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Abstract

Scaling semantic parsing models for task-
oriented dialog systems to new languages is of-
ten expensive and time-consuming due to the
lack of available datasets. Available datasets
suffer from several shortcomings: a) they
contain few languages b) they contain small
amounts of labeled examples per language
c) they are based on the simple intent and
slot detection paradigm for non-compositional
queries. In this paper, we present a new mul-
tilingual dataset, called MTOP, comprising
of 100k annotated utterances in 6 languages
across 11 domains. We use this dataset and
other publicly available datasets to conduct
a comprehensive benchmarking study on us-
ing various state-of-the-art multilingual pre-
trained models for task-oriented semantic pars-
ing. We achieve an average improvement of
+6.3 points on Slot F1 for the two existing mul-
tilingual datasets, over best results reported in
their experiments. Furthermore, we demon-
strate strong zero-shot performance using pre-
trained models combined with automatic trans-
lation and alignment, and a proposed distant
supervision method to reduce the noise in slot
label projection.

1 Introduction

With the rising adoption of virtual assistant prod-
ucts, task-oriented dialog systems have been attract-
ing more attention in both academic and industrial
communities. One of the first steps in these systems
is to extract meaning from the natural language
used in conversation to build a semantic representa-
tion of the user utterance. Typical systems achieve
this by classifying the intent of the utterance and
tagging the corresponding slots. With the goal of
handling more complex queries, recent approaches
propose hierarchical representations (Gupta et al.,
2018) that are expressive enough to capture the
task-specific semantics of complex nested queries.

Although, there have been sizable efforts around
developing successful semantic parsing models for
task-oriented dialog systems in English (Mesnil
et al., 2013; Liu and Lane, 2016; Gupta et al., 2018;
Rongali et al., 2020), we have only seen limited
works for other languages. This is mainly due
to the painstaking process of manually annotating
and creating large datasets for this task in new lan-
guages. In addition to the shortage of such datasets,
existing datasets (Upadhyay et al., 2018; Schus-
ter et al., 2019a) are not sufficiently diversified in
terms of languages and domains, and do not capture
complex nested queries. This makes it difficult to
perform more systematic and rigorous experimen-
tation and evaluation for this task across multiple
languages.

Building on these considerations and recent ad-
vancements on cross-lingual pre-trained models
(Devlin et al., 2019; Lample and Conneau, 2019;
Conneau et al., 2020), this paper is making an ef-
fort to bridge the above mentioned gaps. The main
contributions of this paper can be summarized as
follows:

• MTOP Dataset: We release an almost-parallel
multilingual task-oriented semantic parsing
dataset covering 6 languages and 11 do-
mains. To the best of our knowledge, this
is the first multilingual dataset which contains
compositional representations that allow com-
plex nested queries.

• We build strong benchmarks on the released
MTOP dataset using state-of-the-art multi-
lingual pre-trained models for both flat and
compositional representations. We demon-
strate the effectiveness of our approaches by
achieving new state-of-the-art result on exist-
ing multilingual task-oriented semantic pars-
ing datasets.
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• We demonstrate strong performance on zero-
shot cross-lingual transfer using automatic
translation and alignment, combined with a
proposed distant supervision approach. We
achieve 67.2% exact match accuracy (aver-
aged across 5 languages) without using any
target language data compared to best in-
language model performance of 77.7%.

2 Related Work

Task-Oriented Semantic Parsing The majority
of the work on task-oriented dialog systems has
been centered around intent detection and slot fill-
ing - for example, the representations used on the
ATIS dataset (Mesnil et al., 2013; Liu and Lane,
2016; Zhu and Yu, 2017) and in the Dialog State
Tracking Challenge (Williams et al., 2016). This
essentially boils down to a text classification and a
sequence labeling task, which works great for sim-
ple non-compositional queries. For more complex
queries with recursive slots, state of the art systems
use hierarchical representations, such as the TOP
representation (Gupta et al., 2018), that is modeled
using Recurrent Neural Network Grammars (Dyer
et al., 2016) or as a Sequence to Sequence task
(Rongali et al., 2020).

