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Abstract

Identifying named entities in written text is
an essential component of the text processing
pipeline used in applications such as text ed-
itors to gain a better understanding of the se-
mantics of the text. However, the typical ex-
perimental setup for evaluating Named Entity
Recognition (NER) systems is not directly ap-
plicable to systems that process text in real
time as the text is being typed. Evaluation
is performed on a sentence level assuming
the end-user is willing to wait until the en-
tire sentence is typed for entities to be iden-
tified and further linked to identifiers or co-
referenced. We introduce a novel experimental
setup for NER systems for applications where
decisions about named entity boundaries need
to be performed in an online fashion. We study
how state-of-the-art methods perform under
this setup in multiple languages and propose
adaptations to these models to suit this new ex-
perimental setup. Experimental results show
that the best systems that are evaluated on each
token after its typed, reach performance within
1–5 F1 points of systems that are evaluated at
the end of the sentence. These show that entity
recognition can be performed in this setup and
open up the development of other NLP tools in
a similar setup.

1 Introduction

Automatically identifying named entities such as
organizations, people and locations is a key com-
ponent in processing written text as it aids with
understanding the semantics of the text. Named
entity recognition is used as a pre-processing step
to subsequent tasks such as linking named entities
to concepts in a knowledge graph, identifying the
salience of an entity to the text, identifying coref-
erential mentions, computing sentiment towards
an entity, in question answering or for extracting
relations.

Figure 1: An example of the proposed task and evalua-
tion setup. After the word ‘Foreign’ is typed, the model
immediately predicts an NER label for this word, only
using left context (‘A spokesman for’) and the word it-
self. The prediction is then compared against the gold
label to compute token-level F1 score. This token’s pre-
diction will not be changed, even if the model’s internal
prediction for it can be revised later as more tokens are
typed.

Identifying named entities as they are typed bene-
fits any system that processes text on the fly. Exam-
ples of such applications include: a) News editors –
where named entities can be highlighted, suggested
(auto-completion), co-referenced or linked as the
editor is typing; b) auto-correct – where named
entities that are just typed are less likely to need
correction as they may come from a different lan-
guage or be out-of-vocabulary (OOV); c) simulta-
neous machine translation – where translation of
OOV named entities requires different approaches;
d) live speech-to-text (e.g., TV shows) – where
named entities are more likely to be OOV, hence
the transcription should focus more on the pho-
netic transcription rather than on n-gram language
modelling.

This paper introduces a novel experimental setup
of Named Entity Recognition systems illustrated
in Figure 1. In this setup, inference about the span
and type of named entities is performed for each
token, immediately after it was typed. The sentence
level tag sequence is composed through appending
all individual token predictions as they were made.
The current named entity recognition systems that
are trained and evaluated to predict full sentences
are likely to under-perform in this experimental
setup as they: expect that right context is available,
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are faced with unseen types of inputs in the form
of truncated sentences and can not reconcile the
final sentence-level tag sequence across the entire
sentence as the result may not be a valid sequence.

The goal of this study is to present a comprehen-
sive analysis of the task of NER in the as-you-type
scenario, with the following contributions:
a) A novel experimental setup for conducting

named entity recognition experiments, denoted
as the as-you-type scenario;

b) Experiments with state-of-the-art sentence-level
approaches to named entity recognition in the
as-you-type setup across three languages, which
indicate a 1–5 F1 points decrease compared to
sentence-level inference;

c) Tailored methods for as-you-type entity recog-
nition models which reduce the gap to entire
sentence-level inference by 9–23% compared to
regular approaches;

d) An extensive analysis of existing data sets in
the context of this task and model error analysis,
which highlight future modelling opportunities.

2 Related Work

Named Entity Recognition is most commonly
treated as a sequence labelling problem, where
a prediction of whether a token is an entity and
its type is done jointly for all tokens in the sen-
tence. Over the past recent years, the dominant ap-
proach is based on recurrent neural networks, such
as LSTMs (Hochreiter and Schmidhuber, 1997).
These architectures use a stacked bi-directional
LSTM units to transform the word-level features
into distributions over named entity tags (Huang
et al., 2015). Usually, an additional Conditional
Random Field (CRF) (Lafferty et al., 2001) is used
on the BiLSTM output in order to take into better
model neighbouring tags. The tokens inputs are
represented using one or a concatenation of pre-
trained static word embeddings such as GloVe (Ma
and Hovy, 2016), contextual word embeddings (Pe-
ters et al., 2018; Akbik et al., 2018; Devlin et al.,
2019), pooled contextual word embeddings (Akbik
et al., 2019b) or character embeddings trained us-
ing BiLSTMs (Lample et al., 2016) or CNNs (Ma
and Hovy, 2016; Chiu and Nichols, 2016).

