
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 2190–2202
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2190

Process-Level Representation of Scientific Protocols
with Interactive Annotation

Ronen Tamari:˚ Fan Bai; Alan Ritter; Gabriel Stanovsky:‹
:The Hebrew University of Jerusalem
;Georgia Institute of Technology

‹Allen Institute for Artificial Intelligence
{ronent,gabis}@cs.huji.ac.il

{fan.bai,alan.ritter}@cc.gatech.edu

Abstract

We develop Process Execution Graphs (PEG),
a document-level representation of real-world
wet lab biochemistry protocols, addressing
challenges such as cross-sentence relations,
long-range coreference, grounding, and
implicit arguments. We manually annotate
PEGs in a corpus of complex lab protocols
with a novel interactive textual simulator
that keeps track of entity traits and semantic
constraints during annotation. We use this data
to develop graph-prediction models, finding
them to be good at entity identification and
local relation extraction, while our corpus
facilitates further exploration of challenging
long-range relations.1

1 Introduction

There is a drive in recent years towards
automating wet lab environments, where
menial benchwork procedures such as pipetting,
centrifuging, or incubation are software-controlled,
and either executed by fully automatic lab
equipment (Lee and Miles, 2018), or with a
human-in-the-loop (Keller et al., 2019). These
environments allow reliable and precise experiment
reproducbility while relieving researchers from
tedious and laborious work which is prone
to human error (Bates et al., 2017; Prabhu
and Urban, 2017). To achieve this, several
programmatic formalisms are developed to
describe an experiment as an executable program.
For example, Autoprotocol (Lee and Miles, 2018)
defines a mix predicate taking three arguments:
mode, speed, and duration.

˚Work begun on an internship at the Allen Institute for
Artificial Intelligence.

1 Our annotated corpus, simulator, annotation interface,
interaction data, and models are available for use by the
research community at https://textlabs.github.
io/.

Figure 1: We develop a scaffold (center) between
sentence-level lab procedure representations (top) and
low-level, lab-specific instructions (bottom). The
Process Execution Graph (PEG) captures document-
level relations between procedures (orange rounded
nodes) and their arguments (blue rectangular nodes).

A promising direction to leverage automatic
wet-lab environments is a conversion from natural
language protocols, written in expressive free-form
language, to low-level instructions, ensuring a non-
ambiguous, repeatable description of experiments.

In this work, we focus on a crucial first step
towards such conversion – the extraction and
representation of the relations conveyed by the
protocol in a formal graph structure, termed
Process Execution Graphs (PEG), exemplified in
Figure 1. PEGs capture both concrete, exact
quantities (“30 minutes”), as well as vague
instructions (“swirl gently”). A researcher can then
port the PEG (either manually or automatically)
to their specific lab equipment, e.g., specifying
what constitutes a gentle swirl setting and adding
missing arguments, such as the temperature of the

https://textlabs.github.io/
https://textlabs.github.io/

2191

Figure 2: Example interaction with our simulator,
showing predicate grounding (“chill” is a temp_type
operation) input assignment (“vial” is an argument of
“chill”), validation (warning for a missing argument) and
auto-complete driven by state-tracking, where only legal
instructions in a given state are presented.

incubation in Figure 1.
Formally, PEGs are directed, acyclic labeled

graphs, capturing how objects in the lab (e.g.,
cells, tubes) are manipulated by lab operations
(e.g., mixing, incubating), and in what
order. Importantly, PEGs capture relations which
may span across multiple sentences and implicit
arguments. For example, the PEG in Figure 1
explicitly captures the relation between culture
tubes, mentioned in the first sentence, and swirl
and incubate which appear in later sentences.

To annotate long and complex lab protocols,
we develop a text-based game annotation
interface simulating objects and actions in a lab
environment (see example in Figure 2). Our
annotators are given wet-lab protocols written
in natural language taken from biochemistry
publications, and are asked to repeat their steps by
issuing textual commands to the simulator. The
commands are deterministically converted to our
PEG representation. This interface takes much of
the burden off annotators by keeping track of object
traits and commonsense constraints. For example,
when the annotator issues a transfer command
for a container, the simulator moves all its contents
as well. We find that in-house annotators were
able to effectively use this interface on complex
protocols, achieving good agreement.

