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Abstract

Frame identification is one of the key chal-
lenges for frame-semantic parsing. The goal of
this task is to determine which frame best cap-
tures the meaning of a target word or phrase
in a sentence. We present a new model for
frame identification that uses a pre-trained
transformer model to generate representations
for frames and lexical units (senses) using their
formal definitions in FrameNet. Our frame
identification model assesses the suitability of
a frame for a target word in a sentence based
on the semantic coherence of their meanings.
We evaluate our model on three data sets and
show that it consistently achieves better perfor-
mance than previous systems.

1 Introduction

Research on frame semantics has grown within the
fields of natural language processing and cognitive
science since the 1970s as the study of how we
associate words and phrases with cognitive struc-
tures called frames, which characterize a small ab-
stract scene or situation (Fillmore, 1976, 1982).
The Berkeley FrameNet project (Baker et al., 1998)
provides an online lexical database for frame se-
mantics together with a corpus of annotated doc-
uments. Frame semantic parsing is the task of
automatically extracting frame semantic structures
from sentences. The process typically consists of
three steps: target identification, which identifies
frame-evoking predicates in the sentence; frame
identification, which identifies the evoked frame
for each target; and argument identification, which
identifies arguments of a frame and labels them
with semantic roles (frame elements). In this work,
we focus on the frame identification problem.

FrameNet 1.7 contains more than 13,000 lexical
units (a word lemma with a sense), each associated
with a semantic frame. A polysemous word is
associated with multiple lexical units (one for each

sense), and is therefore linked to multiple frames.
The frame identification task requires a system to
identify the most relevant frame for a target word
or phrase based on its sentence context. Here is an
example:

The pandemic has sparked a lot of prob-
lems for the economy.

Given the target word sparked, the goal is to
determine which frame should be triggered. The
word lemma spark has two senses in FrameNet:
“with obj. ignite” and “provide the stimulus for”.
The former sense is associated with the Setting fire
frame and the latter one is associated with the
Cause to start frame. The Setting fire frame is
defined as “this frame describes the creation of a
flame...”, and the Cause to start frame is defined
as “a cause, animate or inanimate, causes a pro-
cess, the effect, to begin”. So Cause to start is the
correct frame for this sentence.

Previous work has shown the success of using
feature engineering with linear classification mod-
els (Johansson and Nugues, 2007) and discrimina-
tive probabilistic models (Das et al., 2010), which
were later improved by applying distributed word
representations and deep neural network models
(Hermann et al., 2014). Syntactic information, typ-
ically dependency paths, has consistently played
an important role in frame identification (Das et al.,
2014; Peng et al., 2018).

Our work is motivated by the rich lexicographic
information about frames and lexical units provided
by the FrameNet database, which has not been fully
utilized for the frame identification task. Recent ad-
vances in large pre-trained transformer models (De-
vlin et al., 2019) have demonstrated the ability to
capture semantic meaning in dictionary definitions
for the related problem of word sense disambigua-
tion (Huang et al., 2019; Blevins and Zettlemoyer,
2020).
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Figure 1: Overview of the FIDO architecture. Each green block represents a different candidate pair (lexical unit,
frame) for the same Targeti.

Our model uses the definitions of frames and
lexical units in FrameNet as a source of knowledge
to help assess the semantic coherence between the
target word and candidate frames. Specifically, we
utilize the contextual embeddings produced by the
BERT (Devlin et al., 2019) model to determine
if a candidate lexical unit and frame express the
same meaning as the target word in the given con-
text. Our model achieves state-of-the-art perfor-
mance on two FrameNet datasets and a FrameNet-
annotated dataset based on Yahoo! Answers. Our
code is open-source and available online1.

2 Related Work

There has been considerable work on the frame
identification problem with respect to FrameNet,
especially since the SemEval 2007 shared task
(Baker et al., 2007). Johansson and Nugues (2007)
used a SVM classifier to disambiguate frames
with hand-crafted features. Das et al. (2010)
applied feature-based discriminative probabilistic
(log-linear) models for frame identification. Her-
mann et al. (2014) presented a method using dis-
tributed representations of predicates and their
syntactic context by mapping input representa-
tions and frame representations to a common la-
tent space using the WSABIE algorithm (Weston
et al., 2011). Hartmann et al. (2017) built a sim-
plified model based on Hermann et al. (2014)
and achieved comparable results. They also re-
leased a new FrameNet-annotated test set based
on user-generated web text from Yahoo! Answers.
Yang and Mitchell (2017) integrated a bidirectional
LSTM neural network and a relational network to
jointly decode frames.

More recently, Botschen et al. (2018) brought
in multimodal representations grounded in images
to improve frame identification. Peng et al. (2018)

1https://github.com/tyjiangU/fido

proposed a joint inference formulation that learns
semantic parsers from multiple datasets.

