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Abstract

Being able to parse code-switched (CS)
utterances, such as Spanish+English or
Hindi+English, is essential to democratize
task-oriented semantic parsing systems for
certain locales. In this work, we focus on
Spanglish (Spanish+English) and release a
dataset, CSTOP, containing 5800 CS utter-
ances alongside their semantic parses. We
examine the CS generalizability of various
Cross-lingual (XL) models and exhibit the
advantage of pre-trained XL language models
when data for only one language is present. As
such, we focus on improving the pre-trained
models for the case when only English corpus
alongside either zero or a few CS training
instances are available. We propose two
data augmentation methods for the zero-shot
and the few-shot settings: fine-tune using
translate-and-align and augment using a gen-
eration model followed by match-and-filter.
Combining the few-shot setting with the above
improvements decreases the initial 30-point
accuracy gap between the zero-shot and the
full-data settings by two thirds.

1 Introduction

Code-switching (CS) is the alternation of languages
within an utterance or a conversation (Poplack,
2004). It occurs under certain linguistic constraints
but can vary from one locale to another (Joshi,
1982). We envision two usages of CS for virtual as-
sistants. First, CS is very common in locales where
there is a heavy influence of a foreign language
(usually English) in the native “substrate” language
(e.g., Hindi or Latin-American Spanish). Sec-
ond, for other native languages, the prevalence of
English-related tech words (e.g., Internet, screen)
or media vocabulary (e.g., movie names) is very
common. While in the second case, a model using
contextual understanding should be able to parse
the utterance, the first form of CS, which is our

focus in this paper, needs Cross-Lingual(XL) capa-
bilities in order to infer the meaning.

There are various challenges for CS seman-
tic parsing. First, collecting CS data is hard be-
cause it needs bilingual annotators. This gets even
worse considering that the number of CS pairs
grows quadratically. Moreover, CS is very dy-
namic and changes significantly by occasion and in
time (Poplack, 2004). As such, we need extensible
solutions that need little or no CS data while having
the more commonly-accessible English data avail-
able. In this paper, we first focus on the zero-shot
setup for which we only use EN data for the same
task domains (we call this in-domain EN data). We
show that by translating the utterances to ES and
aligning the slot values, we can achieve high ac-
curacy on the CS data. Moreover, we show that
having a limited number of CS data alongside aug-
mentation with synthetically generated data can
significantly improve the performance.

Our contributions are as follows: 1) We re-
lease a code-switched task-oriented dialog data set,
CSTOP1, containing 5800 Spanglish utterances and
a corresponding parsing task. To the best of our
knowledge, this is the first Code-switched parsing
dataset of such size that contains utterances for
both training and testing. 2) We evaluate strong
baselines under various resource constraints. 3)
We introduce two data augmentation techniques
that improve the code-switching performance us-
ing monolingual data.

2 Task

In task-oriented dialog, the language understanding
task consists of classifying the intent of an utter-
ance, i.e., sentence classification, alongside tagging
the slots, i.e., sequence labeling. We use the Task-

1The dataset can be downloaded from
https://fb.me/cstop data

https://fb.me/cstop_data
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IN:GET WEATHER

Dime el clima para next Friday

SL:DATE TIME

Figure 1: Example CS sentence and its annotation
for the sequence [IN:GET WEATHER Dime el clima
[SL:DATE TIME para next Friday]]

Oriented Parsing dataset released by Schuster et al.
(2018) as our EN monolingual dataset. We release a
similar dataset, CSTOP, of around 5800 Spanglish
utterances over two domains, Weather and Device,
which are collected and annotated by native Span-
glish speakers. An example from the CSTOP along-
side its annotation is shown in Fig. 1. Note that
the intent and slot lables start with IN : and SL :,
respectively. Our task is to classify the sentence
intent, here IN:GET WEATHER as well as the label
and value of the slots, here SL:DATE TIME corre-
sponding to the span para next Friday. Moreover,
other words are classified as having no label, i.e.,
O class. We discuss the details of this dataset in the
next section.