Pre-trained Cross-lingual Representation
Over the past few years, pre-trained cross-lingual
representations have demonstrated tremendous
success in achieving state of the art in various NLP
tasks. The majority of the earlier work focuses
on cross-lingual emebedding alignment (Mikolov
et al., 2013; Ammar et al., 2016; Lample et al.,
2018). Schuster et al. (2019b) further extend upon
this by aligning contextual word embeddings from
the ELMo model (Peters et al., 2018). Later with
the success of Transformer (Vaswani et al., 2017)
based masked language model pre-training, Devlin
et al. (2019) and Lample and Conneau (2019)
introduce mBERT and XLM respectively, and
Pires et al. (2019) show the effectiveness of these
on sequence labeling tasks. Conneau et al. (2020)
present XLM-R, a pre-trained multilingual masked
language model trained on data in 100 languages,
that provides strong gains over XLM and mBERT
on classification and sequence labeling tasks.

The models discussed above are encoder-only
models. More recently, multilingual seq-to-seq
pre-training has become popular. Liu et al.
(2020a) introduce mBART, a seq-to-seq denois-
ing auto-encoder pre-trained on monolingual cor-

pora in many languages, which extends BART
(Lewis et al., 2020b) to a multilingual setting.
More recently, Lewis et al. (2020a) introduced
a seq-to-seq model pre-trained on a multilingual
multi-document paraphrasing objective, which self-
supervises the reconstruction of target text by re-
trieving a set of related texts and conditions on
them to maximize the likelihood of generating the
original. Tran et al. (2020) is another contemporary
work that mines parallel data using encoder repre-
sentations and jointly trains a seq-to-seq model on
this parallel data.

Cross-Lingual Task-Oriented Semantic Pars-
ing Due to the ubiquity of digital assistants, the
task of cross-lingual and multilingual task-oriented
dialog has garnered a lot of attention recenty, and
few multilingual benchmark datasets have been re-
leased for the same. To the best of our knowledge,
all of them only contain simple non-compositional
utterances, suitable for the intent and slots detection
tasks. Upadhyay et al. (2018) release a benchmark
dataset in Turkish and Hindi (600 training exam-
ples), obtained by translating utterances from the
ATIS corpus (Price, 1990) and using Amazon Me-
chanical Turk to generate phrase level slot annota-
tion on translations. Schuster et al. (2019a) release
a bigger multilingual dataset for task-oriented dia-
log in English, Spanish and Thai across 3 domains.
They also propose various modeling techniques
such as using XLU embeddings (see Ruder et al.
(2017) for literature review) for cross-lingual trans-
fer, translate-train and ELMo (Peters et al., 2018)
for target language training. BERT-style multilin-
gual pre-trained models have also been applied to
task-oriented semantic parsing. Castellucci et al.
(2019) use multilingual BERT for joint intent clas-
sification and slot filling, but they don’t evaluate
on existing multilingual benchmarks. Instead, they
introduce a new Italian dataset obtained via auto-
matic machine translation of SNIPS (Coucke et al.,
2018), which is of lower quality. For zero shot
transfer, Liu et al. (2020b) study the idea of se-
lecting some parallel word pairs to generate code-
switching sentences for learning the inter-lingual
semantics across languages and compare the per-
formance using various cross-lingual pre-trained
models including mBERT and XLM.

3 Data

Existing multilingual task-oriented dialog datasets,
such as Upadhyay et al. (2018); Schuster et al.
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Domain Number of utterances (training/validation/testing) Intent Slot
English German French Spanish Hindi Thai types types

Alarm 2,006 1,783 1,581 1,706 1,374 1,510 6 5
Calling 3,129 2,872 2,797 2,057 2,515 2,490 19 14
Event 1,249 1,081 1,050 1,115 911 988 12 12
Messaging 1,682 1,053 1,239 1,335 1,163 1,082 7 15
Music 1,929 1,648 1,499 1,312 1,508 1,418 27 12
News 1,682 1,393 905 1,052 1,126 930 3 6
People 1,768 1,449 1,392 763 1,408 1,168 17 16
Recipes 1,845 1,586 1,002 762 1,378 929 3 18
Reminder 1,929 2,439 2,321 2,202 1,781 1,833 19 17
Timer 1,488 1,358 1,013 1,165 1,152 1,047 9 5
Weather 2,372 2,126 1,785 1,990 1,815 1,800 4 4

Total 22,288 18,788 16,584 15,459 16,131 15,195 117 78

Table 1: Summary statistics of the MTOP dataset. The Data is roughly divided into 70:10:20 percent splits for
train, eval and test.