In contrast to the previous models, our model
does not rely on syntactic features. We assess se-
mantic coherence directly from the input sentence
and definitions in FrameNet.

Another line of related work is learning em-
beddings from dictionary definitions. It has been
shown that neural networks can extract semantic in-
formation from dictionary definitions (Kumar et al.,
2019; Bosc and Vincent, 2018). Recent work in
word sense disambiguation (Huang et al., 2019;
Blevins and Zettlemoyer, 2020) has demonstrated
that providing pre-trained language models with
sense definitions (glosses) can be effective. Yong
and Torrent (2020) also used the sense definitions
of lexical units for their research on frame induc-
tion. Our model adopts a similar architecture as
Huang et al. (2019), but we focus on the frame
identification task and we explore the use of both
lexical unit and frame definitions for this task.

3 Method

Given a sentence and a target word or phrase,
the frame identification task assigns the most rel-
evant frame to the target according to the sen-
tence context. Figure 1 shows the framework of
our model called FIDO (Frame Identification with
DefinitiOns). Our system takes the sentence and
the definitions of associated lexical units (senses)
and their frames as input to the BERT model, as
indicated by the green blocks. Each green block
represents the target word in the sentence, one
of its senses, and that sense’s associated frame
in FrameNet. Then we use the output vectors to
produce a probability distribution over all of the
candidate frames. We select the frame with the
maximum probability as the answer.

https://github.com/tyjiangU/fido
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3.1 Notation
We denote the ith example (i = 1, 2, ..., n) con-
sisting of a sentence and designated target word
or phrase as 〈s, t〉i, its correct frame as f∗

i , the
set of lexical units associated with the target as
l1i , l

2
i , ..., l

mi
i , and their corresponding frames as

f1
i , f

2
i , ..., f

mi
i (f∗

i is among them). We seek to
estimate the probability of the jth frame being the
correct frame by:

Pr(f j
i |〈s, t〉i) =

exp(g(〈s, t〉i, f j
i ))∑mi

k=1 exp(g(〈s, t〉i, fk
i ))

(1)

where g(·) is a function produced by our model for
scoring the assignment of a frame to the sentence
and target. We use negative log likelihood as our
loss function:

L = −
n∑

i=1

log Pr(f∗
i |〈s, t〉i) (2)

where n is the total number of training examples.

3.2 Modeling
FrameNet provides unique definitions for each lex-
ical unit (LU) and frame. A LU is a pairing of
a word lemma and a meaning (sense). Determin-
ing the correct LU (sense) uniquely determines the
correct frame because each sense of a polysemous
word is linked to a different frame. For example,
the word cut can trigger different frames depend-
ing on its meaning (the definition sentences follow
the bold lexical unit or frame names), as shown in
Table 1.

Lexical Unit Associated Frame

cut.n: the way or style
in which a garment or
the hair is cut

Hair configuration:
temporary or
permanent styles and
configurations of hair

cut.v: divide into
pieces with a knife or
other sharp implement

Cutting: an agent
cuts an item into
pieces using an
instrument

Table 1: Examples of lexical units and their associated
frames.

We use the BERT (Devlin et al., 2019) model as
the base of our architecture to produce the function
g(·) as described in Eq (1). For each target, first
we extract LUs from FrameNet that have the same

lemma and their corresponding frames to form a
set of candidate (LU, Frame) pairs. Our goal is to
predict whether the target in the sentence has the
same meaning as the definitions of a candidate LU
and its associated frame.

As input to the BERT model, we use the sen-
tence as the first sequence and concatenate a LU
definition and frame definition as the second se-
quence. Each definition starts with the LU name or
frame name and a colon, followed by the definition
description.

Instead of using the output vector of the [CLS]
token as is typical, we use the last hidden vector of
the target word as output (if there is more than one
token, we only use the first one). By passing the
output vector through a linear layer, we then get
a score for assigning a candidate frame to the sen-
tence and target. Finally the scores for all candidate
frames are passed through the softmax function to
get the probabilities in Eq (1).

4 Experiments

4.1 Datasets

FrameNet: To compare FIDO with previous sys-
tems, we evaluate our model on FrameNet (FN)
1.5 using the same train/dev/test data split as Das
et al. (2014). We also evaluate our model on FN 1.7
which has been available since 2016 and contains
nearly 20% more gold annotated data than FN 1.5.
We use the same data split as Swayamdipta et al.
(2017) for FN 1.7. Table 2 shows the number of
examples in each split.

FN 1.5 FN 1.7 YAGS

Train 15,017 19,391 -
Dev 4,463 2,272 1,000
Test 4,457 6,714 2,093

Table 2: Dataset sizes.