One of the unique challenges of this task, com-
pared with common NER and language identifi-
cation CS tasks, is the constant evolution of CS
data. Since the task is concerned with spoken lan-
guage, the nature of CS is very dynamic and keeps
evolving from domain to domain and from one
community to another. Furthermore, cross-lingual
data for this task is also very rare. Most of the
existing techniques, either combine monolingual
representations (Winata et al., 2019a) or combine
the datasets to synthesize code-switched data (Liu
et al., 2019). Lack of monolingual data for the
substrate language (very realistic if you replace ES
with a less common language) would make those
techniques inapplicable.

In order to evaluate the model in a task-oriented
dialog setting, we use the exact-match accuracy
(from now on, accuracy) as the primary metric.
This is simply defined as the percentage of utter-
ances for which the full parse, i.e., the intent and
all the slots, have been correctly predicted.

3 CSTOP Dataset

In this section, we provide details of the CSTOP
dataset. We originally collected around 5800 CS
utterances over two domains; Weather and Device.
We picked these two domains as they represent

complementary behavior. While Weather contains
slot-heavy utterances (average 1.6 slots per utter-
ance), Device is an intent-heavy domain with only
average 0.8 slots per utterance. We split the data
into 4077, 1167, and 559 utterances for training,
testing, and validation, respectively.

CS data collection proceeded in the following
steps:

1. One of the authors, who is a native speaker
of Spanish and uses Spanglish on a daily ba-
sis, generated a small set of CS utterances for
Weather and Device domains. Additionally,
we also recruited bilingual EN/ES speakers
who met our Spanglish speaker criteria guide-
lines, established following Escobar and Po-
towski (2015).

2. We wrote Spanglish data creation instructions
and asked participants to produce Spanish-
English CS utterances for each intent (i.e. ask
for the weather, set device brightness, etc).

3. Next, we filter out utterances from this pool
to only retain those that exhibited true intra-
sentential CS.

4. The collected utterances were labeled by two
annotators, who identified the intent and slot
spans. If the two annotators disagreed on the
annotation for an utterance, a third annotator
would resolve the disagreement to provide a
final annotation for it.

Table. 1 shows the number of distinct intents and
slots for each domain and the number of utterances
in CSTOP for each domain. We have also shown
the most 15 common intents in the training set and
a representative Spanglish example alongside its
slot values for those intents in Table. 2. The first
value in a slot tuple is the slot label and the second
is the slot value. We can see that while most of the
verbs and stop words are in Spanish, Nouns and
slot values are mostly in English. We further calcu-
late the prevalence Spanish and English words by
using a vocabulary file of 20k for each language.
Each token in the CSTOP training set is assigned
to the language for which that token has a lower
rank. The ratio of the Spangish to English tokens
is around 1.34 which matches our previous anec-
dotal observation. This ratio was consistent when
increasing the vocabular size to even 40k. .
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Domain intents slots utterances
Weather 2 4 3692
Device 17 6 2112

Table 1: CSTOP Statistics

4 Model

Our base model is a bidirectional LSTM with sepa-
rate projections for the intent and slot tagging (Yao
et al., 2013). We use the aligned word embedding
MUSE (Conneau et al., 2017) with a vocabulary
size of 25k for both EN and ES. Our experiments
showed that for the best XL generalization, it’s best
to freeze the word embeddings when the training
data contains only EN or ES utterances. We refer
to this model as simply MUSE.

We also use SOTA pre-trained XL models;
XLM (Conneau and Lample, 2019) and XLM-
R (Conneau et al., 2019). These models
are pre-trained via Masked Language Modeling
(MLM) (Devlin et al., 2019) on massive multilin-
gual data. They share the word-piece token repre-
sentation, BPE (Sennrich et al., 2016) and Senten-
cePiece (Kudo and Richardson, 2018), as well as a
common MLM transformer for different languages.
Moreover, while XLM is pre-trained on Wikipedia,
XLM-R is trained on crawled web data which con-
tains more non-English and possibly CS data. In
order to adapt these models for the joint intent clas-
sification and slot tagging task, we use the method
described in Chen et al. (2019). For classification,
we add a linear classifier on top of the first hidden
state of the Transformer. A typical slot tagging
model feeds the hidden states, corresponding to
each token, to a CRF layer (Mesnil et al., 2015).
To make this compatible with XLM and XLM-R,
we use the hidden states corresponding to the first
sub-word of every token as the input to the CRF
layer.

