU scores with re-scoring

decoding strategies of the non-iterative NART mod-
els. We set m′ = l′ = 4, a = 4, and b = 2
for 8 candidates. AligNART outperforms the base-
lines on En→De and Ro→En, and shows perfor-
mance similar to that of GLAT on De→En. In
non-iterative NART for explicit modality reduc-
tion, AligNART shows the best performance on
En↔De and Ro→En.

5.2 Analysis of Aligner Components

In this section, we investigate the accuracy, exam-
ple, and ablation results of Aligner components
as shown in Table 3, 4, and 5, respectively. Note
that we partially provide the ground truth D or P
matrices during the accuracy measurement.

Knowledge Distillation In Table 3, a com-
parison of accuracy between raw and distilled
datasets shows that KD significantly decreases
multi-modality of each component. After KD, Alig-
NART shows marginally reduced accuracy on the
raw dataset, but high prediction accuracy in each
component on the distillation set, resulting in in-
creased BLEU scores.

Alignment Tool Before KD, AligNART using
fast align and GIZA++ have accuracy bottlenecks
in permutation and duplication predictors, respec-
tively, as shown in Table 3. The results imply that
the alignment tools have different degrees of multi-
modality on the D, P, and G matrices, which can be
explored in the future work.

Qualitative Study Table 4 shows an example
of addressing the multi-modality problem. Deep-
shallow NAT monotonically copies the encoder out-
puts and suffers from repetition and omission prob-
lems. AligNART (FA) does not show the inconsis-
tency problems thanks to the well-aligned decoder
inputs, which significantly reduces the modality of
the target distribution. We also conducted a case
study on predicted alignments and their translations
during re-scoring as shown in the Appendix.

Ablation Study We conduct an analysis of align-
ment estimation by ablating one of the predictors



8

WMT14 En-De
En→ De→

FlowSeq (w/o KD) 18.6 23.4
AXE (w/o KD) 20.4 24.9
Imputer (CTC, w/o KD) 15.6 -
CTC (w/o KD) 18.2 -
NAT (12-1, w/o KD) 8.5 13.3
NAT (12-1, w/ KD) 18.9 23.4
AligNART (FA, w/o KD) 20.7 24.0
AligNART (GZ, w/o KD) 18.3 23.2

Table 6: BLEU scores of non-iterative NART models
on WMT14 En-De test set, with or without KD.

during inference. We ablate each module in Aligner
by replacing the predicted matrix with an identical
matrix I . The results in Table 5 indicate that each
module in Aligner properly estimates the decom-
posed information in word alignments. However,
there is an exception in GIZA++ where many-to-
one mapping does not exist, resulting in perfor-
mance equal to that without the grouping predic-
tor. We observe that AligNART achieves BLEU
scores comparable to those of CTC-based models
on En↔De even with the ground truth word align-
ments of partial information.

5.3 Analysis of Modality Reduction Effects

To evaluate the modality reduction effects of Alig-
NART, we conducted experiments on two aspects:
BLEU score and token repetition ratio. Table 6
shows the BLEU scores on WMT14 En-De. For
En→De, AligNART using fast align without KD
achieves higher BLEU scores than previous mod-
els without KD and deep-shallow NAT with KD.
The results indicate that our method is effective
even without KD, which is known to decrease data
complexity (Zhou et al., 2020a). On the other hand,
alignments from GIZA++ without KD are more
complex for AligNART to learn, resulting in lower
BLEU scores than deep-shallow NAT with KD.

Ghazvininejad et al. (2020) measured the token
repetition ratio as a proxy for measuring multi-
modality. The token repetition ratio represents the
degree of the inconsistency problem. In Table 7, the
token repetition ratio of AligNART is less than that
of the CMLM-base (Ghazvininejad et al., 2019)
of 5 iterations, AXE, and GLAT. We also observe
that the decline in the token repetition ratio from
Aligner is significantly larger than that from KD.
Combined with the results from Table 6, alignment

WMT14 En-De
En→ De→

Gold test set 0.04% 0.03%
CMLM-base (5 iterations) 0.72% -
AXE 1.41% 1.03%
Imputer (CTC) 0.17% 0.23%
GLAT 1.19% 1.05%
NAT (12-1, w/o KD) 33.94% 27.78%
NAT (12-1, w/ KD) 11.83% 9.09%
AligNART (GZ, w/o KD) 0.76% 1.33%
AligNART (GZ, w/ KD) 0.33% 0.33%

Table 7: Token repetition ratio of NART models on
WMT14 En-De test set.

WMT14 En-De
En→ De→

NAT (12-1) 18.9 23.4
- Cross attention 17.2 21.9
AligNART (GZ) 26.4 30.4
- Score filtering 26.2 30.0

- Cross attention 26.1 29.9
- 12-1 architecture 24.9 29.1

Table 8: Ablation results of deep-shallow NAT and
AligNART (GZ) on WMT14 En-De test set.

information adequately alleviates the token repeti-
tion issue even in the case where the BLEU score
is lower than that of deep-shallow NAT with KD.