(2019a), rely on expensive manual work for prepar-
ing guidelines and annotations for other languages;
which is probably why they only contain very few
languages and few labeled data examples for other
languages. Furthermore, annotations will be more
complicated and expensive if they were to include
compositional queries, where slots can have nested
intents. To this end we create an almost paral-
lel multilingual task-oriented semantic parsing cor-
pora which contains 100k examples in total for 6
languages (both high and low resource): English,
Spanish, French, German, Hindi and Thai. Our
dataset contains a mix of both simple and com-
positional nested queries across 11 domains, 117
intents and 78 slots. Table. 1 shows a summary
statistics of our MTOP dataset.

We release the dataset at https://fb.me/mtop_
dataset.

3.1 Dataset Creation

Our approach for creating this dataset consists of
two main steps: i) generating synthetic utterances
and annotating in English, ii) translation, label
transfer, post-processing, post editing and filtering
for other 5 languages. Generating the English ut-
terances and their annotations, for the 11 domains,
follows the exact process as described in (Gupta
et al., 2018). We ask crowdsourced workers to gen-
erate natural language sentences that they would
ask a system which could assist in queries corre-
sponding to our chosen domains. These queries are
labeled by two annotators. A third annotator is used
only to adjudicate any disagreements. Once an an-
notated English dataset is available, we build the
multilingual dataset through the following steps:

Translation: We first extract slot text spans from
English annotation and present the utterances along
with slot text spans to professional translators for
translation to the target language. We prepare de-
tailed guidelines, where we ask the translators to
ensure that the translation for each slot span is ex-
actly in the same way as it occurs in the translated
utterance. For example, when translating the slot
span mom in utterance call my mom, we ask the
translators to use the same target language word
for mom, that they used in the translation for call
my mom.

Post-processing: After we obtain the translation
of utterances and corresponding slot text spans, we
use the tree structure of English and fill in the trans-
lated slot text spans to construct the annotation in
the target languages. Our representation, described
in §3.2.1, enables us to reconstruct the annotations.

Post-editing and Quality Control: We further
run two rounds of quality control over translated ut-
terances and slots, and revise the data accordingly.
In the first round, we ask translators to review and
post-edit the errors in translations and slot align-
ments. In the second round, the constructed target
language data is presented to different annotators
for a lightweight annotation quality review. 83%
of the data was marked as good quality data and
passed our quality standards, which can be inter-
preted as the inter-annotator agreement rate on the
translated data. Based on this feedback, we remove
low quality annotations from the dataset.

To create this dataset, for each target language
we had three translators: two were responsible for
translation and the third one for review and edits.

https://fb.me/mtop_dataset
https://fb.me/mtop_dataset
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Figure 1: An English example from the data, showing
its flat representation and compositional decoupled rep-
resentation and a comparison between the decoupled
and the original TOP representations in tree format.

All the translators were professional translators,
with native or close to native speaker skills. The
overall time spent was 15 to 25 days for each lan-
guage. Even though we run rigorous quality con-
trol, a dataset built by translation is bound to have
few errors, such as using words or phrases that are
not commonly used in spoken language.

3.2 Data Format

In this dataset, we release two kinds of represen-
tations, which we refer to as flat representations
and compositional decoupled representations, that
are illustrated in Figure 1 for an English utterance.
Most existing annotations for task-oriented dialog
systems follow the intent classification and slot
tagging paradigm, which is what we refer to as
the flat representation. Since our data contains
compositional utterances with nested slots with
intents within them, flat representations are con-
structed by only using the top level slots. We in-
clude the flat representation so that the data and the
discussed modeling techniques are comparable to
other task-oriented dialog benchmarks. To ensure
the reproducibility of our results, we also release

Figure 2: German utterance constructed from the En-
glish example of Figure 1. Even though the slot text
order changed, we can still easily build a decoupled
representation with the same structure.

the tokenized version of utterances obtained via our
in-house multilingual tokenizer.

