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Abstract

Despite improvements in performances on dif-
ferent natural language generation tasks, deep
neural models are prone to hallucinating facts
that are incorrect or nonexistent. Different
hypotheses are proposed and examined sepa-
rately for different tasks, but no systematic ex-
planations are available across these tasks. In
this study, we draw connections between hal-
lucinations and predictive uncertainty in con-
ditional language generation. We investigate
their relationship in both image captioning and
data-to-text generation and propose a simple
extension to beam search to reduce hallucina-
tion. Our analysis shows that higher predictive
uncertainty corresponds to a higher chance of
hallucination. Epistemic uncertainty is more
indicative of hallucination than aleatoric or to-
tal uncertainties. It helps to achieve better re-
sults of trading performance in standard metric
for less hallucination with the proposed beam
search variant.

1 Introduction

Modern deep neural network models have brought
drastic improvements of generation quality mea-
sured by standard metrics on different natural lan-
guage generation (NLG) tasks. However, along
with these improvements, researchers find that neu-
ral models are more prone to a phenomenon called
hallucination, where models generate description
tokens that are not supported by the source inputs.
This phenomenon seriously damages the applicabil-
ity of neural language generation models in practice
where information accuracy is vital.

Hallucination has been observed in various con-
ditional NLG tasks such as image captioning
(Rohrbach et al., 2018), data-to-text generation
(Wiseman et al., 2017; Nie et al., 2019; Parikh
et al., 2020), abstractive summarization (Cao et al.,
2018; Durmus et al., 2020), and neural machine

translation (NMT) (Müller et al., 2019). These
studies tackle hallucinations within a specific task
and give possible explanations of why hallucina-
tions occur. For example, Rohrbach et al. (2018)
attributes object hallucination in image caption-
ing to visual misclassification and over-reliance on
language priors; Nie et al. (2019) believes hallu-
cination in neural surface realization comes from
the misalignment between meaning representations
and their corresponding references in the dataset;
Müller et al. (2019) claims that hallucinations in
NMT are mainly due to domain shift.

We believe that there is a common theme across
all the hallucination explanations in conditional
NLG tasks: predictive uncertainty. In language
generation, predictive uncertainty quantifies the en-
tropy of the token probability distributions a model
predicts. There are multiple sources of uncertainty.
Two major ones frequently studied are aleatoric and
epistemic uncertainties, where the former comes
from the data or measurements, and the latter is
concerned with the model. With recent progress
in Bayesian neural networks (BNNs) (Hinton and
Van Camp, 1993; Neal, 1995) and uncertainty quan-
tification (Blundell et al., 2015; Gal and Ghahra-
mani, 2016; Lakshminarayanan et al., 2017), we
are able to quantify both parts of predictive uncer-
tainty in neural NLG.

This study draws connections between halluci-
nation and predictive uncertainty and empirically
investigates their relationship in image captioning
and data-to-text generation tasks. We propose an
uncertainty-aware beam search algorithm to reduce
the chance of hallucination by penalizing parts or
the entirety of the predictive uncertainty during
model decoding. We find that the choice of un-
certainty matters, and penalizing epistemic uncer-
tainty yields better results compared to penalizing
aleatoric or total uncertainty. Our contributions are:
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• We draw connections between hallucination
and predictive uncertainty across various con-
ditional natural language generation tasks and
empirically investigate their relationship.

• We propose an uncertainty-aware beam
search approach for hallucination reduction
to demonstrate that lowering uncertainty can
lead to less hallucination.

• We show that uncertainty decomposition helps
to achieve better trade-offs between hallucina-
tion and performance.

2 Hallucination and Predictive
Uncertainty

2.1 Hallucination Probability

In general, hallucination refers to the phenomenon
where the model generates false information not
supported by the input. For example, in the context
of image captioning, hallucination can be defined
as generating captions that contain descriptions not
present in the given image. Let (x, y) be the pair
of variables at interest where x is some structured
data containing facts and y is a natural language
sentence based on the facts. The task is to learn the
conditional distribution of p(y|x) in order to gener-
ate sentence y given any new input x. Most neural
approaches break the probability into a sequence
of single token predictions:

p(y|x) = p(y1|x)
k∏

i=2

p(yi|x, y1, · · · , yi−1) (1)

where {y1, · · · , yk} is the collection of tokens in
sentence y. We denote ci = {x, y1, · · · , yi−1} as
the context of the i-th prediction in the following
sections for simplicity.