YAGS: YAGS (Hartmann et al., 2017) is a
FrameNet-annotated test set based on question an-
swering data from Yahoo! Answers2, a community-
driven question-and-answer forum. The annota-
tions are based on FN 1.5. We train on FN 1.5 and
evaluate on the YAGS test set to compare results
with Hartmann et al. (2017).

2https://webscope.sandbox.yahoo.com/
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Model Accuracy

Hermann et al. (2014) 88.4
Hartmann et al. (2017) 87.6
Yang and Mitchell (2017) 88.2
Open-SESAME (2017) 86.9
Botschen et al. (2018) 88.8
Peng et al. (2018) 90.0

FIDO 91.3

Table 3: Accuracy on FN 1.5.

Dataset Model Accuracy

FN 1.7
Peng et al. (2018) 89.1
FIDO 92.1

YAGS
Hartmann et al. (2017) 62.5
FIDO 70.5

Table 4: Accuracy on FN 1.7 and YAGS.

4.2 Training Details

We use the pre-trained uncased BERTBASE model
with the same settings as Devlin et al. (2019) and
fine-tune on our training data. We set the max se-
quence length as 300, batch size as 16, learning rate
started at 2e-5, and train for 5 epochs. All reported
results are averaged over 3 runs with random seeds.

4.3 Results

Table 3 compares our model with previous meth-
ods on the FN 1.5 dataset. Hermann et al. (2014),
Hartmann et al. (2017), and Open-SESAME
(Swayamdipta et al., 2017) use distributed repre-
sentations and syntactic features with neural net-
works. Botschen et al. (2018) extends Hartmann
et al. (2017) with visual embeddings. Yang and
Mitchell (2017) integrates a sequential and rela-
tional network for joint learning. Peng et al. (2018)
has achieved the best prior results on frame identifi-
cation using a multitask approach to learn semantic
parsers from disjoint corpora. It is worth noting
that besides the FN 1.5 training set, they also use
153,952 exemplar sentences for training, which is
more than 10 times the size of our training data.
FIDO achieves better performance than all of the
prior systems.

Table 4 shows our results compared to Peng et al.
(2018) on FN 1.7. FIDO achieves a 3.0% absolute
accuracy gain on this data set. The YAGS data set
(Hartmann et al., 2017) contains unknown targets

Model FN 1.5 FN 1.7

FIDO 91.3 92.1
FIDO (FRdef only) 90.1 91.1
FIDO (LUdef only) 88.9 90.7
FIDO (NO def) 80.3 79.4
FIDO (CLS) 89.3 90.5

Table 5: Ablation study on FN 1.5 and FN 1.7.

that do not have related LUs in FN 1.5 and also
unlinked targets (i.e., the provided gold frame does
not belong to the set of frames associated with this
target in FN). Our model is not able to make a cor-
rect prediction for these cases based on its design.
There are 122 unknown or unlinked targets in the
test set, on which our model will get a zero score.
Despite this limitation, our model still outperforms
Hartmann et al. (2017), which demonstrates its
ability to generalize across text genres.

4.4 Analysis

We performed an ablation study to assess the con-
tributions of each part of our model. In Table 5, the
first row shows the results for our complete FIDO
model. Rows 2-3 show results when using only the
definitions of frames (FRdef only) or LUs (LUdef
only). We see that the frame definitions contribute
the most to performance. Using the LU definitions
alone on FN 1.7 also achieves quite good results.
But combining both definitions together yields bet-
ter results than either one alone.

In order to tease apart the impact of the defi-
nitions from the impact of BERT, we did an ex-
periment replacing each definition simply with the
name of the frame or LU. These results appear in
the FIDO (NO def) row. Removing the definitions
results in a large performance drop. The definitions
clearly play a major role.

In the bottom row, we show the results of experi-
ments using the output vector of the [CLS] token
(all other settings the same), which did not perform
as well as using the target token. This is not sur-
prising as [CLS] aggregates the entire sequence
representation rather than focusing on the target.

Previous work also reported accuracy on ambigu-
ous cases (i.e., when the target word is associated
with multiple frames), which more directly shows
the model’s ability to disambiguate frames. How-
ever, the set of ambiguous targets is different across
papers. To avoid comparing apples and oranges,
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Dataset Model Amb1 Amb2

FN 1.5
Peng et al. (2018) 78.0 -
FIDO 81.0 83.6

FN 1.7
Peng et al. (2018) 77.5 -
FIDO 83.8 85.9

Table 6: Accuracy on ambiguous cases.

we report accuracy on two different sets of ambigu-
ous targets. In Table 6, the Amb1 column follows
Peng et al. (2018), which uses the gold LU’s part-
of-speech (POS) tag to form the candidate frame
list. In this setting, if a target has just one sense
when its POS is known, it is not considered to be
ambiguous. Our model outperforms Peng et al.
(2018) on both FN 1.5 and FN 1.7 datasets. The
Amb2 column shows the accuracy of ambiguous
targets using only the lemma of the target (i.e., not
relying on gold POS tags). We encourage future
work to articulate which setting is used.