Table 3 shows the accuracy of the above models
on CSTOP. We also have listed the performance
when the models were first fine-tuned on the EN
data (CS+EN). We observe that in-domain fine-
tuning can almost halve the gap between XLM-
R and XLM, which is around 50% faster during
the inference than XLM-R during inference. The
training details for all our models and the validation
results are listed in the Appendix.

5 Zero-shot performance

Bottom part of Table 3 shows the CS test accu-
racy when using only the in-domain monolingual
data. Our EN dataset is the task-oriented parsing
dataset (Schuster et al., 2018) described in the pre-
vious section. Since the original TOP dataset did
not include any utterances belonging to the De-
vice domain, we also release a dataset of around
thousand EN Device utterances for the experiments
using the EN data. In order to showcase the effect
of monolingual ES data, we also experiment with
using the in-domain ES dataset, i.e. ES Weather
and Device queries.

We observe that having monolingual data of both
languages yields very high accuracy, only a few
points shy of training directly on the CS data. More-
over, in this setting, even simpler models such as
MUSE can yield competitive results with XLM-R
while being much faster. However, the advantage
of XL pre-training becomes evident when only one
of the languages is present. As such, having only
the substrate language (i.e., ES) is almost the same
as having both languages for XLM-R.

Note that we do not use ES data for other results
in this paper. Obtaining semantic parsing dataset in
another language is expensive and often only EN
data is available. Our experiments show a huge
performance gap when only using the EN data, and
thus in this paper, we will be focusing on using the
EN data alongside zero or a few CS instances.

5.1 Effect of XL Embeddings

Here, we explore how much of the zero-shot per-
formance can be attributed to the XL embeddings
as opposed to the shared XL representation. As
such, we experiment with replacing MUSE embed-
dings with other embeddings in the LSTM model
explained in the previous section. We experiment
with the following strategies:: (1) Random embed-
ding: This learns the ES and EN word embeddings
from the scratch (2) Randomly-initialized Sen-
tencePiece (Kudo and Richardson, 2018) (RSP):
Words are represented by wordpiece tokens that
are learned from a huge unlabeled multilingual
corpus. (3) Pre-trained XLM-R sentence piece
(XLSP). These are the 250k embedding vectors
that are learned during the pre-trainig of XLM-R.

We have shown the effects of using the afore-
mentioned embeddings in the zero-shot setting
in Table 4. We can see that by having monolin-
gual datasets from both languages, even random
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intent utterance slots

GET WEATHER ¿cómo estará el clima en Miami este weekend? (LOCATION, Miami),
(DATE TIME, este weekend)

UNSUPPORTED WEATHER how many centimeters va a llover hoy (DATE TIME, hoy)
OPEN RESOURCE Abreme el gallery (RESOURCE, el gallery)
CLOSE RESOURCE Cierra maps (RESOURCE, maps)
TURN ON Prende el privacy mode (COMPONENT, el privacy mode)
TURN OFF Desactiva el speaker (COMPONENT, el speaker)
WAKE UP Quita sleep mode -
SLEEP prende el modo sleep -
OPEN HOMESCREEN Go to pagina de inicio -
MUTE VOLUME Desactiva el sound -
UNMUTE VOLUME Prende el sound -
SET BRIGHTNESS subir el brigtness al 80 (PERCENT, 80)
INCREASE BRIGHTNESS Ponlo mas bright -
DECREASE BRIGHTNESS baja el brightness -
SET VOLUME Turn the volumen al nivel 10 (PRECISE AMOUNT,10)
INCREASE VOLUME aumenta el volumen a little bit -
DECREASE VOLUME Bájale a la music -

Table 2: Examples from CSTOP intents

Lang/Model MUSE XLM XLM-R
CS 87.0 86.6 94.4
CS + EN 88.1 93.0 95.4
EN 39.2 54.8 66.6
ES 69.9 78.3 88.1
EN+ES 88.2 87.8 91.2

Table 3: Full-training (top) and zero-shot (bottom) ac-
curacy of XL models when using different monolingual
corpora. ES is an internal dataset to showcase the effect
of having a big Spanish corpus.

embeddings can yield high performance. By re-
moving one of the languages, unsurprisingly, the
codeswitching generalizability drops sharply for
all, but much less for XLSP and MUSE. More-
over, even though the XLSP embeddingsm, unlike
MUSE, is not consttrained to only EN and ES,
it yields comparable results with the word-based
MUSE embeddings.