Apparently, hallucination is context-dependent
which means we need to look at a certain context
ci and determine whether the next token prediction
yi is hallucinated or not. Let V(ci)h denote the set of
tokens that are considered false information given
the current context ci and V the whole vocabulary.
Consider a random sampling decoder where a to-
ken is generated based on the predicted categorical
distribution. i.e. Cat(|V|, p(yi|ci)). The probabil-
ity of hallucination at the current step is simply:

P (yi ∈ V(ci)h ) =
∑

v∈V(ci)

h

p(yi = v|ci) (2)

Practically, it is hard to automatically deter-
mine the context-dependent set V(ci)h . Task-specific
heuristics are often used to determine which to-
kens are hallucinated. In specific restrictive appli-
cations, the context-dependent set can be relaxed to
a context-independent one to reduce the complexity
of determining hallucination.

2.2 Relationship with Predictive Uncertainty

We use entropy to measure the predictive uncer-
tainty in this work. The total uncertainty of predict-
ing token yi is:

H(yi|ci)

=−
∑
v∈V

p(yi = v|ci) log p(yi = v|ci)

=−
∑

v∈V\V(ci)

h

p(yi = v|ci) log p(yi = v|ci)

−
∑

v∈V(ci)

h

p(yi = v|ci) log p(yi = v|ci) (3)

From Equation 3, we can see that there are two
sources of uncertainty for the token predictions:
one from the uncertainty of choosing suitable to-
kens to describe the input; another from some un-
suitable tokens attaining considerable probability
mass either by being confusing in the current con-
text or due to an insufficiently trained system.

The second source of uncertainty is directly re-
lated to hallucination probability. Although no
monotonic relationship can be derived, a near-zero
hallucination probability requires a near-zero value
of the second source of uncertainty. This obser-
vation prompts us to investigate the relationship
between hallucination and predictive uncertainty in
practice. Intuitively, the higher the predictive uncer-
tainty is, the more probable some of the probability
mass gets assigned to unsuitable tokens.

2.3 Uncertainty Decomposition

There are often two types of uncertainties fre-
quently mentioned in uncertainty quantification
literature: epistemic and aleatoric uncertainty
(Der Kiureghian and Ditlevsen, 2009; Kendall and
Gal, 2017; Depeweg et al., 2018). Epistemic un-
certainty reflects the uncertainty on model weights,
and aleatoric uncertainty concerns inherent uncer-
tainty in the data or measurement. We are inter-
ested in whether the relationship with hallucination
is the same for both types of uncertainties.
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Prediction 1

Prediction 2

Prediction 3

Token 1 Token 2 Token 3

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

(a)

Prediction 1

Prediction 2

Prediction 3

Token 1 Token 2 Token 3

0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

(b)

Figure 1: Examples of predictions with (a) high
aleatoric but low epistemic uncertainty; and (b) high
epistemic but low aleatoric uncertainty.

Bayesian deep learning approaches (Blundell
et al., 2015; Gal and Ghahramani, 2016; Lakshmi-
narayanan et al., 2017) are widely studied for un-
certainty quantification with neural networks. Fol-
lowing the notations in Section 2.2, the predictive
distribution of p(yi|ci) can be written as:

p(yi|ci) =
∫
w
p(yi|ci, w)q(w)dw (4)

where w parameterizes the neural network that
makes predictions and q(w) denotes the approx-
imate posterior distribution of the weights w given
the training data. Notice that if we fix the weights
w, H(yi|ci, w) represents the entropy that is un-
related to the uncertainty of the model weights.
Therefore the aleatoric part of the predictive uncer-
tainty can be calculated with Eq(w)[H(yi|ci, w)].
The epistemic part of the uncertainty is the differ-
ence between the total and the aleatoric uncertainty
as shown below:

ual(yi|ci) = Eq(w)[H(yi|ci, w)] (5)

uep(yi|ci) = H(yi|ci)− Eq(w)[H(yi|ci, w)] (6)