3.2.1 Compositional Decoupled
Representation

Gupta et al. (2018) demonstrate the inability of flat
representations to parse complex compositional
requests and propose a hierarchical annotation
scheme (TOP representation) for semantic pars-
ing, that allows the representation of such nested
queries. We further use a representation, called the
decoupled representation, that removes all the text
from the TOP representation that does not appear
in a leaf slot, assuming this text does not contribute
to the semantics of the query. Figure 1 highlights
the difference between this decoupled represen-
tation and the original TOP representation. The
decoupled representation makes the semantic rep-
resentation more flexible and allows long-distance
dependencies within the representation. It also
makes translation-based data creation approach fea-
sible for different languages despite syntactic dif-
ferences, as the representation is decoupled from
the word order of the utterance. For example, in
the German translation of the English example as
shown in Figure 2, translations of message and
Mike were separated by other words between them.
However, it is straight forward to construct a de-
coupled representation as the representation is not
bound by a word-order constraint.
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4 Model Architecture

4.1 Joint intent and slot tagging for flat
representation

For flat representation, where there is a single top-
level intent, the traditional way is to model it as
an intent classification and a slot tagging prob-
lem. Our baseline model is a bidirectional LSTM
intent slot model as described in Liu and Lane
(2016); Zhang and Wang (2016) with pre-trained
XLU embeddings. Since existing pre-trained XLU
embeddings (e.g., MUSE (Lample et al., 2018))
don’t provide embedding for Hindi and Thai, we
train our own using multiCCA following Ammar
et al. (2016). Compared to previous state-of-the-art
work on existing multilingual task-oriented pars-
ing datasets (Liu et al., 2020b; Castellucci et al.,
2019) which use Multilingual BERT, we use XLM-
R (Conneau et al., 2020) since it’s shown to out-
perform Multilingual BERT in cross-lingual per-
formance on a variety of tasks. Specifically we use
XLM-R Large in all our experiments. We use the
same model architecture as in Chen et al. (2019)
and replace BERT encoder with XLM-R encoder.

4.2 Seq-to-seq for hierarchical representation
Even though there are few existing works on cross
lingual transfer learning for parsing flat represen-
tations, to the best of our knowledge, we are
not aware of any other work that studies cross-
lingual transfer for parsing complex queries in task-
oriented dialog. In this section, we outline our
modeling approaches for the compositional decou-
pled representation discussed in §3.2.1.

Seq-to-seq with Pointer-generator Network
Our model adopts an architecture similar to Ron-
gali et al. (2020), where source is the utterance and
target is the compositional decoupled representa-
tion described in §3.2.1. Given a source utterance,
let [e1, e2, ..., en] be the encoder hidden states and
[d1,d2, ...,dm] be the corresponding decoder hid-
den states. At decoding time step t, the model
can either generate an element from the ontology
with generation distribution p

g
t , or copy a token

from the source sequence with copy distribution pc
t .

Generation distribution is computed as:

p
g
t = softmax

(
Linearg[dt]

)
Copy distribution is computed as:

pc
t ,ωt = MHA(e1, ..., en; Linearc[dt])

where MHA stands for Multi-Head Atten-
tion (Vaswani et al., 2017) and ωt is the attended
vector used to compute the weight of copying pw

t :

pw
t = sigmoid (Linearα [dt;ωt])

The final probability distribution is computed as a
mixture of the generation and copy distributions:

pt = pw
t · p

g
t + (1− pw

t ) · pc
t .

As a baseline, we use a standard LSTM encoder-
decoder architecture with XLU embeddings. We
also experiment with various transformer-based
state of the art multilingual pre-trained models to
improve upon the baseline. We use both pre-trained
encoder-only models as well as pre-trained seq-to-
seq encoder and decoder models. Here we outline
the different models that we experimented with:

• XLM-R encoder, pre-trained with masked lan-
guage model objective in 100 languages. For
decoder, we use randomly initialized transformer
decoder as in Vaswani et al. (2017).

• mBART (Liu et al., 2020a) is pre-trained seq-to-
seq model using denoising autoencoder objective
on monolingual corpora in 25 languages.

• mBART on MT: Machine translation is another
common task for pre-training multilingual mod-
els. We follow Tang et al. (2020) to further
fine-tune mBART on English to 25 languages
translation task.

• CRISS (Tran et al., 2020) is pre-trained on paral-
lel data in an unsupervised fashion. It iteratively
mines parallel data using its own encoder out-
puts and trains a seq-to-seq model on the parallel
data. CRISS has been shown to perform well on
sentence retrieval and translation tasks.