In addition to research on improving the perfor-
mance of the NER model, other experimental se-
tups have been proposed for this task. These in-
clude domain adaptation, where a model trained
on data from a source domain is used to tag data

from a different target domain (Guo et al., 2009;
Greenberg et al., 2018; Wang et al., 2020), tem-
poral drift, where a model is tested on data from
future time intervals (Derczynski et al., 2016; Ri-
jhwani and Preotiuc-Pietro, 2020), cross-lingual
modelling where models trained in one language
are adapted to other languages (Tsai et al., 2016;
Ni et al., 2017; Xie et al., 2018), identifying nested
entities (Alex et al., 2007; Lu and Roth, 2015) or
high-precision NER models (Arora et al., 2019).

However, all these experimental setups assume
that training is done over full length sentences. Per-
haps the most related experimental setup to the
one we propose for the task of entity recognition
is the task of simultaneous machine translation.
In this setup, the task is to generate an automatic
translation in a target language as the text is being
processed in the source language. The goal of the
task is to produce a translation that is as accurate
as possible while limiting the delay as compared to
the input. Initial approaches involved identifying
translatable segments and translating these indepen-
dently (Fügen et al., 2007; Bangalore et al., 2012;
Fujita et al., 2013) or by learning where to segment
in order to optimize the system’s performance (Oda
et al., 2014). More recent approaches involve learn-
ing training an agent, usually using reinforcement
learning, that makes a set of decisions of whether
to should wait for another word from the input or
write a token to the output (Gu et al., 2017). Other
operations are shown to help, including predict-
ing the verb (Grissom II et al., 2014) or the next
word (Alinejad et al., 2018), better decoding with
partial information (Cho and Esipova, 2016), and
connecting the machine translation system to the
agent’s decisions (Gu et al., 2017).

Our experimental setup is different as we do not
want to wait for another input token before we
make a prediction about the named entity. We ana-
lyze the impact a delay has, albeit our experimental
setup does not aim to combine quality and delay.
The challenges are related, as the input may contain
important cues for the translation or named entity
decision after the current token or towards the end
of the sentence, such as the verb in verb-final (SOV)
languages such as German (Grissom II et al., 2014).
The proposed as-you-type NER model can be use-
ful to improve simultaneous machine translation.
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3 Experimental Setup

We propose a new experimental setup for the stan-
dard task of Named Entity Recognition that would
best suit real-time applications that need to process
text in an online fashion.

In the regular NER experimental setup, a model
is presented with a sequence of inputs X =
{x1, x2, ..., xn} and it outputs a sequence of la-
bels Y = {y1, y2, ..., yn} where yi ∈ K =
{O}+ E × T , where E are the set of entity types
and T is the entity tag representation. Through-
out the rest of the paper, we use the BIO tagging
scheme (T = {B, I}), as this is arguably the most
popular and differences in results between this
tagging scheme and others, such as the BILOU
scheme, are very small in practice (Ratinov and
Roth, 2009). The types of entities we consider are
E = {ORG,PER,LOC,MISC}.

The as-you-type named entity recognition setup
assumes that the editor writing the text X =
{x1, x2, ..., xn} needs each label prediction yi right
after the corresponding token xi was typed. In this
case, the information available for predicting yi
is only the sub-sequence X1,i = {x1, x2, ..., xi}.
The sequence Y = {y1, y2, ..., yn} is obtained by
concatenating the individual yi predictions made
for each token. Token-level micro F1 score is used
as the metric in our experiments. The evaluation
process is illustrated in Figure 1.

This setup presents the model with several chal-
lenges. First, the model has no access to right
context when making the prediction for each tag.
However, this information is available in training.
Secondly, the output sequence may contain invalid
sequences of tags. For example, in the output se-
quence, B-ORG could be followed by I-LOC if
the model decided to revise its predictions based
on new information, but the evaluation setup pre-
vents the model from revising the previous wrongly
predicted tag (i.e. B-ORG). Lastly, sequences and
sentences of the same length are likely to be quali-
tatively different and the model might need to adapt
in training in order to account for these differences.

We note that this experimental setup can further
be extended to account for delays in prediction, to
trade-off between delays and quality or to predict
entities before they are typed.