In this study, the aleatoric and epistemic parts
of predictive uncertainty are estimated using
deep ensembles (Lakshminarayanan et al., 2017).
More concretely, denote the model predictions as
{pm(yi|ci)}Mm=1 and the aggregated prediction as
p(yi|ci) = 1

M

∑M
m=1 pm(yi = v|ci), aleatoric and

epistemic uncertainties are calculated as:

ual(yi|ci) =
1

M

M∑
m=1

Hm(yi|ci) (7)

uep(yi|ci) = H(yi|ci)− ual(yi|ci) (8)

where Hm(yi|ci) and H(yi|ci) are the entropy of
pm(yi|ci) and p(yi|ci) respectively.

Intuitively, in the case of deep ensembles,
aleatoric uncertainty measures the average spread
of all model predictions, while epistemic uncer-
tainty measures the agreement among all model
predictions. Examples with three possible tokens
are illustrated in Figure 1.

3 Case Study: Image Captioning

In this section, we analyze image captioning mod-
els trained on MSCOCO (Chen et al., 2015) data
set.

3.1 Hallucination Probability at Different
Uncertainty Levels

The first question we want to investigate is whether
hallucination probabilities change at different pre-
dictive uncertainty levels. Some experimental set-
tings are listed below.

Model architecture We consider four different
image captioning models: FC model (Rennie et al.,
2017) where image features are used to initialize
the RNN decoder; Att2In model from (Rennie
et al., 2017) applies attention on image features
and feeds it into the decoder LSTM (Hochreiter
and Schmidhuber, 1997) cell gate; BUTD model
from (Anderson et al., 2018) uses bottom-up atten-
tion which operates at the level of objects and other
salient image regions; Transformer model where
transformers (Vaswani et al., 2017) are used in the
encoder-decoder structure for generation. All mod-
els are implemented in the open source framework
by Luo et al. (2018)1.

Training We consider the same data split from
(Karpathy and Fei-Fei, 2015). All models are
trained with batch size 50 for 30 epochs with Adam
optimizer (Kingma and Ba, 2014). Evaluations are
done on the Karpathy test set.

Hallucination and uncertainty evaluation As
in (Rohrbach et al., 2018), synonyms for all pos-
sible MSCOCO objects are used to determine

1https://github.com/ruotianluo/self-critical.pytorch
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Model Action hallucination % at uncertainty level
≤ 0.8 0.8 - 1.6 1.6 - 2.4 2.4 - 3.2 3.2 - 4.0 > 4.0

FC 0.00 0.00 2.27 12.86 15.71 31.03
Att2In 0.00 0.00 3.39 6.58 12.07 22.03
BUTD 0.00 2.94 1.92 12.77 17.24 25.53
Transformer 2.99 5.48 6.58 8.82 12.00 43.75

Table 1: Action hallucination percentages at different levels of predictive uncertainty. Action predictions with
higher uncertainty are more prone to hallucination.

0 1 2 3 4 5
predictive uncertainty

0

10

20

30

40

50

60

ha
llu

cin
at

io
n 

%

FC
Att2In
BUTD
Transformer

Figure 2: Object hallucination chance at different pre-
dictive uncertainty levels. Higher predictive uncer-
tainty corresponds to a higher level of hallucination per-
centage across all models.

whether an object generated by the captioning
model is hallucinated. Hallucination probabilities
are calculated by binning all object token predic-
tion entropy and counting the percentage of hallu-
cinated objects in each bin.

3.2 Results and Discussions

Figure 2 shows the object hallucination percentages
at different predictive uncertainty levels. At higher
uncertainty levels, the generated objects are more
likely to be hallucinated. The results are consis-
tent across four different models. The transformer
model seems to have a higher hallucination chance
at high uncertainty levels than the other three mod-
els. However, this does not indicate Transformer
models hallucinate more. In fact, the transformer
model has an overall lowest hallucination percent-
age among all four models.