• MARGE (Lewis et al., 2020a) is learned with
an unsupervised multi-lingual multi-document
paraphrasing objective. It retrieves a set of re-
lated texts in many languages and conditions on
them to maximize the likelihood of generating
the original text. MARGE has shown to outper-
form other models on a variety of multilingual
benchmarks including document translation and
summarization.

5 Experiments

We conduct thorough experiments on the new
dataset we describe in in §3. To further demon-
strate the effectiveness of our proposed approaches,

We provide reproducibility details and all hyperparame-
ters in Appendix A
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we also run additional experiments on the exist-
ing multilingual task-oriented semantic parsing
datasets including Multilingual ATIS (Upadhyay
et al., 2018) and Multilingual TOP (Schuster et al.,
2019a). Note that both these data sets only include
flat representation, while our data set contains hier-
archical representations.

5.1 Experimental Settings

For all benchmarks, we have three different evalua-
tion settings:

• IN-LANGUAGE MODELS: We only use target
language training data.

• MULTILINGUAL MODELS: We use training data
in all available languages and train a single
model for multiple languages.

• ZERO-SHOT TARGET LANGUAGE MODELS: We
only use English data during training.

Next in each subsection we talk about details of
approaches we use in these experiments.

5.1.1 Translate and Align
With zero or few target language annotated ex-
amples, translate-train is a common approach to
augment target language training data. For se-
mantic parsing tasks, besides translation we need
alignment to project slot annotations to target lan-
guage. This process is similar to how we collect
our dataset, but using machine translation and align-
ment methods. For translation, we use our in-house
machine translation system. We also tried other
publicly available translation APIs and didn’t find
significant difference in final task performance. For
alignment, we experimented with both, using atten-
tion weights from translation as in Schuster et al.
(2019a) and fastalign (Dyer et al., 2013) and found
data generated through fastalign leads to better task
performance. Thus we only report results that use
fastalign.

5.1.2 Multilingual Training
With the advancement of multilingual pre-trained
models, a single model trained on multiple lan-
guages has shown to outperform in-language mod-
els (Conneau et al., 2020; Hu et al., 2020). As a re-
sult, we also experiment with multilingual training
on our benchmark, including training jointly on all
in-language data and training on English plus trans-
lated and aligned data in all other languages for the
zero-shot setting. Instead of concatenating data in

all languages together as in Conneau et al. (2020),
we adopt a multitask training approach where for
each batch we sample from one language based
on a given sampling ratio so that languages with
fewer training data can be upsampled. We found
this setting to perform better than mixed-language
batches in our experiments.

5.1.3 Distant Supervision in Zero-Shot
Setting for Flat Representations

Alignment models are not perfect, especially for
low resource languages. To combat the noise and
biases introduced in slot label projection, we exper-
iment with another distant supervision approach in
the zero-shot setting for learning flat representation
models. We first concatenate the English utterance
and its corresponding translation (using machine
translation) in target language as input and then
replace the English slot text with MASK token at
random (30% of the time, chosen empirically as a
hyper-parameter). With the masked source utter-
ance and the translated utterance as the concate-
nated input, we train a model to predict the overall
intent and slot labels on the original English source.
In this way, the MASK token can also attend to its
translation counterpart to predict its label and the
translated slot text could be distantly supervised by
English labeled data.

6 Results and Discussions

6.1 Results on MTOP

Flat Representation Results Table. 2 shows the
result on our MTOP dataset for all languages, using
the flat representation. For both in-language and
multilingual settings, XLM-R based models sig-
nificantly outperform the BiLSTM models using
XLU. We also observe that multilingual models
outperform in-language models. Interestingly, for
Hindi and Thai (both non-European languages), the
improvements from multilingual training are con-
siderably higher for XLM-R as compared to XLU
BiLSTM. This observation highlights the remark-
able cross-lingual transferability of the pre-trained
XLM-R representations where fine-tuning on syn-
tactically different languages also improves target
language performance.