4 Data

We test our methods on three different data sets
covering three different languages. We use the

data sets released as part of CoNLL shared tasks
in 2002 for Spanish (Tjong Kim Sang, 2002)1 and
in 2003 for English and German (Tjong Kim Sang
and De Meulder, 2003).2 The data sets contain
four types of named entities: persons, locations,
organizations and names of miscellaneous entities
that do not belong to the previous three types. We
use the standard train, dev and test splits defined
for these data sets.

We chose these data sets as they are arguably
the most popular data sets for performing named
entity recognition and are regularly used as bench-
marks for this task. We use the data sets in different
languages in order to compare the impact of the
language on the experimental results, identify if the
commonalities and peculiarities for performing as-
you-type entity recognition in different languages
and draw more robust conclusions regarding our
task setup.

4.1 Data Analysis

We perform a quantitative analysis of the data sets
in order to develop some intuitions about the data in
the context of the as-you-type experimental setup.
Sentence Length and Tag Distribution First, we
study the distribution of sentence lengths. Figure 2
shows that for English, most sentences are very
short (under 10 tokens) and the most frequent sen-
tence length is two. These are expected to pose
problems in the as-you-type scenario, as the context
is limited. German sentences are slightly longer,
while the Spanish sentences are longest, except for
a spike of sentences of length one.

Figure 3 shows the distribution of entity types
in sentences of varying lengths for English. For
clarity, we remove MISC tags from this plot as
these are infrequent. We observe there are major
differences in tag distributions, especially shorter
sentences (<5 tokens) containing both more entity
tags as well as different tag distributions. For ex-
ample, almost 30% of locations (B-LOC or I-LOC)
are in sentences of length two, which are the most
frequent in the English data, while in longer sen-
tences, these are around 5%. Organizations are
most frequent in sentences of length between 4
and 7 tokens, while persons are most frequent in
sentences longer than 7 tokens.
Token Position and Tag Distribution To further
investigate the positional bias of different tags, Fig-

1https://www.clips.uantwerpen.be/conll2002/ner/
2https://www.clips.uantwerpen.be/conll2003/ner/
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Figure 2: Distribution of sentence lengths.

Figure 3: Distribution of entity types in terms of sen-
tence length in the English CoNLL data set.

Figure 4: Distribution of entity types at each token po-
sition in the English CoNLL data set. B and I tags are
merged for the same entity types and removed MISC
tags as infrequent for clarity. O tag frequency can be
inferred from the rest.

ure 4 shows the distribution of tags in the k-th
token of the sentence. We observe that the first
tokens of a sentence are much more likely to con-
tain entities. The first position is most likely to be
an ORG, with PER being the most frequent in the
second to fourth positions, followed by LOC being
the most prevalent for the next position, with PER
again most frequent in further positions. These ob-
servations are likely to complicate the as-you-type
inference for named entities, as a higher proportion
of tokens will have to be inferred with no or little
right context. Comparing Figures 3 and 4 shows
that the model will be faced with different tag distri-
butions when inferring the tag for the k-th token in
a truncated sentence then to what it has observed in
sentences of length k, which provides an intuition
for our modelling strategies.

5 Methods

This section describes the methods used to per-
form named entity recognition in the as-you-type
scenario. We use a base neural architecture that
achieves state-of-the-art performance on the stan-
dard sentence-level NER task. We study its per-
formance and observe the impact of different vari-
ants of the architecture in the as-you-type scenario.
Following, we propose changes to the model to
adapt to the as-you-type setup. We use the Flair
package to conduct our experiments (Akbik et al.,
2019a).3 Implementation details and hyperparam-
eter choices for all models are listed in the Ap-
pendix.

5.1 Base Architecture

We adopt the BiLSTM-CRF model proposed
in (Huang et al., 2015) with the addition of char-
acter representation (Lample et al., 2016; Ma and
Hovy, 2016). In this architecture, the word repre-
sentations are fed into a bi-directional LSTM, and
then the concatenated forward and backward vec-
tors are passed through one layer of feed-forward
neural network to produce a |K| dimensional out-
put for each word, where each value represents a
score associated with each label. Finally, a Con-
ditional Random Field (CRF) layer is applied to
make a global decision for the entire sentence. This
has the role of reconciling the independent predic-
tions and modeling the constraints in the output
space (e.g. I-PER can not follow B-ORG).