Beyond object hallucination Aside from object
hallucination, we also analyze verbs generated by
the models to see whether a similar relationship
holds for other types of token generations. The
same models and training procedures are adopted.
We extract all present continuous tense verbs from
the generated captions using spaCy part-of-speech

Model Correlation coefficient
epistemic aleatoric

FC 0.313 0.299
BUTD 0.334 0.228
Att2In 0.360 0.268
Transformer 0.269 0.131

Table 2: Pearson correlation coefficients between hal-
lucination and epistemic/aleatoric uncertainty in image
captioning task. Epistemic uncertainty is more indica-
tive of hallucination across four models.

tagger2 and manually label whether they are suit-
able to describe the corresponding images. There
are approximately 3500 generated captions contain-
ing verbs, and 400 are annotated for each model.
We refer to unsuitable verbs generated in the cap-
tions as action hallucinations.

Action predictions are binned according to their
uncertainty values, and the results are shown in
Table 1. We can observe that action tokens with
higher predictive uncertainty are also more likely to
be hallucinated. Noticeably, the transformer model
also has a higher action hallucination rate at high
uncertainty levels.

Examples of predictions with high and low un-
certainty Figure 3 shows some example images
and their captions generated from a BUTD model
on the test set. The token predictions of interests
and the corresponding uncertainty values are high-
lighted in bold and italic, respectively. We observe
that highly uncertain predictions often correspond
to unusual textures, features resembling the pre-
dicted tokens, or blurred images. For example,
Figure 3(b) shows a motorcycle covered in vines;
Figure 3(d) shows candles in the background which
resemble cakes; Figure 3(f) is blurred.

Epistemic and aleatoric uncertainties As we
could decompose the total uncertainty into two
parts, we are interested in which part is more in-
dicative of hallucination. Table 2 shows the Pear-

2https://spacy.io



2738

(a) a red and black motor-
cycle (0.58) parked in a
parking lot

(b) a motorcycle (4.80) is
parked on a dock with a
bird perched on top of it

(c) a bride and groom cut-
ting their wedding cake
(0.09)

(d) a woman holding a
cup and a cake (5.29)

(e) a man standing on
a tennis court holding
(0.81) a racquet

(f) a young man is hold-
ing (4.76) a skateboard in
his hand

(g) a group of children
sitting at a table eating
(1.00) pizza

(h) a man is eating (4.01)
a hot dog at a restaurant

Figure 3: Examples of token predictions generated with the BUTD model with high and low uncertainty values
for objects (top) and actions (bottom). Numbers in italic are predictive uncertainty values for the token predictions
preceding them. The examples are cherry-picked.

son correlation coefficients between hallucination
(binary) and epistemic/aleatoric uncertainty for all
four models. We can see that both parts of un-
certainty are weakly correlated with hallucination,
while epistemic uncertainty is more indicative of
hallucination across all four models compared to
aleatoric uncertainty.

4 Case Study: Data-to-text Generation

Data-to-text generation (Kukich, 1983; McKeown,
1992) is a task to generate textual content condi-
tioned on input content in the form of structured
data such as tables. Neural models are prone
to hallucination in data-to-text generation tasks
compared to traditional template-based systems,
and methods are proposed to improve faithfulness
(Wiseman et al., 2017; Nie et al., 2019; Tian et al.,
2019). In this section, we discuss the relationship
between predictive uncertainty and hallucination in
data-to-text generation with ToTTo dataset (Parikh
et al., 2020).

4.1 Generation Quality and Average
Uncertainty

We conduct token-level analysis in Section 3. Now
we take a different route and analyze sentence-
level quality with different average predictive un-
certainty values. Experiment settings are described
below.

Dataset ToTTo dataset consists of tables from
English Wikipedia articles with their correspond-

ing metadata, such as page title and section title.
Candidate description texts are modified by anno-
tators to pair with each table. Relevant table cells
supporting the description texts are highlighted by
the annotators as well. There are 120,761 table-
text pairs in training, 7,700 in validation, and 7,700
in test. We use the baseline standard linearization
approach to represent the highlighted portions of
the tables along with their corresponding metadata
(referred to as subtable with metadata in (Parikh
et al., 2020)).