For zero-shot cross-lingual transfer, we restrict
ourselves to an XLM-R baseline to explore im-
provements using translate and align, and the dis-
tant supervision techniques as described in 5.1.1
and 5.1.3 respectively. Our results demonstrate that
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Model en es fr de hi th Avg(5 langs)
(Exact Match Accuracy)

In-language models (only use target language training data)

XLU biLSTM 78.2 70.8 68.9 65.1 62.6 68 67.1
XLM-R 85.3 81.6 79.4 76.9 76.8 73.8 77.7

Multilingual models (use training data from multiple languages)

XLU biLSTM 78.2 73.8 71.5 65.8 63.1 68.7 68.6
XLM-R 86.3 83.6 81.8 79.2 78.9 76.7 80

Zero-shot target language models (only use English training data)

XLM-R on EN N/A 69.1 65.4 64 55 43.8 59.5
XLM-R with mask in §5.1.3 N/A 68 69.5 69.2 63.3 35.3 61.1
XLM-R on EN + translate align §5.1.1 N/A 74.5 72.6 64.7 58.3 56.5 65.3
XLM-R with mask + translate align N/A 74.6 72.2 65.7 62.5 53.2 65.6

Table 2: Results on flat representation for 6 languages. We report exact match accuracy in this table. More metrics
including intent accuracy and slot F1 is in Table 5 in Appendix. Notice that average is calculated across 5 languages
except English to be comparable to zero-shot results. Best result for zero-shot is in bold. Taking best zero shot
setting for each language, average exact match accuracy is 67.2. Note that for zero-shot setting, we only use EN
train and eval data without any target language data.

distant supervision is able to considerably improve
over the baselines for French, German and Hindi,
while there is a small drop for Spanish. In the
same setting, performance for Thai significantly
degrades compared to the baseline. We suspect
this is due to imperfect Thai tokenization that leads
to learning noisy implicit alignments through dis-
tant supervision. The translate and align approach
consistently improves over the baseline for all lan-
guages. It also performs better than distant super-
vision for all languages except German and Hindi.
Our hypothesis is that the compounding nature of
German inhibits the learning of hard alignment
from fastalign. In summary, the XLM-R trained
on all the 6 languages significantly outperforms all
other models for this task.

In Appendix B, we further report intent accu-
racy and slot F1 metrics for the flat representation,
as these are commonly used metrics in previous
benchmarks for intent-slot prediction (Price, 1990;
Schuster et al., 2019a).

Compositional Decoupled Representation Ta-
ble. 3 shows the results on our MTOP dataset us-
ing compositional decoupled representation. In all
settings, using multilingual pre-trained models sig-
nificantly outperform the baseline. Surprisingly,
mBART doesn’t demonstrate strong performance
compared to other models with fine-tuning on our
task, even though fine-tuning BART on English

achieves the best performance on English data.
We hypothesize that mBART was under-trained
for many languages and did not learn good cross-
lingual alignments. In order to prove our hypothe-
sis, we further fine-tune mBART on English to 25
languages translation task. The obtained mBART
fine-tuned on translation significantly outperform
the original mBART. The performance of CRISS
and MARGE are at par with each other and among
our best performing models across 5 languages, ex-
cept Thai. XLM-R with random decoder performs
the best on Thai. We believe this is because neither
CRISS nor MARGE are pre-trained on Thai, while
XLM-R pre-training includes Thai.

Similar to previous observations, multilingual
training improves over the monolingual results.
With multilingual training, XLM-R and CRISS
are the best performing models for every language.
Since XLM-R uses a randomly initialized decoder,
it makes intuitive sense that such a decoder is better
trained with multilingual training and thus obtains
higher gains from more training data. Interestingly,
mBART performance also improves a lot, which
is another evidence that it was originally under-
trained, as discussed in the previous paragraph. In
the zero-shot setting, using the models fine-tuned
on English does not perform well. In fact Thai zero
shot using CRISS gives a 0 exact match accuracy,
as the model was not pre-trained on any Thai data.
Both XLM-R and CRISS show significant improve-
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Model en es fr de hi th Avg(5 langs)
(Exact Match Accuracy)

In-language models (only use target language training data)

XLU biLSTM 77.8 66.5 65.6 61.5 61.5 62.8 63.6
XLM-R encoder + random decoder 83.9 76.9 74.7 71.2 70.2 71.2 72.8
mBART 81.8 75.8 68.1 69.1 67.6 61.2 68.4
mBART on MT 84.3 77.2 74.4 70.1 69.2 66.9 71.6
CRISS 84.2 78 75.5 72.2 73 68.8 73.5
MARGE 84 77.7 75.4 71.5 70.8 70.8 73.2