5.2 Architecture Variants

We start with studying different variants of the base
neural architecture for the as-you-type scenario.
The key challenge in the as-you-type setting is that
the model is not presented with the future or right
context (words after the current word) at test time.
A natural idea is to remove information from this
context during training as well. The variants we
consider are based on changing the following three
modeling components
Embeddings We first study the impact of different
ways in which input tokens are represented. Pre-
trained word embeddings obtained state-of-the-art
performance on the NER task when they were intro-
duced (Lample et al., 2016). These representations
are used to initialize the word embeddings, are then
fine-tuned on the training data and are concatenated

3https://github.com/zalandoresearch/
flair

https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
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with a character-level representation of the word
obtained using BiLSTMs initialized with random
character embeddings.

Contextual word embeddings extend this con-
cept to obtain different word representations for
the same token in based on its context. In the stan-
dard sentence-level evaluation, contextual word
embeddings were shown to obtain 2–3 F1 points
improvement on the English CoNLL data set (Pe-
ters et al., 2018; Akbik et al., 2018; Devlin et al.,
2019). Without right context, the quality of word
representations could be more crucial than in the
standard setting. In this study, we test the perfor-
mance of using classic embeddings – GloVe em-
beddings for English (Pennington et al., 2014) and
FastText embeddings (Bojanowski et al., 2017) for
German and Spanish as well as the character based
contextual Flair embeddings, which achieve state-
of-the-art performance on the English and German
CoNLL data sets (Akbik et al., 2018). We also
experimented with contextual ELMO embeddings
(Peters et al., 2018) which showed slightly lower
performance when compared to the Flair embed-
dings and hence only Flair numbers are reported
due to space limitations.

However, contextual embeddings are trained with
right context available. We experiment with remov-
ing this dependency from the trained embeddings
and observe if this improves the performance in the
as-you-type setting, as the test scenario is more sim-
ilar to the training one. We note that right context
is never observed in inference beyond the current
token such that there is no leakage of information.

BiLSTM Bidirectional LSTM stacks two recurrent
neural networks: one starts from the beginning of
the sentence, and another starts from the end of
the sentence. This performs better than the uni-
directional variant on sentence-level experiments
and shows that both types of context (left and right)
are important for identifying and typing entity men-
tions. In the as-you-type setting, we compare uni-
directional LSTM modelling left context with the
bidirectional LSTM model that models both types
of contexts in training.

Conditional Random Field The CRF assigns la-
bels for words in a sentence jointly, ensuring label
assignments are coherent. When running inference
in the as-you-type setting, the model often sees
truncated sentences which, as shown in Section 4
may have different label distributions. This dis-
crepancy between training and test sequences may

Figure 5: Architecture diagram highlighting the pro-
posed feature weighting method described in Section
5.3.3

degrade the usefulness of the CRF. We experiment
to see if and how the CRF is useful in the as-you-
type scenario.

5.3 Model Adaptations for the As-you-type
Setup

The as-you-type experimental setup presents the
model with a new type of evaluation, which does
not correspond to the one used in training. We thus
propose the following approaches to bridge the gap
between the setup and how the model is trained.

5.3.1 Weighted Loss

The model only observes the partial backward con-
text for the tokens in the sequence during the as-
you-type inference. In training, since the model
has access to the entire sequence, it is likely that
the model becomes too dependent on the presence
and reliability of the backward features, especially
for predicting the initial tokens.

In order to bias the model to be more robust to
the absence or unreliable backward context, we de-
sign a new loss function that combines the original
BiLSTM-CRF loss with the loss from the unidi-
rectional LSTM features. From the latter loss, we
also remove the influence of CRF as it also captures
signal from the right context and, for contextual em-
beddings, remove the backward embeddings from
the input to the LSTM. The resulting loss is:

Lweighted = LBiLSTM-CRF + w ∗ LLSTM-NoCRF

where w is a weight treated as a hyper-parameter
in our experiments.
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5.3.2 Final Token Representation
The final token in a training sequence is treated in
a special way in the base model. First, a stop tag is
regularly used to capture the information associated
with a the last token in the sequence. Secondly, the
backward features for the final token in a sequence
are not observed, as there is no right context, so
these are initialized with a random vector. While
both are useful in the regular setup as it captures
a consistent pattern the final words follow, this
does not hold for the as-you-type setup, where each
token in a sequence will be the final token for its
prediction, as partial sequences are observed.

We thus assume these choices add noise in our
setup, thus we both remove the stop tag together
with any transition scores to it during training and
evaluation and remove the backward feature of the
last token and initialize it with a zero vector.

5.3.3 Feature Weighting
The previous approach relied on the intuition of
learning the trade-off between forward and back-
ward features in order to better adapt to the infer-
ence setup. However, this trade-off is likely im-
pacted by the position of the token in the sequence.