5.4 Ablation Study

We conduct several extensive experiments to ana-
lyze our method further as shown in Table 8 and
9. Each of our method consistently improves the
performance of AligNART.

Cross Attention As shown in Table 8, we ab-
late the cross attention module in the decoder to
observe the relationship between aligned decoder
inputs and alignment learning of the cross atten-
tion module. We train AligNART and deep-shallow
NAT without a cross attention module for compari-
son. AligNART without the cross attention module
has a smaller impact on the BLEU score than the
deep-shallow NAT. The cross attention module is
known to learn alignments between source and tar-
get tokens (Bahdanau et al., 2015), and the result
implies that aligned decoder inputs significantly
offload the role of the cross attention module.

Deep-shallow Architecture Deep-shallow ar-
chitecture heavily affects the BLEU scores of Alig-
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0% 1% 5% 10% 20%
En→ 26.2 26.1 26.4 26.2 26.2
De→ 30.0 30.2 30.4 30.4 30.1

Table 9: Alignment score filtering ratio and BLEU
scores on WMT14 En-De test set.

NART as shown in Table 8. The results indicate
that the deep encoder assists alignment estimation,
whereas the shallow decoder with aligned inputs
has a lower impact on performance degeneration.

Alignment Score Filtering We investigate the
trade-off between the alignment score filtering ratio
and BLEU score using AligNART (GZ) presented
in Table 9. Samples with low alignment scores are
more likely to contain noise caused by distilled tar-
gets or an alignment tool. We observe that filtering
out of 5% of the samples improves the BLEU score
in both the directions. Surprisingly, increasing the
filtering ratio up to 20% preserves the performance
thanks to the noise filtering capability.

6 Related Work

6.1 Non-iterative NART
After Gu et al. (2018) proposed NAT, non-iterative
NART has been investigated in various directions
to maximize translation speed while maintaining
translation quality. Shao et al. (2019), Shao et al.
(2020), and Ghazvininejad et al. (2020) address the
limitations of conventional cross entropy based ob-
jectives that overly penalize consistent predictions.
Lee et al. (2018), Ma et al. (2019), Shu et al. (2020),
and Lee et al. (2020) introduce latent variables to
model the complex dependencies between target to-
kens. Saharia et al. (2020) and Gu and Kong (2021)
apply CTC loss to the NMT domain. Qian et al.
(2021) provide target tokens to the decoder during
training using the glancing sampling technique.

6.2 Alignment in Parallel Generative Models
In other domains, such as text-to-speech (Ren et al.,
2019; Kim et al., 2020; Donahue et al., 2020), a
common assumption is a monotonicity in the align-
ments between text and speech. Given this assump-
tion, only a duration predictor is required to alle-
viate the length-mismatch problem between text
and speech. On the other hand, modeling the align-
ment in the NMT domain is challenging since the
alignment contains additional ordering and group-
ing information. Our method estimates an arbitrary
alignment matrix using alignment decomposition.

6.3 Improving NMT with Enhanced
Information

To alleviate the multi-modality problem of NART
models, Gu et al. (2018), Akoury et al. (2019),
Zhou et al. (2020b), Ran et al. (2021), and Liu et al.
(2021) provide additional sentence information to
the decoder.

Alignment is considered as a major factor in
machine translation (Li et al., 2007; Zhang et al.,
2017). Alkhouli et al. (2018) decompose the ART
model into alignment and lexical models. Song
et al. (2020) use the predicted alignment in ART
models to constrain vocabulary candidates during
decoding. However, the alignment estimation in
NART is much challenging since the information
of decoding outputs is limited. In NART, Gu et al.
(2018), Zhou et al. (2020b), and Ran et al. (2021)
exploit partial information from the ground truth
alignments. In contrast, we propose the alignment
decomposition method for effective alignment esti-
mation in NART where we leverage the complete
alignment information.

7 Conclusion and Future Work

In this study, we leverage full alignment informa-
tion to directly reduce the degree of the multi-
modality in non-iterative NART and propose an
alignment decomposition method for alignment
estimation. AligNART with GIZA++ shows per-
formance comparable to that of the recent CTC-
based implicit dependency modeling approach on
WMT14 En-De and modality reduction capability.
However, we observe that AligNART depends on
the quality of the ground truth word alignments,
which can be studied in the future work. Further-
more, we can study on the combination of Alig-
NART and implicit dependency modeling meth-
ods.
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Appendix

A Mappings in Alignment

In general, there are one-to-one, one-to-many,
many-to-one, and many-to-many mappings exclud-
ing zero-fertility and spurious word cases (see Fig-
ure 2). Distortion and ReorderNAT cannot rep-
resent many-to-one, many-to-many, and spurious
word cases. The grouping predictor in AligNART
models many-to-one and many-to-many mappings.
The addition of a spurious token, which is applied
to AligNART (FA), enables us to address the spuri-
ous word case, which is explained in Section C.2.
During the experiments, we observe that the intro-
duction of a spurious token degrades the perfor-
mance for GIZA++. We guess the reason of the
degradation is that alignment matrix from GIZA++
contains more than two times as many empty rows
as that of fast align on WMT14 En-De.