Finally, we use this data to explore several
models, building upon recent advances in graph
prediction algorithms (Luan et al., 2019; Wadden
et al., 2019). We thoroughly analyze model
performance and find that our data introduces
interesting new challenges, such as complex co-
reference resolution and long-range, cross-sentence
relation identification.

In conclusion, we make the following
contributions:

• We formalize a PEG representation for
free-form, natural language lab protocols,
providing a semantic scaffold between
free-form scientific literature and low-level
instruments instruction.

• We develop a novel annotation interface for
procedural text annotation using text-based
games, and show that it is intuitive enough for
wet-lab protocol annotation by non-experts.

• We release X-WLP, a challenging corpus of
279 PEGs representing document-level lab
protocols. This size is on par with similar
corpora of procedural text (Dalvi et al., 2018;
Mysore et al., 2019; Vaucher et al., 2020).

• We develop two graph parsers: a pipeline
model which chains predictions for graph sub-
components, and a joint-model of mention
and relation detectors.

2 Background and Motivation

Several formalisms for programmatic lab controller
interfaces were developed in recent years (Yachie
and Natsume, 2017; Lee and Miles, 2018). For
instance, Autoprotocol defines 35 lab commands,
including spin, incubate, and mix.2 While
these define wet-lab experiments in a precise and
unambiguous manner, they do not readily replace
their natural language description in scientific
publications, much like a model implementation in
python does not replace its high-level description
in ML papers. Similarly to ML model descriptions,
lab protocols are often not specified enough to
support direct conversion to low-level programs.
For example, the protocol in Figure 1 does not
specify the swirling (mixing) speed or its duration.

Our process execution graph (PEG) captures
the predicate-argument structure of the protocol,
allowing it to be more lenient than a programming
language (for example, capturing that gently
modifies swirl). Better suited to represent
underspecified natural language, PEGs can serve
as a convenient scaffold to support downstream
tasks such as text-to-code assistants (Mehr et al.,
2020). For example, by asking researchers to fill in
missing required arguments for swirl.

To annotate PEGs, we leverage the sentence-
level annotations of Kulkarni et al. (2018) (WLP
henceforth). WLP, exemplified at the top of

2 https://autoprotocol.org/specification

https://autoprotocol.org/specification

2192

Figure 1, collected sentence-level structures using
the BRAT annotation tool (Stenetorp et al., 2012).
For example, capturing that cells, culture tubes
are arguments for add. However, WLP does
not capture cross-sentence implicit relations such
that culture tubes are an argument for incubate.
These are abundant in lab protocols, require
tracking entities across many sentences, and are not
easy to annotate using BRAT (see discussion in §4).
We vastly extend upon WLP annotations, aiming to
capture the full set of expressed protocol relations,
using a novel text-based games annotation interface
which lends itself to procedural text annotation.

3 Task Definition: Process Execution
Graphs

Intuitively, we extend the WLP
annotations (Kulkarni et al., 2018) from the
sentence level to entire documents, aiming
to capture all of the relations in the protocol.
Formally, our representation is a directed,
labeled, acyclic graph structure, dubbed a Process
Execution Graph (PEG), exemplified in Figures 1
and 3, and formally defined below.

Nodes PEG nodes are triggered by explicit text
spans in the protocol, e.g., “swirl", or “ice”. Nodes
consist of two types: (1) predicates, marked in
orange: denoting lab operations, such as add or
incubate; and (2) arguments, marked in blue:
representing physical lab objects (e.g., culture
tubes, cells), exact quantities (30 minutes), or
abstract instructions (e.g., gently).

Operation type Frequent example spans Count Pct.