Multilingual models (use training data from multiple languages)

XLM-R encoder + random decoder 83.6 79.8 78 74 74 73.4 75.8
mBART 83 78.9 76 72.9 72.8 68.8 73.9
CRISS 84.1 79.1 77.7 74.4 74.7 71.3 75.4

Zero-shot target language models (only use English training data)

XLM-R on EN N/A 50.3 43.9 42.3 30.9 26.7 38.8
XLM-R on EN + translate align N/A 71.9 70.3 62.4 63 60 65.5
CRISS on EN N/A 48.6 46.6 36.1 31.2 0 32.5
CRISS on EN + translate align N/A 73.3 71.7 62.8 63.2 53 64.8

Table 3: Results on compositional decoupled representation for 6 languages. Metric is exact match accuracy.
Average is calculated across 5 languages except English. Best result for each setting is in bold. For reference,
exact match accuracy for BART model in-language training for en is 84.6.

Model Multilingual ATIS Multilingual TOP
hi tr es th

In-language models (only use target language training data)

Original paper -/-/74.6 -/-/75.5 74.8/96.6/83.0 84.8/96.6/90.6
XLM-R 53.6/80.6/84.4 52.6/90.0/80.4 84.3/98.9/90.2 90.6/97.4/95

Multilingual models (use training data from multiple languages)

original paper (bilingual) -/-/80.6 -/-/78.9 76.0/97.5/83.4 86.1/96.9/91.5
XLM-R ALL 62.3/85.9/87.8 65.7/92.7/86.5 83.9/99.1/90 91.2/97.7/95.4

Zero-shot target language models (only use English training data)

Original paper N/A N/A 55/85.4/72.9 45.6/95.9/55.4
MBERT MLT N/A N/A -/87.9/73.9 -/73.46/27.1
XLM-R on EN 40.3/80.2/76.2 15.7/78/51.8 79.9/97.7/84.2 35/90.4/46
XLM-R with mask 49.4/85.3/84.2 19.7/79.7/60.6 76.9/98.1/85 23.5/95.9/30.2
XLM-R EN + translate align 53.2/85.3/84.2 49.7/91.3/80.2 66.5/98.2/75.8 43.4/97.3/52.8
XLM-R mask + translate align 55.3/85.8/84.7 46.4/89.7/79.5 73.2/98/83 41.2/96.9/52.8

Table 4: Results on Multilingual ATIS and Multilingual TOP, metrics are exact match accuracy / intent accuracy /
slot F1 respectively. For zero-shot, first line is from original dataset paper. Best result for zero-shot is in bold.

ments when they utilized the machine translated
and aligned data.

6.2 Results on Existing Benchmarks

Table. 4 shows results on two previously released
multilingual datasets: Multilingual ATIS and Multi-
lingual TOP. Similar to our findings in 6.1, XLM-R
based models significantly outperform the best re-

sults reported by the original papers and sets a new
state-of-the-art on these benchmarks. Also, multi-
lingual models trained on all available languages
further improve the result.

For Multilingual ATIS, in the zero-shot setting,
our distant supervised masking strategy shows con-
siderable gains compared to direct transfer using
English. Using translate and aligned data also helps
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in improving the results significantly. When multi-
task trained together with masked data, it achieves
the best zero-shot performance on Hindi. For both
languages (Hindi and Turkish) this comes very
close to the performance using target language
training data.

For multilingual TOP, direct transfer proves to
be effective for Spanish, direct transfer from En-
glish overall yield better result than what’s re-
ported in Mixed-Language Training (MLT) with
MBERT (Liu et al., 2020b). While masking and
translating generated data degrade its performance.
Based on our error analysis, we find that tok-
enization mismatch, derived from translation data,
causes such performance drop due to errors in slot
text boundaries. For Thai, all our translation-based
techniques perform worse than translate-train re-
sults from original paper. We attribute this pri-
marily to the tokenization difference between our
translated data and original test data. Unlike Span-
ish, Thai is much more sensitive to tokenization as
it rarely uses whitespace.