We can also see that When ES data is available,
RSP provides some codeswitching generalizabil-
ity, as compared with the Random strategy, but
not when only EN data is available. We hypoth-
esize that the common sub-word tokens are more
helpful to generalize the slot values (which in the
codeswitched data are mostly in EN) than the non-
slot queries which are more commonly in ES. This
is also verified by the observation that most of the
gains for the RSP vs Random for the ES only sce-
nario come from the slot tagging accuracy as com-
pared with the intent detection.

As a final note, we observe that between 20 −
30% of the XLM-R gains can be captured by using

Random RSP XLSP MUSE
EN 13.5 12.2 30.3 39.2
ES 38.2 48.0 70.5 69.9
EN+ES 81.1 84.3 89.0 88.2

Table 4: Zero-shot accuracy for simple LSTM model
when using different monolingual corpora and different
embedding strategies.

the pre-trained sentence-piece embeddings while
the rest are coming from the shared XL representa-
tion pre-trained on massive unlabeled data. In the
rest of the paper, we focus on the XLM-R model.

6 Data Augmentation Approaches

In this section, we discuss two data augmentation
approaches. The first one is in a zero-shot setting
and only uses EN data to improve the performance
on the Spanglish test set. In the second approach,
we assume having a limited number of Spanglish
data and use the EN data to augment the few-shot
setting.

6.1 Translate and Align
We explore creating synthetic ES data from the EN
dataset using machine translation. Since our task is
a joint intent and slot tagging task, creating a syn-
thetic ES corpus consists of two parts: a) Obtaining
a parallel EN-ES corpus by machine translating
utterances from EN to ES, b) Projecting gold anno-
tations from EN utterances to their ES counterparts
via word alignment (Tiedemann et al., 2014; Lee
et al., 2019b). Once the words in both languages
are aligned, the slot annotations are simply copied
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set volume to 10

ajuste el volumen a 10

SL:AMOUNT

percent

por

SL:UNIT

SL:UNITSL:AMOUNT

ciento

Attention Alignment

set volume to 10

ajuste el volumen a 10

SL:AMOUNT

percent

por

SL:UNIT

SL:UNITSL:AMOUNT

ciento

Fast-align

Figure 2: An example comparison between the two methods of slot label projection. The image in on the left
shows Attention alignment, where every source token gets projected to a single target token. As a result, percent,
in EN is aligned only with ciento in ES. The image on the right shows fast-align, which allow a many-to-many
alignment. Hence percent is correctly aligned with por ciento.

over from EN to ES by word alignment. For word
alignment, we explore two methods that are ex-
plained below. In some cases, word alignment may
produce discontinuous slot tokens in ES, which we
handle by introducing new slots of the same type,
for all discontinuous slot fragments.

Our first method leverages the attention
scores (Bahdanau et al., 2015) obtained from an
existing EN to ES NMT model. We adopt a simpli-
fying assumption that each source word is aligned
to one target language word (Brown et al., 1993).
For every slot token in the source language, we
select the highest attention score to align it with a
word in the target language.

Our next approach to annotation projection
makes use of unsupervised word alignment from
statistical machine translation. Specifically, we use
the fast-align toolkit (Dyer et al., 2013) to obtain
alignments between EN and ES tokens. Since fast-
align generates asymmetric alignments, we gener-
ate two sets of alignments, EN to ES and ES to EN
and symmetrize them using the grow-diagnol-final-
and heuristic (Koehn et al., 2003) to obtain the final
alignments.