Model architecture and training We use a stan-
dard sequence-to-sequence model with attention
(Bahdanau et al., 2015; Luo et al., 2018) for anal-
ysis. LSTM with 512 hidden size is used for both
the encoder and the decoder. Adam optimizer with
learning rate 1e-3 is used for the optimization. The
model is trained with cross-entropy loss for 20
epochs. The checkpoint with the best validation
loss is chosen for the evaluation. The implementa-
tion is done using fairseq (Ott et al., 2019)3.

Evaluation We evaluate the average predictive
uncertainty for all generated sentences in the val-
idation set and select the top, bottom, and middle
5% for comparison. BLEU score (Papineni et al.,
2002) is used as an automatic metric to evaluate the
similarity to the references; further manual annota-
tions are done to evaluate the fluency, faithfulness
(precision), and coverage with respect to reference

3https://github.com/pytorch/fairseq
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Unc. Level Avg Unc. BLEU Fluency (%) Faithfulness (%) Less/Neutral/More Coverage w.r.t. Ref

High 1.83 - 3.74 10.2 46.0 41.3 79.4 / 15.9 / 04.7
Medium 0.83 - 0.89 31.5 87.3 78.9 35.2 / 47.9 / 16.9
Low 0.04 - 0.27 72.8 100.0 99.0 22.2 / 70.1 / 07.7

Table 3: Evaluation results for candidates with high, medium, and low average predictive uncertainty values for
ToTTo validation set. Unc. denotes uncertainty. Higher uncertainty candidates have lower quality and higher
chance of being hallucinated/unfaithful w.r.t. the input tables.

(recall) of the generated sentences. Particularly,
faithfulness reflects how likely the generated sen-
tences hallucinate facts that are not supported by
the tables. More details of the human evaluation
metrics are described in (Parikh et al., 2020). The
goal is to measure how different the generation
qualities are for candidates with varying average
predictive uncertainties.

4.2 Results and Discussions

Table 3 summarizes the evaluation results for candi-
dates with varying uncertainty values. It is obvious
that candidates with higher average predictive un-
certainty values are less fluent and more likely to
contain hallucinations. Another interesting obser-
vation from Table 3 is that the generated sentences
with medium average uncertainty are more likely
(16.9%) to cover more table facts than the refer-
ences compared to the ones with high (4.7%) and
low (7.7%) average uncertainty. One possible ex-
planation is that some table facts that are not al-
ways included in the references, when generated,
have higher predictive uncertainty values than the
facts that are almost always included in the refer-
ences. Therefore, generated sentences with low
uncertainty tend to include less but more confident
facts considered by the model.

5 Reducing Hallucination

5.1 Uncertainty-Aware Beam Search

Because of the positive correlation between hallu-
cination probability and predictive uncertainty, it is
straightforward to incorporate uncertainty into the
caption generation process to reduce hallucination.
Beam search is the most used approximate decod-
ing method in language generation. It keeps track
of the top-B scored candidates at each generation
step and considers all single token extensions of
the current candidates.

More formally, denote the set of B candidates in
the beam at time step t− 1 as Yt−1 = {y(b)

t−1}Bb=1.
All possible single token extensions of the can-

didates in Yt−1 form a set Ct = {y | yt−1 ∈
Yt−1 ∧ yt ∈ V}. Beam at step t is then formed as:

Yt = argmax
y1···yB∈Ct

B∑
b=1

log p(yb|x)

s.t. yi 6= yj ∀i 6= j (9)

Uncertainty-aware beam search (UABS) adds a
weighted penalty term in the beam search objec-
tive to balance between log probability and pre-
dictive uncertainty of the selected candidates. Let
u(y|x) be the function to measure the aggregated
predictive uncertainty of candidate y given input x,
uncertainty-aware beam search updates the beam
at step t according to the following equation:

Yt = argmax
y1···yB∈Ct

B∑
b=1

log p(yb|x)− λu(yb|x)

s.t. yi 6= yj ∀i 6= j (10)

where λ ≥ 0 is the weight controlling the degree
to which we want to penalize decoding uncertainty.
Larger λ leads to candidates with smaller predic-
tive uncertainty. In practice, this can be done by
subtracting the weighted uncertainty term from the
aggregated log probability scores at each decoding
step before choosing top-B candidates.