Transfer add, transfer, place 1301 33.2
Temperature
Treatment incubate, store, thaw 503 12.8

General Initiate, run, do not vortex 469 11.9
Mix mix, vortex, inverting 346 8.8
Spin spin, centrifuge, pellet 282 7.2
Create prepare, make, set up 178 4.5
Destroy discard, decant, pour off 170 4.3
Remove remove, elute, extract 168 4.3
Measure count, weigh, measure 149 3.8
Wash wash, rinse, clean 146 3.7
Time wait, sit, leave 114 2.9
Seal cover, seal, cap 68 1.7
Convert change, transform, changes 21 0.5

Table 1: Details of PEG predicate types, along with
example frequent trigger spans and relative frequency
in X-WLP.

Argument type Frequent example spans Count Pct.

Reagent supernatant, dna, sample 3362 32.6
Measurement 1.5 mL, 595nm, 1pmol 1924 18.6
Setting overnight, room temperature 1622 15.7
Location tube, ice, plates 1373 13.3
Modifier gently, carefully, clean 1070 10.3
Device forceps, pipette tip 590 5.7
Method dilutions, pipetting 271 2.6
Seal lid, cap, aluminum foil 97 0.9

Table 2: Details of PEG argument types, along with
example frequent trigger spans and relative frequency
in X-WLP.

Node grounding The PEG formulation above is
motivated as a scaffold towards fully-executable lab
programs employed in automatic lab environments.
To achieve this, we introduce an ontology for
each of the node types, based on the Autoprotocol
specification (Lee and Miles, 2018), as indicated
below each text span in Figures 1 and 3. For
example, swirl corresponds to an Autoprotocol
mix operation, a culture tube is of type location,
and 30 minutes is a setting. See Tables 1,
2 for details of predicate and argument types
respectively, their frequencies in our data and
example spans.

Edges Following PropBank notation (Kingsbury
and Palmer, 2003), PEGs consist of three types
of edges derived from the Autoprotocol ontology,
and denoted by their labels: (1) core-roles (e.g.,
“ARG0”, “ARG1”): indicating predicate-specific
roles, aligning with Autoprotocol’s ontology. For
example, ARG0 of mix assigns the element to be
mixed; (2) non-core roles (e.g., “setting”, “site”,
or “co-ref”): indicate predicate-agnostic relations.
For example, the site argument always marks the
location in which a predicate is taking place; and
(3) temporal edges, labeled with a special “succ”
label: define a temporal transitive ordering between
predicates. In Figure 1, add occurs before swirl,
which occurs before incubate. See Table 3 for
predicate-specific core-role semantics, and Table 6
for non-cores roles types and frequencies of all
roles in X-WLP. See Appendix A.3 for the rules
defining what relations can hold between various
entity types.

Relation to Autoprotocol As shown at the
bottom of Figure 1, a PEG is readily convertible to
Autoprotocol or similar laboratory interfaces once
it is fully instantiated, thanks to edge labels and
node grounding to an ontology. For example, a

2193

Operation Role Semantics Required

Spin

ARG0 centrifuged to
produce solid phase
ARG1 and/or liquid
phase ARG2

ARG0

Convert ARG0 converted to ARG1 ARG0, ARG1
Seal ARG0 sealed with ARG1 ARG0
Create ARG* are created ARG0
General - ARG0
Destroy ARG* discarded ARG0
Measure ARG* to be measured ARG0
Mix ARG* are mixed ARG0
Remove ARG0 removed from ARG1 ARG0
Temperature
Treatment ARG* to be heated/cooled ARG0

Time Wait after operation on ARG0 ARG0

Transfer ARG* are sources,
transferred to "site" ARG0, site

Wash ARG0 washed with ARG1 ARG0

Table 3: Details of core role semantics for all operation
types. The “Required” column specifies which roles
must be filled for a given operation. ARG* is short for
tARG0,ARG1,ARG2u.

researcher can specify what gently means in terms
of mixing speed for their particular lab instruments.

Reentrancies and cross-sentence relations
While the PEG does not form directed cycles,3 it
does form non-directed cycles (or reentrancies) –
where there exists nodes u, v such that there are
two different paths from u to v. This occurs when
an object participates in two or more temporally-
dependent operations. For example, see culture
tubes, which participates in all operations in
Figure 1. In addition, edges pu, vq may be
triggered either by within-sentence relations, when
both u and v are triggered by spans in the same
sentence, or by cross-sentence relations, when u
and v are triggered by spans in different sentences.
In the following section we will show that both
reentrancies and cross-sentence relations, which
are not captured by previous annotations, are
abundant in our annotations.