In Table 5, we show the CS zero-shot accu-
racy when fine-tuning on the newly generated ES
data (called ES∗.) alongside the original EN data.
We can see that unsupervised alignment results in
around 2.5 absolute point accuracy improvement.
On the other hand, using attention alignment ends
up hurting the accuracy, which is perhaps due to
the slot noise that it introduces. The assumption
that a single source token aligns with a single target
token leads to incorrect data annotations when the
length of a translated slot is different in EN and
ES. Figure 3 shows an example utterance where at-

tention alignment produces an incorrect annotation
compared to unsupervised alignment.

EN EN+ES∗ Attn EN+ES∗ aligned
66.6 65.8 69.2

Table 5: Zero-shot accuracy when fine-tuning XLM-R
on EN monolignual data as well as the auto-translated
and aligned ES data (called ES*).

6.2 Generate by Match-and-Filter in the
Few-shot Setting

Here, we assume having a limited number of high-
quality in-domain CS data and as such, we con-
struct the CSTOP100 dataset of around 100 utter-
ances from the original training set in the CSTOP.
We make sure that every individual slot and intent
(but not necessarily the combination) is presented
in CSTOP100 and randomly sample the rest. We
perform our sampling three times and report the
few-shot results on the average performance. This
setting is of paramount importance for bringing up
a domain in a new locale when the EN data is al-
ready available. The first column in Table 6 shows
the CS Few-Shot (FS) performance alongside the
fine-tuning on the EN data and the aligned trans-
lated data, when average over three sampling of
CSTOP100.

In order to improve the FS performance, we per-
form data augmentation on the CSTOP100 dataset.
Unlike methods such as Pratapa et al. (2018), we
seek generic methods that do not need extra re-
sources such as constituency parsers. Instead, we
explore using pre-trained generative models while
taking advantage of the EN data.

We use BART (Lewis et al., 2019), a denois-
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Model/Training Data Few Shot Few shot+ Generate and Filter augmentation
XLM-R 61.2 70.3
XLM-R fine-tuned on EN 82.6 83.7
XLM-R fine-tuned on EN+ES∗ 84.1 84.8

Table 6: Accuracy when only a few CS instances are available during training, with and without the data augmen-
tation. ES* is the auto-translated and aligned data.

[IN:GET WEATHER
Dime el clima

[SL:DATE TIME
para next Friday]

[IN:GET WEATHER
show me the weather

[SL:DATE TIME
for next Monday ]

[IN:GET WEATHER
Quiero saber el clima

[SL:DATE TIME
para next Monday ]]

[IN:GET WEATHER
Dime el clima esper-
ado [SL:DATE TIME

para next Friday ]]

[IN:GET WEATHER
Dime el pronóstico

[SL:DATE TIME hasta el 15 ]]

Figure 3: Match and Filter data augmentation: 1- For each CS utterance (target), find the the closest EN neighbor
(source). 2- Learn a generative model from source to target 3- Perform beam search to generate more targets from
the source utterances.

ing autoencoder trained on massive amount of web
data, as the generative model. Our goal is to gener-
ate diverse Spanglish data from the EN data. Even
though BART was trained for English, we found
it very effective for this task. We hypothesize this
is due to the abundance of the Spanish text among
EN web data and the proximity of the word-piece
tokens among them. We also experimented with
multilingual BART (Liu et al., 2020a) but found it
very challenging to fine-tune for this task.

First, we convert the data to a bracket for-
mat (Vinyals et al., 2015), which is called the seq-
logical form in Gupta et al. (2018). Examples of
this format are shown in Fig. 3. In the seqlogical
form, we include the intent (i.e., sentence label) at
the beginning and for each slot, we first include the
label and text in brackets.

We perform our data augmentation technique in
the following steps:

1. Find the top K closest EN neighbors to every
CS query in the CSTOP100. We enforce the
neighbors to have the same parse as the CS ut-
terance, i.e., same intent and same slot labels,
and use the Levenshtein distance to rank the
EN sequences.

2. Having this parallel corpus, i.e., top-K EN
neighbors as the source and the original CS
query as the target, Fine-tune the BART

model. We use K=10 in our experiments to
increase the parallel data size to around 650.