An important decision in using uncertainty-
aware beam search is the choice of uncertainty
term u(y|x). We could use either the aleatoric or
epistemic part of the predictive uncertainty or both.
We compare these choices and discuss the results
in the next section.

5.2 Image Captioning Results

With larger weights on the uncertainty penalty term,
log probabilities of the decoded sentences drop.
Therefore, we expect to see a trade-off between
the quality of generated captions and the chance of
hallucination.

We empirically examine the trade-offs on the
image captioning models with different uncertainty
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Image UABS results with weight λ
0 20 80

a vase filled with flowers
sitting on top of a table

a vase filled with lots of
white flowers

there is a vase that has
flowers in it

a wooden cutting board
topped with lots of food

a wooden cutting board
topped with lots of food

a cutting board that has
a bunch on it

Table 4: Two examples of epistemic UABS results with varying penalty weights on the image captioning data set.
In the first example the model successfully avoids hallucination of a table with λ = 20 while in the second example
it is unable to change the generated caption until larger penalty weight is set.

7.0 7.5 8.0 8.5 9.0
CHAIRi

80

85

90

95

100

CI
DE

r

epistemic
aleatoric
total

(a) FC

4.6 4.8 5.0 5.2 5.4 5.6 5.8
CHAIRi

95.0
97.5

100.0
102.5
105.0
107.5
110.0

CI
DE

r

epistemic
aleatoric
total

(b) Att2In

3.754.004.254.504.755.005.255.50

CHAIRi

60
70
80
90

100
110

CI
DE

r

epistemic
aleatoric
total

(c) BUTD

3.2 3.4 3.6 3.8 4.0 4.2
CHAIRi

70

80

90

100

110

CI
DE

r

epistemic
aleatoric
total

(d) Transformer

Figure 4: CIDEr plotted against CHAIRi scores of cap-
tions generated with UABS with different uncertainty
penalty weights. Lower CHAIRi score indicates less
hallucination. Upper-left is better. Penalizing epis-
temic uncertainty in UABS achieves the best results.

choices for the penalty term. We use a five-model
ensemble for each of the four model architectures
to estimate aleatoric and epistemic uncertainties.
Due to the different magnitudes of aleatoric and
epistemic uncertainties, we choose penalty weight
λ from [0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0] for aleatoric
and total uncertainty and [10, 20, 40, 80] for epis-
temic uncertainty.

Figure 4 shows the trade-offs between CIDEr
(Vedantam et al., 2015) and CHAIRi (Rohrbach
et al., 2018) scores of captions generated with
uncertainty-aware beam search with different un-
certainty choices and penalty weights. A smaller
value of CHAIRi indicates the model is less likely
to generate hallucinated objects, and a higher
CIDEr indicates better caption quality. Therefore

λ avg. len. # obj. hal. % gen. %

ref. 10.44 6114 0 -
base 0 9.31 7328 5.5 0

epist.

10 9.21 7195 5.2 0
20 9.16 7078 4.9 0.2
40 9.15 6912 4.2 1.5
80 9.12 6493 3.6 4.6

aleat.

0.1 9.32 7250 5.4 0
0.4 9.32 7051 5.1 0
1.0 9.33 6800 4.7 1.0
4.0 9.43 4349 4.1 28.4

Table 5: Average sentence length and total number of
objects detected in the captions generated by BUTD
model with varying uncertainty penalty weight λ. Pe-
nalizing epistemic uncertainty leads to slightly shorter
lengths. Number of objects mentioned by the captions
decreases with increasing λ. gen. % denotes percent-
age of generic responses. It is moderate with epistemic
penalized results but can be very high if aleatoric uncer-
tainty is heavily penalized.

an approach that is to the upper left of another
is better. As the penalty weight increases, we ob-
serve a decrease in both the CHAIRi and the CIDEr
scores across all models.