Thus, we explore a technique similar to (Moon
et al., 2018) that allows the model to learn the im-
portance of backward features based on the position
of tokens. The is illustrated in Figure 5. We imple-
ment this using position based attention weights.
We apply these weights before combining the for-
ward and backward features (instead of concatenat-
ing) from the LSTMs as follows:

ht = hft + at ∗ hbt
where t is the position of the token, hft and hbt are
forward and backward LSTM features at t, ht is
the new output feature at t and at is the attention
weight for the backward features at position t. The
attention weights at are computed as follows:

ut = [hft ;h
b
t ; pt]; at = σ(W.ut + b)

At every position t, the feature vector is calculated
by concatenating the forward, backward and the po-
sitional embedding for that token. Attention weight
at is calculated by applying attention weight matrix
W followed by the sigma activation. We do not
apply at for forward features since they are always
complete and reliable even for partial sentences.

We follow the structure of positional embeddings
introduced in (Vaswani et al., 2017) and defined as:

p2it = sin(
t

100002i/d
); p2i+1

t = cos(
t

100002i/d
)

where d is the size of positional embedding, i is
the dimension and t is the position. The values
in a positional embedding are sin and cosine func-
tions whose period is 100002i/d ∗ 2π. Positional
sinusoidal embedding allows to encode longer se-
quences that are not present in training.

Since the right hand side context decreases as we
move from left to right of a sequence in training, we
would like our attention weights to consider how
far a token lies from the final token in a sequence.
To achieve this, we calculate position index of to-
kens from the end of the sentence which makes
sure that a token lying at the final position always
receives an index of 0, producing the same posi-
tional embedding and the input to attention weights
does not fluctuate from one sequence to another.

5.3.4 Embedding Weighting
We perform a similar operation using attention at
the embedding stage to trade-off between backward
and forward contextual token representations. The
input embeddings are calculated as follows:

xt = ewt + eft + aet ∗ ebt
vt = [ewt ; e

f
t ; e

b
t ; pt]; a

e
t = σ(We.vt + be)

where ew are the classical word embeddings and ef ,
eb are Flair forward and backward embeddings. An
architecture diagram is presented in the Appendix.

6 Results

We present the experimental results of the various
NER models in the as-you-type setup, contrasting
them with the regular sentence-level setup. All
models are trained using the standard splits for the
CoNLL data sets. The evaluation metric is token-
level micro F1, as this is reflective of our evaluation
setup where each token is evaluated separately.

The top section of Table 1 shows the results of
the different variants of the base architecture in
Section 5.2. The overall performance drop in the
as-you-type setup compared to the sentence-level
setup ranges from 4.80 F1 for English to only 1.53
F1 for Spanish when comparing the best perform-
ing models. This is expected, as the as-you-type
scenario is more challenging, especially for English
where our data analysis from Section 4.1 showed
that tokens are more prevalent in short sentences
which are overall more frequent. For Spanish,
where the performance difference is smallest, is
where we have on average the longest sentences
and in which left context alone is in most cases
enough to make the correct inference.
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English German Spanish

Embedding LSTM CRF As-you-type Sentence As-you-type Sentence As-you-type Sentence

Classic

� 3 83.27 90.97 72.20 78.67 67.56 80.40
→ 3 85.12 88.99 70.54 77.21 64.84 80.28
� 7 79.06 86.87 73.49 77.89 74.61 80.74
→ 7 83.75 83.27 75.73 75.73 77.30 77.30

Flair (�)

� 3 84.15 92.75 79.79 84.32 81.80 89.43
→ 3 84.82 91.63 79.98 84.11 82.23 88.82
� 7 84.50 92.23 79.84 83.73 85.37 88.80
→ 7 85.87 90.73 80.50 82.74 85.32 89.06

Flair (→)

� 3 85.60 92.19 79.21 82.94 81.61 88.76
→ 3 86.92 90.36 78.34 81.99 82.60 88.21
� 7 85.13 91.76 79.30 81.88 86.79 88.83
→ 7 87.95 87.95 80.79 80.79 87.90 87.90

Adaptations for the as-you-type setup

Flair (�)

� Weighted Loss 87.77 92.46 80.39 83.71 84.13 89.48
+ Final Token Rep 88.00 92.40 80.59 83.71 87.23 89.48
+ Feature weighting 88.21 92.24 80.61 84.16 87.38 89.23
+ Embedding weighting 88.40 92.29 81.62 84.77 87.72 89.79

Table 1: Evaluation results of LSTM-based NER models in the as-you-type and sentence-level evaluation setups as
measured using token-level micro F1. Arrows indicate if uni- (→) or bi-directional (�) training is used. Models
with the best results across their setup are in bold. Best results within the class of methods are underlined. For
classic word embeddings, we use GloVe for English, and FastText for German and Spanish. Results are averaged
across three runs.