B Architecture of Aligner

The duplication predictor and grouping predictor
modules consist of a convolutional layer, ReLU ac-

one-to-one one-to-many spurious word

many-to-one many-to-many zero-fertility

Figure 2: Types of mapping in word alignments. Row
and colum correspond to the target and source tokens,
respectively.

tivation, layer normalization, dropout, and a projec-
tion layer, same as the phoneme duration predictor
in FastSpeech (Ren et al., 2019), which is a parallel
text-to-speech model.

The permutation predictor in Aligner consists
of three encoder layers: pre-network, query/key
network, and single-head attention module for the
outputs. Note that the outputs of the pre-network
are passed to the query and key networks. To pre-
vent the predicted permutation matrix from being
an identity matrix, we apply a gate function to the
last attention module in the permutation predictor
to modulate the probabilities of un-permuted and
permuted cases. We formulate the output of gated
attention as follows:

g = σ(Q · u) (14)

P̄ pred = softmax(M +QKT ) (15)

P pred = Dg + (I −Dg) · P̄ pred, (16)

where σ is the sigmoid function and Q/K is the
output of the query/key network, respectively. g
is the probability of an un-permuted case. M is a
diagonal mask matrix, where the values of the di-
agonal elements are −inf . I is an identical matrix
and Dg is a diagonal matrix with g as the main
diagonal.

C Alignment Processing

C.1 Word-to-subword Alignment
To reduce the complexity of alignment, we further
assume that the alignment process is conducted at
the word-level. We decompose the alignment ma-
trix into the source subword to source word matrix
S and the source word to target subword matrix
Aws as depicted in Figure 3. Since S is always
given, Aws is the only target to be learned. First,

http://proceedings.mlr.press/v119/sun20c.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P17-1140
https://doi.org/10.18653/v1/P17-1140
https://doi.org/10.18653/v1/P17-1140
https://openreview.net/forum?id=BygFVAEKDH
https://openreview.net/forum?id=BygFVAEKDH
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𝑥𝑥2

𝐴𝐴𝑤𝑤𝑤𝑤

𝑆𝑆

×

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5
𝑦𝑦6

𝑥𝑥11 𝑥𝑥21 𝑥𝑥31 𝑥𝑥12 𝑥𝑥22

𝐴𝐴

=

𝐴𝐴𝑤𝑤𝑤𝑤 � 𝑆𝑆

Figure 3: Example of word-to-subword matrix decomposition technique. Row and column correspond to input
and output tokens, respectively. yi denotes the i-th subword of the target sentence. xi denotes the i-th word of the
source sentence and xij denotes the j-th subword of the i-th word of the source sentence.

we derive the source subword to target subword
matrix A using the alignment tool. Aws is achieved
by clipping the maximum value ofA ·S> to 1.Aws

reduces the search space because of the assumption
that source tokens duplicate, permute, and group
at the word-level. However, there is a trade-off be-
tween the simplicity and resolution of information.
The recovered source subword to target subword
matrix Aws ·S loses the subword-level information
as shown in the rightmost matrix in Figure 3.

C.2 Filling Null Rows in Alignment Matrix

The output of the alignment tool usually contains
empty rows which means that no aligned source
token exists for certain target tokens. We select
two strategies to fill the null rows: (i) copy the
alignment from the previous target token, or (ii)
introduce a special spurious token. For the second
strategy, we concatenate a special spurious token
at the end of the source sentence. If the current and
previous target tokens belong to the same word, we
follow (i). The remaining target tokens of the null
alignment are aligned to the spurious token.

C.3 Details of Alignment Tool Configuration

For fast align, we follow the default setting for for-
ward/backward directions and obtain symmetrized
alignment with the grow-diag-final-and option. We
apply the word-to-subword alignment technique
and spurious token strategy for null alignments.
For GIZA++, we apply the word-to-subword align-
ment technique and copy the alignment from the
previous target token for null alignment. We set the
alignment score filtering ratio to 5%.

D Case Study

To analyze various alignments and their transla-
tions during re-scoring decoding, we conduct a

case study on WMT14 De→En validation set as
shown in Figure 4. The two translations have differ-
ent orderings: the telescope’s tasks and the tasks of
the telescope. In this sample, we observe that Alig-
NART (i) can capture non-diagonal alignments,
(ii) models multiple alignments, and (iii) trans-
lates corresponding to the given alignments.
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Source Eine der Aufgaben des Tel_ esk_ ops : Es soll nach Licht von den ersten Ster_ nen und Galax_ ien nach dem Ur_ kn_ all suchen .

Reference One of the tel_ esc_ ope ’s tasks is to search for light from the first stars and galax_ ies that emerged after the Big B_ ang .

Alignments #1 One of the tel_ esc_ ope ’s tasks : it should search for light from the first stars and galax_ ies after the Big B_ ang .

Alignments #2 One of the tasks of the tel_ esc_ ope : it should search for light from the first stars and galax_ ies after the Big B_ ang .

Alignments #1 Alignments #2

Figure 4: Translation and alignment estimation example on WMT14 De→En validation set. Tokens matched to the
alignment matrix have same colors (blue and orange). The special token "_" stands for the subword tokenization.