3. During the inference, Use the beam size of 5
to decode CS utterances from the same EN
source data. Since both the source and target
sequences are in the seqlogical form, the CS
generated sequences are already annotated.

In Fig. 3, we have shown the closest EN neigh-
bor corresponding to the original CS example in
Fig. 1. The CS utterance can be seen as a rough
translation of the EN sentence. We have also shown
the top three generated CS utterances from the EN
example.

In order to reduces the noise, we filter the
generated sequences that either already exist in
CSTOP100, are not valid trees, or have a semantic
parse different from the original utterance. We aug-
ment CSTOP100 with the data, and fine-tune the
XLM-R baseline.

In the second column of Table 6, we have shown
the average data augmentation improvement over
the three CSTOP100 samples for the few-shot set-
ting. We can see that even after fine-tuning on the
EN monolingual data (the second row), the aug-
mentation technique improves this strong baseline.
In the last row, we first use the translation align-
ment of the previous section to obtain ES∗. After
fine-tuning on this set combined with the EN data,
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we further fine-tune on the CSTOP100. We can
see that the best model enjoys improvements from
both zero-shot (translation alignment) and the few-
shot (generate and filter) augmentation techniques.
We also note that the p-value corresponding to the
second and third row gains are 0.018 and 0.055,
respectively.

7 Related Work

7.1 XL Pre-training

Most of the initial work on pre-trained XL represen-
tations was focused on embedding alignment (Xing
et al., 2015; Zhang et al., 2017; Conneau et al.,
2018). Recent developments in this area have fo-
cused on the context-aware XL alignment of con-
textual representations (Schuster et al., 2019; Al-
darmaki and Diab, 2019; Wang et al., 2019; Cao
et al., 2020). Recently, pre-trained multilingual lan-
guage models such as mBERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019), and Conneau
et al. (2019) have been introduced, and Pires et al.
(2019) demonstrate the effectiveness of these on
sequence labeling tasks.
Separately, Liu et al. (2020a) introduce mBART, a
sequence-to-sequence denoising auto-encoder pre-
trained on monolingual corpora in many languages
using a denoising autoencoder objective (Lewis
et al., 2019).

7.2 Code-Switching

Following the ACL shared tasks, CS is mostly
discussed in the context of word-level lan-
guage identification (Molina et al., 2016) and
NER (Aguilar et al., 2018). Techniques such as
curriculum learning (Choudhury et al., 2017) and
attention over different embeddings (Wang et al.,
2018; Winata et al., 2019a) have been among
the successful techniques. CS parsing and use of
monolingual parses are discussed in Sharma et al.
(2016); Bhat et al. (2017, 2018). Sharma et al.
(2016) introduces a Hinglish test set for a shallow
parsing pipeline. In Bhat et al. (2017), outputs of
two monolingual dependency parsers are combined
to achieve a CS parse. Bhat et al. (2018) extends
this test set by including training data and transfers
the knowledge from monolingual treebanks.
Duong et al. (2017) introduced a CS test set for
semantic parsing which is curated by combining
utterances from the two monolingual datasets. In
contrast, CSTOP is procured independently of
the monolingual data and exhibits much more

linguistic diversity. In Pratapa et al. (2018),
linguistic rules are used to generate CS data which
has been shown to be effective in reducing the
perplexity of a CS language model. In contrast,
our augmentation techniques are generic and do
not require rules or constituency parsers.

7.3 XL Data Augmentation

Most approaches to cross-lingual data augmenta-
tion use machine translation and slot projection for
sequence labeling tasks (Jain et al., 2019). Wei
and Zou (2019) uses simple operations such as syn-
onym replacement and Lee et al. (2019a) use phrase
replacement from a parallel corpus to augment the
training data. Singh et al. (2019) present XLDA
that augments data by replacing segments of input
text with its translations in other languages. Some
recent approaches (Chang et al., 2019; Winata
et al., 2019b) also train generative models to ar-
tificially generate CS data. More recently, Ku-
mar et al. (2020) study data augmentation using
pre-trained transformer models by incorporating
label information during fine-tuning. Concurrent
to our work, Bari et al. (2020) introduce Multimix,
where data augmentation from pre-trained multi-
lingual language models and self-learning are used
for semi-supervised learning. Recently, Liu et al.
(2019) generate CS data by translating keywords
picked based on attention scores from a monolin-
gual model. Generating CS data has recently been
studied in Liu et al. (2020b)