Table 4 shows two examples of different gener-
ated captions using epistemic UABS with varying
penalty weights. In the first example, we can see
that a medium penalty weight of 20 not only helps
avoid the hallucination of a table but also adds cor-
rect information about the color of the flowers. In
the second example, a medium penalty weight is
unable to change the generated caption.

Regarding the choice of uncertainty, it is no-
table that when penalizing epistemic uncertainty,
the generated captions achieve higher CIDEr scores
than penalizing aleatoric or total uncertainty. We
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λ BLEU Fluency (%) Faithfulness (%) Less/Neutral/More Coverage w.r.t. Ref

0 40.1 92 79 34 / 60 / 6
10 33.6 83 84 41 / 51 / 8
20 27.4 73 80 52 / 42 / 6

Table 6: Evaluation results for candidates decoded with different penalty weights for UABS on ToTTo validation
set. Epistemic uncertainty is used for uncertainty penalization. Faithfulness first increases, then decreases to the
same level as regular beam search results as we increase the penalty weight λ.

Reference UABS results with weight λ
0 10 20

barrows scored 164 net points
in virgin islands at the 2008
summer olympics.

in virgin islands at the
2008 summer olympics,
barrows iii received 164
points.

in virgin islands at the
2008 summer olympics,
barrows received 164
points.

thomas barrows received
a total score of 164.

janet gaynor won the first
academy award for best actress
for her performance in the
7th heaven (1927 film).

janet gaynor won the
academy award for best
actress for his performance
in janet gaynor.

janet gaynor won the
academy award for best
actress.

janet gaynor won an
academy award for best
actress.

Table 7: Two examples of UABS results with varying penalty weights on the ToTTo validation set. Blue tokens
are correct table facts that are dropped by candidates generated with larger penalty weights; red tokens are incor-
rect/hallucinated facts that are dropped with larger penalty weights. In general, UABS with larger weights tend to
produce sentences with less information that the model is more confident with.

hypothesize that epistemic uncertainty indicates
the uncertainty of model weights. By penalizing
epistemic uncertainty, we encourage the model to
take the prediction path where it is well-calibrated.
On the other hand, penalizing aleatoric uncertainty
encourages the model to make low entropy predic-
tions in all contexts regardless of the actual data
distributions.

Table 5 shows the average sentence length, the
number of objects, the percentage of hallucinations,
and the percentage of generic responses in the cap-
tions generated by the BUTD model with different
uncertainty choices and penalty weights on the test
set. We can see that when penalizing epistemic un-
certainty, UABS results in slightly shorter caption
candidates. Both the number of objects and hal-
lucination percentage decrease as we increase the
weight λ. Interestingly, when penalizing aleatoric
uncertainty, sentence length stays approximately
the same despite lower CIDEr scores, as shown
in Figure 4. Further investigation shows that this
is partly due to an increasing number of generic
captions such as “there is no image here to provide
a caption for”. Penalizing epistemic uncertainty
is much less likely to result in such generic cap-
tions. We can see that when increasing λ from
1.0 to 4.0 with aleatoric UABS, the percentage of
generic responses jumps drastically from 1.0% to
28.4%. In comparison, epistemic UABS keeps the

generic response rates low while achieving lower
hallucination rates.

5.3 Data-to-text Results

We also evaluate the effect of UABS on the ToTTo
dataset. We choose to penalize epistemic uncer-
tainty due to its better performances than aleatoric
uncertainty, as shown in the previous section. A
five-model deep ensemble is used to quantify the
epistemic uncertainty and generate results with
UABS. We compare the BLEU score and three
human evaluation metrics among results generated
with different uncertainty penalty weights. 100
generation results are randomly selected and eval-
uated for each penalty weight choice. The results
are shown in Table 6. We can see that a relatively
small penalty weight leads to a reduced hallucina-
tion chance (hence more faithful) with a cost on
the BLEU score and fluency.