7 Conclusion

In this paper, we release a new multilingual task-
oriented semantic parsing dataset called MTOP
that covers 6 languages, including both flat and
compositional representations. We develop strong
and comprehensive benchmarks for both repre-
sentations using state-of-the-art multilingual pre-
trained models in both zero-shot and with target
language settings. We hope this dataset along with
proposed methods benefit the research community
in scaling task-oriented dialog systems to more lan-
guages effectively and efficiently.
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A Training Details

Settings for MTOP results in Table. 2 For
fine-tuning XLM-R, we use the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.99, ε = 1e − 6 and batch size of 16. We fine-
tune for 20 epochs and search over learning rates
∈ {1, 2, 3}e − 5 on dev set. All XLM-R models
were run on single 32GB V100 Nvidia GPU.

For the XLU models in Table. 2, we use 300
dim XLU embeddings and feed them to a 2-layer
200 dim BiLSTM. The intent classification head
contains an attention pooling layer as described
in Lin et al. (2017) with with attention dim 128
followed by a 200 dim linear projection before the
softmax. The slot tagging head also contains a
200 dim linear layer followed by a CRF decoder.
We use the we use the Adam optimizer with the
same settings as above and a batch size of 32 for 40
epochs. The learning rate and BiLSTM dropouts
are picked via a param sweep over the dev set.

Settings for MTOP results in Table. 3 For
training seq-2-seq models, we use stochastic
weight averaging (Izmailov et al., 2018) with Lamb
optimizer (You et al., 2019) and exponential learn-
ing rate decay for all models. For fine-tuning pre-
trained models: we use batch size of 16 for all mod-
els except Marge, we use batch size 4 for Marge
since we were not able to fit larger batch size into
32GB memory; We finetune for 50 epochs and
again search over learning rates on dev set.

For copy pointer We use 1 layer multihead at-
tention(MHA) with 4 attention heads to get copy
distribution. For seq-2-seq model with XLM-R en-
coder, the decoder is a randomly initialized 3-layer
transformer, with hidden size 1024 and 8 attention
heads. XLM-R encoder (24 layers) is larger than
mBART/CRISS/MARGE encoder (12 layers) so
we were not able to fit a larger decoder into GPU
memory.

For the XLU models specifically we use a 2-
layer BiLSTM encoder with a hidden dimension
of 256. For the decoder, we use a 2-layer LSTM
with 256 dimension and a single attention head.
Similar to the flat models, learning rate and LSTM
dropouts are picked via a param sweep over the dev
set.

Settings for other benchmark results in Table. 4
We use the same setting as described for Table. 2
except for multilingual ATIS which doesn’t have
dev set, we just use the checkpoint after a fixed

number of epochs.

B More Results

We report additional metrics for our experiments in
this section. Table. 5 contains the intent accuracy
and slot F1 metrics of models for flat representa-
tion.
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Model en es fr de hi th
(Intent Accuracy / Slot F1)

In-language models (only use target language training data)

XLU biLSTM 94.0/88.6 90.1/83.0 89.6/81.8 88.8/81.4 85.9/79.6 91.2/80.4
XLM-R 96.7/92.8 95.2/89.9 94.8/88.3 95.7/88.0 94.4/87.5 93.4/85.4

Multilingual models (use training data from multiple languages)

XLU biLSTM 94.6/88.4 91.3/84.6 91.3/83.0 90.3/81.2 87.6/78.9 91.9/80.5
XLM-R 97.1/93.2 96.6/90.8 96.3/89.4 96.7/88.8 95.4/88.4 95.1/86.3

Zero-shot target language models (only use English training data)

XLM-R on EN N/A 93.5/81.7 90.7/81.6 91.2/78.7 88.4/71.8 88.0/63.3
XLM-R with mask in §5.1.3 N/A 94.7/81.0 93.9/82.0 94.0/81.8 94.1/77.3 92.0/56.4
XLM-R on EN + translate align §5.1.1 N/A 96.2/84.6 95.4/82.7 96.1/78.9 94.7/72.7 92.7/70.0
XLM-R with mask + translate align N/A 96.3/84.8 95.1/82.5 94.8/80.0 94.2/76.5 92.1/65.6

Table 5: Intent Accuracy / Slot F1 for models in Table 2.