We also analyzed whether unseen frames and
unseen targets were a major source of errors for
our model. On FN 1.7, our FIDO model achieved
92.1% accuracy, so it mislabeled 7.9% of the test
cases. We found that 1.4% of the test cases were
mislabeled and had an unseen frame (i.e., the gold
frame was not seen with the target in the training
data), and 0.52% of the test cases were mislabeled
and had an unseen target (i.e., the target was not
seen in the training data). Therefore only about 1/4
of the FIDO errors were due to unseen frames and
unseen targets. We conclude that even for frames
and targets that appear in the training data, there is
still substantial room for improvement on this task.

5 Conclusion

We tackled the frame identification problem by as-
sessing the semantic coherence between the mean-
ing of a target word in a sentence, and a candidate
frame. Our model exploits the frame and lexical
unit definitions provided by FrameNet and a pre-
trained transformer model to generate semantic
representations. The experiments show that this
model achieves better performance than previous
systems on two versions of FrameNet data and the
YAGS dataset. Our work has demonstrated that a
relatively simple architecture that brings together
pre-trained language models with frame and sense
definitions can produce a highly effective system
for frame identification.
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Schneider, and Noah A Smith. 2014. Frame-
semantic parsing. Computational linguistics,
40(1):9–56.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL 2010), pages 948–956, Los Ange-
les, California. Association for Computational Lin-
guistics.

https://www.aclweb.org/anthology/S07-1018
https://www.aclweb.org/anthology/S07-1018
https://doi.org/10.3115/980845.980860
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/D18-1181
https://doi.org/10.18653/v1/D18-1181
https://doi.org/10.18653/v1/D18-1181
https://doi.org/10.18653/v1/N18-1134
https://doi.org/10.18653/v1/N18-1134
https://www.aclweb.org/anthology/N10-1138
https://www.aclweb.org/anthology/N10-1138


2434

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL 2019), pages 4171–4186, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Charles J Fillmore. 1976. Frame semantics and the
nature of language. In Annals of the New York
Academy of Sciences: Conference on the origin and
development of language and speech, volume 280
(1), pages 20–32.

Charles J Fillmore. 1982. Frame semantics. In Lin-
guistics in the Morning Calm, The Linguistic Soci-
ety of Korea (ed.), pages 111–137. Seoul: Hanshin
Publishing Company.

Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and
Iryna Gurevych. 2017. Out-of-domain FrameNet se-
mantic role labeling. In Proceedings of the 15th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 2017),
pages 471–482, Valencia, Spain. Association for
Computational Linguistics.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2014),
pages 1448–1458, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing
Huang. 2019. GlossBERT: BERT for word sense
disambiguation with gloss knowledge. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP 2019), pages 3509–3514,
Hong Kong, China. Association for Computational
Linguistics.

Richard Johansson and Pierre Nugues. 2007. LTH: Se-
mantic structure extraction using nonprojective de-
pendency trees. In Proceedings of the Fourth In-
ternational Workshop on Semantic Evaluations (Se-
mEval 2007), pages 227–230, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Sawan Kumar, Sharmistha Jat, Karan Saxena, and
Partha Talukdar. 2019. Zero-shot word sense dis-
ambiguation using sense definition embeddings. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2019),
pages 5670–5681, Florence, Italy. Association for
Computational Linguistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the

2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL 2018), pages
1492–1502, New Orleans, Louisiana. Association
for Computational Linguistics.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A Smith. 2017. Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaf-
fold. arXiv preprint arXiv:1706.09528.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. Wsabie: Scaling up to large vocabulary image
annotation. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), page 2764–2770. AAAI Press.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic parsing.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 1247–1256, Copenhagen, Denmark.
Association for Computational Linguistics.

Zheng Xin Yong and Tiago Timponi Torrent. 2020.
Semi-supervised deep embedded clustering with
anomaly detection for semantic frame induction. In
Proceedings of the 12th Language Resources and
Evaluation Conference (LREC 2020), pages 3509–
3519, Marseille, France. European Language Re-
sources Association.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/E17-1045
https://www.aclweb.org/anthology/E17-1045
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.18653/v1/D19-1355
https://doi.org/10.18653/v1/D19-1355
https://www.aclweb.org/anthology/S07-1048
https://www.aclweb.org/anthology/S07-1048
https://www.aclweb.org/anthology/S07-1048
https://doi.org/10.18653/v1/P19-1568
https://doi.org/10.18653/v1/P19-1568
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/D17-1128
https://doi.org/10.18653/v1/D17-1128
https://www.aclweb.org/anthology/2020.lrec-1.431
https://www.aclweb.org/anthology/2020.lrec-1.431