4 Data Collection: The X-WLP Corpus

In this section, we describe in detail the creation
of our annotated corpus: X-WLP. The protocols in
X-WLP are a subset (44.8%) of those annotated in
the WLP corpus. These were chosen because they
are covered well by Autoprotocol’s ontology (for
details on ontology coverage, see §A.1).

In total, we collected 3,708 sentences (54.1K

3 This happens because the temporal relations define a partial
ordering imposed by the linearity of the execution.

X-WLP (ours) MSPTC CSP ProPara

words 54k 56k 45k 29k
words / sent. 14.6 26 25.8 9
sentences 3,708 2,113 1,764 3,300
sentences / docs. 13.29 9 N/A 6.8
docs. 279 230 N/A 488

Table 4: Statistics of our annotated corpus (X-WLP).
X-WLP annotates complex documents, constituting
more than 13 sentences on average. X-WLP overall
size is on par with other recent procedural corpora,
including ProPara (Dalvi et al., 2018), material
science (MSPTC; Mysore et al. (2019)) and chemical
synthesis procedures (CSP; Vaucher et al. (2020)). CSP
is comprised of annotated sentences (document level
information is not provided).

tokens) in 279 wet lab protocols annotated with
our graph representation. As can be seen in
Table 4, X-WLP annotates long examples, often
spanning dozens of sentences, and its size is
comparable (e.g., in terms of annotated words) to
the ProPara corpus (Dalvi et al., 2018) and other
related procedural datasets.

4.1 WLP as a Starting Point

Despite WLP’s focus on sentence-level relations
(see top of Figure 1), it is a valuable starting
point for a document-level representation. We
pre-populate our PEG representations with WLP’s
gold object mentions (e.g., cells, 30 minutes),
operation mentions (swirl and incubate), and
within-sentence relations (e.g., between gently and
swirl). We ask annotators to enrich them with
type grounding for operations and arguments, as
well as cross-sentence relations, as defined in §3.
From these annotations we obtain process-level
representations as presented in Figures 1 and 3.

4.2 Process-Level Annotation Interface:
Text-Based Simulator

Annotating cross-sentence relations and grounding
without a dedicated user interface is an arduous
and error-prone prospect. Consider as an example
the ligation mixture mention in Figure 3. This
mention is a metonym for vial (5 sentences
earlier), after mixing in the ligase. This kind of
metonymic co-reference is known to be difficult for
annotation (Jurafsky and Martin, 2009), and indeed,
such complicated annotation has been a factor
in the omission of cross-sentence information in
similar domains (Mysore et al., 2019). A simulator
can provide a natural way to account for it by

2194

Figure 3: A full process gold PEG annotation from X-WLP for a real-world wet lab protocol whose text is presented
in the lower right corner (protocol 512), exemplifying several common properties: (1) complex, technical language,
in relatively short sentences; (2) a chain of temporally-dependent, cross-sentence operations; (3) a common object
that is being acted upon through side effects throughout the process (vial); and (4) vial is mostly omitted in the text
after being introduced in the first sentence, despite participating in all following sentences. In the last sentence it
appears with a metonymic expression (ligation mixture).

representing the relevant temporal and contextual
information: after sentence 4, vial contains the
ligation buffer mixed with other entities.

To overcome these challenges and achieve high-
quality annotations for this complex task, we
develop a simulator annotation interface, building
upon the TextWorld framework (Côté et al.,
2018). This approach uses text-based games as the
underlying simulator environment, which we adapt
to the biochemistry domain. The human annotator
interacts with the text-based interface to simulate
the raw wet lab protocol (Figure 2): setting the
types of operations (the first interaction sets the
span “chill" as a temperature operation) and
assigning their inputs (the last line assigns vial
as an input to chill), while the simulator tracks
entity states and ensures the correct number and
type of arguments, based on the Autoprotocol
ontology. For example, the second interaction
in Figure 2 indicates a missing argument for the
chill operation (the argument to be chilled).
Finally, tracking temporal dependency (“succ”
edges) is also managed entirely by the simulator by
tracking the order in which the annotator issues the
different operations.