7.4 Task-oriented Dialog

The intent/slot framework is the most common way
of performing language understanding for task ori-
ented dialog using. Bidirectional LSTM for the
sentence representation alongside separate projec-
tion layers for intent and slot tagging is the typical
architecture for the joint task (Yao et al., 2013; Mes-
nil et al., 2015; Hakkani-Tur et al., 2016). Such
representations can accommodate trees of up to
length two, as is the case in CSTOP. More recently,
an extension of this framework has been introduced
to fit the deeper trees (Gupta et al., 2018; Rongali
et al., 2020).

8 Conclusion

In this paper, we propose a new task for code-
switched semantic parsing and release a dataset,
CSTOP, containing 5800 Spanglish utterances over
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two domains. We hope this foments further re-
search on the code-switching phenomenon which
has been set back by paucity of sizeable curated
datasets. We show that cross-lingual pre-trained
models can generalize better than traditional mod-
els to the code-switched setting when monolingual
data from only one languages is available. In the
presence of only EN data, we introduce generic
augmentation techniques based on translation and
generation. As such, we show that translating and
aligning the EN data can significantly improve
the zero-shot performance. Moreover, generating
code-switched data using a generation model and a
match-and-filter approach leads to improvements in
a few-shot setting. We leave exploring and combin-
ing other augmentation techniques to future work.
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E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 7059–
7069. Curran Associates, Inc.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
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A Appendix

Here, we describe the details regarding the training
as the validation results.

A.1 Model and Training Parameters
In Table 7, we have shown the training details
for all our models. We use ADAM (Kingma and
Ba, 2014) with Learning Rate (LR), Weight Decay
(WD), and Batch Size (BSz) that is listed for each
model. We have also shown the number of epochs
and the average training time for the full CS data
using 8 V100 Nvidia GPUs. For all our XLM-R
experiments, we use the XLM-R large from the
PyText2 (Aly et al., 2018) which is pre-trained on
100 languages. For the XLM experiments, we use
XLM-20 pre-trained over 20 languages and use the
same fine-tuning parameters as XLM-R but run for
more epochs.

For the LSTM models, we use a two-layer
LSTM with hidden dimension of 256 and dropout
of 0.3 for all connections. We use one layer of
MLP of dimension 200 for both the slot tagging
and the intent classification. We also use an ensem-
ble of five models for all the LSTM experiments
to reduce the variance. The LSTM model with
SentencePiece embeddings in Table 4 were trained
with embedding dimension of 1024 similar to the
XLM-R model.

A.2 Validation Results
In Table. 9, we have shown the validation results
when using the full CS training data. We have not
shown the corresponding results for the zero-shot
experiments as no validation data was not used and
the monolingual models were tested off the shelf.

In Table. 8, we have shown the validation results
for the few-shot setting.

2https://pytext.readthedocs.io/en/
master/xlm_r.html

https://pytext.readthedocs.io/en/master/xlm_r.html
https://pytext.readthedocs.io/en/master/xlm_r.html
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Model BSz LR WD Epoch Avg Time
XLM-R (pronoun) 8 0.000005 0.0001 15 5 hr
XLM (pronoun) 8 0.000005 0.0001 20 1 hr
LSTM (pronoun+question) 64 0.03 0.00001 45 45 min

Table 7: Training Parameters

Model/Training Data Few shot Few shot + Generate and Filter Augmentation
XLM-R 61.7 70.4
XLM-R fine-tuned on EN 83.3 83.9
XLM-R fine-tuned on EN+ES∗ 83.5 84.9

Table 8: Validation Accuracy when only a few CS instances (FS) are available during training. FS+G refers to
augmenting the few-shot instances with generated CS data. ES* is the auto-translated and aligned data.

Lang/Model MUSE XLM XLM-R
CS 87.8 90.7 95.0
CS + EN 89.0 92.9 95.5

Table 9: Validation results for the Full-training on the CS data