To qualitatively examine the sentences generated
with different λ values, we show example results
on the ToTTo validation set in Table 7. We can see
that with larger penalty weights, the UABS results
drop certain statements that the model deems less
confident regardless of the correctness. This results
in shorter but more confident predictions for UABS
results with a larger uncertainty penalty.
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6 Related Work

Hallucination There are many pieces of anec-
dotal evidence of hallucination presented in var-
ious NLG tasks. Most recently, researchers
started investigating the phenomenon systemati-
cally. Rohrbach et al. (2018) analyzes object hal-
lucination focusing on the objects that appeared
in the MSCOCO segmentation challenge. They
propose the CHAIR metric to quantify the severity
of object hallucination. They find that the models
tend to make predictions consistent with a language
model trained on the captions instead of a model
trained to predict objects in an image. Therefore
hallucination is caused by an over-reliance on the
language priors. Nie et al. (2019) believes that the
origin of the hallucination problem in neural sur-
face realization comes from the data side. More
specifically, datasets used for NLG systems often
include instances with information misalignment
between the input structure and the output text.
They propose integrating a language understanding
module for iterative data refinement to better align
meaning representations and output text. Müller
et al. (2019) examines hallucination in neural ma-
chine translation and observes that the phenomenon
is most common in out-of-domain settings. They
empirically compare several strategies to improve
domain robustness in NMT and find that a combi-
nation of reconstruction and a noisy channel model
for reranking is most effective.

These observations are consistent with our find-
ings. For example, domain shift and data misalign-
ment are known to lead to a higher level of epis-
temic uncertainty (Kendall and Gal, 2017) which
makes hallucination a more severe problem.

Uncertainty quantification Uncertainty quan-
tification has attracted more attention recently due
to the progress in Bayesian deep learning. Bayes
by backprop (Blundell et al., 2015), Monte Carlo
dropout (Gal and Ghahramani, 2016), and deep en-
sembles (Lakshminarayanan et al., 2017) are exam-
ples of popular Bayesian approaches to evaluate un-
certainty with deep neural models. Kendall and Gal
(2017) investigates the benefits of modeling epis-
temic and aleatoric uncertainty in vision tasks such
as semantic segmentation and depth regression.
They show that it is important to model aleatoric un-
certainty with large datasets and real-time applica-
tions and epistemic uncertainty with small datasets
and safety-critical applications. Other applications

of uncertainty quantification have been explored
in the context of time series predictions (Zhu and
Laptev, 2017), natural language processing tasks
(Xiao and Wang, 2019), etc. More broadly, predic-
tion entropy has been analyzed in different neural
language generation tasks (Ott et al., 2018; Xu
et al., 2020). Depeweg et al. (2018) shows how
to extract and decompose uncertainty in Bayesian
neural networks with latent variables for decision-
making purposes. They show that active learning
and risk-sensitive reinforcement learning both ben-
efit from uncertainty decomposition.

7 Discussion and Conclusions

We investigate the relationship between hallucina-
tion and predictive uncertainty in image captioning
and data-to-text generation tasks and show that pre-
dictions with higher uncertainty are more prone to
hallucination. In particular, epistemic uncertainty
is more indicative of hallucination than aleatoric
uncertainty. We propose uncertainty-aware beam
search to incorporate uncertainty into the decoding
process to reduce hallucination. We show that un-
certainty decomposition helps the proposed beam
search variant to achieve a better performance-
hallucination trade-off. Specifically, penalizing
epistemic uncertainty yields better results com-
pared to penalizing aleatoric or total uncertainty.

In this work, we analyze uncertainty from the
token level. This might be restrictive because uncer-
tainty corresponds to the current prediction context
instead of the predicted token. The relationship
between hallucination and uncertainty, therefore,
can be much more complicated than a linear one. It
is still possible to produce hallucinated information
with a very confident model. The proposed UABS
reduces hallucination by limiting the total uncer-
tainty of the generated text. As a result, it might
lead to shorter generations and lower generation
quality. Devising more sophisticated uncertainty-
aware training and decoding methods with less ad-
verse effects on the generation quality is a future
direction to explore.
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