We note that in all three data sets, the best results
in the as-you-type setting are obtained by match-
ing the training setup to that of testing by only
keeping a uni-directional LSTM that processes the
text left to right and Flair embeddings only trained
using left context. Flair embeddings trained only
using left context are in all cases better than the bi-
directional ones, which is natural as those embed-
dings would conflate information that is not avail-
able in inference. Uni-directional LSTMs perform
overall better than bi-directional LSTMs by an av-
erage of a few percentage points as bi-directional
LSTMs are likely learning information that will not
be available in testing.

Adding the CRF hurts performance in all except
one case when holding everything else constant,
sometimes by wide margins (e.g. 5.3 F1 drop on
Spanish with Flair forward embeddings and uni-
directional LSTM). We attribute this to the mis-
match between the structure of the sequences in
the training data containing only full sentences,
when compared to truncated sentences which can
be observed by comparing Figures 3 to Figures 4.

The bottom section of Table 1 shows the results of
our as-you-type adaptation strategies. All proposed
methods are added on top of each other in order
to study their individual contributions. For brevity,
we only present the results of using Flair forward
and backward embeddings as these performed best.

The changes to the last token representation
and weighted loss improves on the regular bi-
directional LSTM model by a substantial margin,
adding between 0.45 for Spanish up to 4.25 F1
on English on the as-you type setup performance.
We also notice that the sentence-level evaluation
is near to the regular model performance (-0.39
for German to +0.05 for Spanish), showing that the
weighted loss is able to achieve a good compromise
between the representations.

Adding the feature weighting based on position
marginally improves performance, between 0.02 on
German to 0.21 on English. However, the weight-
ing through attention is more effective at the em-
bedding level improving on the previous model by
between 0.19 F1 on English to 1.01 F1 on German.
Overall, our as-you-type adaptation methods im-
prove on the best variation of the base architecture
on English (+0.45 F1) and German (+0.83 F1). The
model is competitive on Spanish (-0.12 F1) to the
Flair forward unidirectional LSTM with no CRF,
albeit this is likely driven by the very long aver-
age sentence length in the Spanish data set (see
Figure 2). Overall, the improvements represent be-
tween 9.3% - 23% error reduction when comparing
to the best as-you-type and sentence level setups.

We highlight that an additional benefit of the
proposed adaptation methods is that the model re-
tains high performance on the sentence-level setup,
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in contrast with the Flair forward uni-directional
LSTM, which performs between 1.89 (Spanish)
and 4.34 (English) worse on the sentence-level.

Finally, the results of our proposed model are ac-
tually marginally better than the state-of-the-art ap-
proach of BiLSTM+CRF using Flair embeddings
on German (+0.45 F1) and Spanish (+0.73 F1),
albeit this was not the original goal of our addi-
tions. This highlights that the proposed modelling
ideas are more generally beneficial as they push the
model to learn more robust representations.

7 Error Analysis

Finally, we perform error analysis to identify the
limitations of our approaches.

7.1 Confusion Matrix

We first study prediction difference between as-
you-type and sentence-level setup. Figure 6 shows
the confusion matrix on the English data set. Both
models are BiLSTM-CRF with Flair embeddings,
but the as-you-type model is trained with the best
setting from Table 1. We can see that most confu-
sions are between LOC and ORG: 7.9% of I-ORG
tokens in the full-sentence setting are classified
as I-LOC in the as-you-type setting, and 7.6% of
B-ORG tokens are classified as B-LOC. Without
right context, it is very challenging to distinguish
these two types. For example, the data set con-
tains many sport teams that contain location name
tokens. Another noticeable difference is that the
as-you-type model makes more O predictions. For
instance, 5.8% of B-MISC are classified as O. This
can be due to the limited availability of cues for
identifying entities when right context is missing.

7.2 Positional Prediction

We expect that the size of the context impacts the
quality of the inference more acutely in the as-you-
type scenario when compared to the sentence-level
setup. Figure 7 plots the predictive performance of
three English models across each token’s position.
This confirms our intuition that the as-you-type
setup especially impacts prediction on the first to-
kens in a sentence, which are more entity rich as
shown in Section 4.1. However, we see that there
is still a difference compared to the standard NER
setup (blue curve) across all positions, confirming
that indeed the right context can add more infor-
mation regardless of the position of the token. The
plot also highlights the performance gains of our

Figure 6: Confusion matrix of tag type prediction
when comparing the best as-you-type and sentence-
level models.

Figure 7: F1 scores at various token positions averaged
across all the sentences in the English data set. The
overall performance of each model is listed in the leg-
end.

adaptation methods at the first tokens when com-
pared with the BiLSTM-CRF model evaluated in
the as-you-type setting (orange curve).

7.3 Delayed Entity Prediction

Based on the previous results and examples, we
want to study the impact of delaying the entity
decision by one token. This would account for
cases where the first entity word is ambiguous and
also reduce the number of invalid sequences that
can be produced by the as-you-type inference. For
example, in the case of the ‘Zimbabwe Open’ en-
tity, if the model predicted the tag of the token
‘Zimbabwe’ as B-LOC and after seeing the next
token (‘Open’), it revises this token’s prediction
as I-MISC, it is unable to change the B-LOC tag-
ging, thus creating an invalid sequence, but still
obtains partial credit on the token F1 score. De-
laying the decision of the first token could have
allowed the model to correct its decision for the
first token (‘Zimbabwe’) to B-MISC, resulting in a
valid and more accurate sequence.

We study the possibility of delaying the predic-
tion of a single token (not multiple tokens) by using
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English German Spanish

Thr. Tok% F1 Tok% F1 Tok% F1

0 0% 88.4 0% 81.62 0% 87.72
0.6 0.77% 89.18 0.97% 82.65 0.66% 88.20
0.7 1.28% 89.56 1.65% 83.09 1.15% 88.47
0.8 2.17% 90.05 2.43% 83.74 1.80% 88.66
0.9 3.25% 90.53 3.61% 84.01 2.80% 88.64
1.0 100% 91.20 100% 84.22 100% 88.91

Full sentence 92.75 84.32 89.43

Table 2: Results of the proposed wait-one policy. If
the probability of prediction is less than or equal to the
given threshold (Thr. column), we wait for one more
token and predict again. The column Tok% indicates
percentage of tokens which have a delayed prediction.
The best performing model in the as-you-type setup is
used. The performance of the best full-sentence model
is listed in the last row for comparison purposes.

a threshold on the tag output. Table 2 shows the
results of several threshold values and their impact
on the total F1.

We observe that if we delay prediction by one
token for all tokens (Thr = 1.0), the performance is
very close to the best full-sentence model, obtain-
ing an error reduction rate of 64% (1.55 compared
to 4.35) for English. Moreover, we can obtain a
50% reduction rate by only delaying the decision
on 3.25% of the tokens if the downstream applica-
tion deems this acceptable. These results highlight
the importance of the immediate right context.

8 Untyped Entity Detection

Named entity recognition combines two different
components: entity detection – identifying the
named entity spans – and typing – identifying en-
tity types. We study the impact of typing in the as-
you-type setup by removing the typing information
from the output labels (E = {ENT}), thus reduc-
ing the output space to K = {B-ENT, I-ENT, O}.

Results using the best as-you-type models with
and without as-you-type adaptations are shown in
Table 3. Comparing with the numbers in Table 1,
the untyped F1 score of as-you-type setting is much
closer to the standard sentence-level evaluation, be-
ing within 1 point of F1 for all languages. This
highlights that the challenging part of the as-you-
type setting is entity typing. For example, ‘Zim-
babwe’ is a location on its own, but ‘Zimbabwe
Open’ is an event (MISC entity type) while ‘West’
is usually indicative of a first location token (e.g.
‘West Pacific’), but can also refer to an organization
(e.g. ‘West Indies’ when referencing the cricket
team). The proposed technique results are in this
case less conclusive, which is somewhat expected

Sentence As-you-type

Original Embedding weighting

English 97.49 97.11 97.09
German 91.37 89.29 89.49
Spanish 97.70 97.05 96.96

Table 3: Entity identification performance. The four
entity types are collapsed into one type when comput-
ing token-level F1 scores. The model for “Embedding
weighting” is BiLSTM-CRF with bidirectional Flair
embeddings for all three languages. For the “Original”
setting, we use forward LSTM with forward Flair em-
beddings.

as the differences in entity frequencies between full
sentences and truncated sentences are smaller.

9 Conclusions

This paper introduced and motivated the as-you-
type experimental setup for the popular NER task.
We presented results across three different lan-
guages, which show the extent to which sentence-
level state-of-the-art models degrade in this setup.
Through insights gained from data analysis, we
proposed modelling improvements to further re-
duce the gap to the regular sentence-level perfor-
mance. Our error analysis highlights the cases that
pose challenges to the as-you-type scenario and
uncovers insights into way to further improve the
modelling of this task.

This setup is tailored for end-applications such
as text editors, speech-to-text, machine translation,
auto-completion, or auto-correct. For text editors,
the editor would be able to receive suggestions
for entities inline, right after they type the entity,
which can further be coupled with a linking algo-
rithm. This would increase the user experience and
efficiency of the editor, as they can make selections
about entities inline (similar to a phone’s autocor-
rect), rather than having to go back over the entire
sentence after it was completed.

Another avenue of future work would be to cou-
ple the NER as-you-type with ASR data and using
methods that adapt NER to noisy ASR input (Ben-
ton and Dredze, 2015) for building an end-to-end
live speech to entities system.
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A Appendices

A.1 Implementation and Hyperparameters
To train our models we use Stochastic Gradient
Descent with a learning rate of 0.1 and mini batch
size of 32. The LSTM model includes 1 layer of
LSTM with hidden state size 256. We also em-
ploy a dropout of 0.5 for the LSTM layer. For the
positional embeddings, the dimension d is set as
100 for feature weighting and 1000 for embedding
weighting. We tried different dimensions between
100 and 2000. w for weighted loss is identified as
1.5 for English and 1 for German and Spanish from
the dev set. ForW we considered values between 0
and 2. All the models are trained for 70 epochs and
the best model is selected based on the token-level
F-1 score4 on dev set. We perform manual hyper-
parameter selection and the final performance is
reported based on the 5-10 runs of the best hyper-
parameter setting.We use Flair’s standard settings
for English.

All the models are trained on nvidia GPU and
overall training for 70 epochs takes around 5-6
hours. This run-time complexity is very close to
the complexity achieved by the the Flair implemen-
tation for standard NER training.

Numbers reported in (Akbik et al., 2018) are gen-
erated by training models on combined train and
dev sets, hence they are higher than the numbers
we report when training only on the training data.
We also report token-level F1, rather than entity-
level F1, which leads to results that are not directly
comparable with (Akbik et al., 2018).

A.2 Visualization of Attention Weights
To better understand the impact of positional atten-
tion weights, we visualize and compare the feature-

4https://sklearn-crfsuite.readthedocs.
io/en/latest/tutorial.html#evaluation

level attention weights for different tokens on a few
hand-picked English sentences. Figure 8 highlights
tokens using different color intensities. Higher in-
tensity represents a larger weight value and hence
a stronger influence of backward context. First, it
is evident that tokens in the first position rely more
heavily on backward features in the absence of any
forward context, which is further reflected in the
higher attention weights achieved by these tokens.
Moreover, first tokens of multi-token entities such
as Persons (‘Nabil Abu Rdainah’), Organizations
(‘NY Rangers’) and Events (‘Zimbabwe Open’) are
assigned larger weights due to a high influence of
immediate next tokens. Also, quite often the last to-
ken in the sentences are weighted lower which can
be attributed to the positional information captured
by the attention weights.

A.3 Performance on Dev Set
To facilitate reproducibility of results, Table 4 re-
ports the development set performance of the base
model (Bi-LSTM CRF Flair) and the proposed
model for both as-you-type and sentence level se-
tups.

A.4 Parameters
Table 5 lists different trainable parameters used in
the model along with their sizes.
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Figure 8: Sample attention weights from the English CoNLL Data Set.

English German Spanish

Model As-you-type Sentence As-you-type Sentence As-you-type Sentence

Base Model 88.16 96.08 82.74 86.48 81.34 87.54
Proposed Model 92.54 96.43 83.71 86.69 85.75 87.78

Table 4: Performance on Conll Dev set for both Bi-LSTM-CRF Flair and the proposed final model

Parameter Size

GloVe Embedding Dimension (English) 100
Fast-text Embedding Dimension (Spanish, German) 300
Flair Embedding Size 2,000
Feature-Level Positional Embedding Size 100
Embedding-Level Positional Embedding Size 1,000
LSTM output size 100
Bi-Directional LSTM 1,680,800
Linear Output Layer 200 * 9
CRF Transition Matrix 6 * 6
Feature Level Attention Matrix (W ) 300*1
Embedding Level Attention Matrix (We) (English) 5,100 * 1 + 1
Embedding Level Attention Matrix (We) (Spanish, German) 5,300 * 1 + 1

Table 5: Number of parameters for different components of our models. When not explicitly mentioned, parameters
are for models in all three languages.