Further assistance is provided to annotators in
the form of an auto-complete tool (last interaction
in Figure 2), visualization of current PEG and a
simple heuristic “linter” (Johnson, 1977) which
flags errors such as ignored entities by producing
a score based on the number of connected
components in the output PEG.

See the project web page for the complete
annotation guidelines, visualizations of annotated
protocols, and demonstration videos of the
annotation process.

4.3 Data Analysis
Four in-house CS undergraduate students with
interest in NLP used our simulator to annotate the
protocols of X-WLP, where 44 of the protocols
were annotated by two different annotators to
estimate agreement.

Inter-annotator agreement. We turn
to the literature on abstract meaning
representation (AMR; Banarescu et al., 2013)
for established graph agreement metrics, which
we adapt to our setting. Similarly to our PEG
representation, the AMR formalism has predicate
and argument nodes (lab operations and entities in
our notation) and directed labeled edges which can
form undirected cycles through reentrancies (nodes
with multiple incoming edges).4 In Table 5 we
report a graph Smatch score (Cai and Knight,
2013) widely used to quantify AMR’s graph
structure agreement, as well as finer grained graph
agreement metrics, adapted from Damonte et al.
(2017). Smatch values are comparable to those
obtained for AMR, where reported gold agreement

4 Unfortunately, we cannot follow this analogy to train
AMR models on our graphs, since, to the best of our
knowledge, they are currently limited to single sentences,
notwithstanding a promising recent initial exploration into
multi-sentence AMR annotation (O’Gorman et al., 2018).

2195

Agreement Metric F1

Smatch 84.99
Argument identification 89.72
Predicate identification 86.68
Core roles 80.52
Re-entrancies 73.12

Table 5: X-WLP inter-annotator agreement metrics.
Smatch (Cai and Knight, 2013) quantifies overall graph
structure. Following metrics provide a finer-grained
break down (Damonte et al., 2017).

Relation # Intra. # Inter. Total # Re-entrancy

Core
‚ ARG0 2962 952 3914 1645
‚ ARG1 560 127 687 3
‚ ARG2 84 123 207 77
Total (core) 3606 1202 4808 1725

Non-Core
‚ site 1306 325 1631 360
‚ setting 3499 2 3501 -
‚ usage 1114 24 1138 -
‚ co-ref 129 1575 1704 -
‚ located-at 199 72 271 -
‚ measure 2936 18 2954 -
‚ modifier 1861 2 1863 -
‚ part-of 72 65 137 -

Total (non-core) 11116 2083 13199 360

Temporal 1218 788 2006 -

Grand Total 15940 (80%) 4073 (20%) 20013 2085

Table 6: Breakdown of PEG relation types by frequency
in X-WLP, showing counts of inter/intra-sentence
relations. Re-entrancies are possible only for core
and “site” arguments, and may be either inter or intra-
sentence.

varies between 0.69´0.89 (Cai and Knight, 2013),
while our task deals with longer, paragraph length
representations. Reentrancies are the hardest
for annotators to agree on, probably since they
involve longer-range, typically cross-sentence
relations. On the other hand, local decisions such
as argument and predicate identification achieve
higher agreement, and also benefit greatly from the
annotations of WLP.

Information gain from process-level annotation.
Analysis of the relations in X-WLP, presented
in Table 6, reveals that a significant proportion
of arguments in PEGs are re-entrancies (32.4%)
or cross-sentence (50.3%).5 Figure 3 shows a
representative example, with the vial participating
in multiple re-entrancies and long-range relations,

5 For these calculations we consider only argument relations
that can in principle occur as re-entrancies: “ARG*” and
“site”, see relation ontology in Appendix A.3 for details.
Cross-sentence calculation includes co-reference closure
information.

Dataset Avg. #args/op #Ops. w/o core arg. #Ops. Pct.

WLP 1.87 3297 17485 18.9
X-WLP 3.01 0 3915 0.0

Table 7: Comparison of average arguments per
operation and percentage of semantically under-
specified operations (missing core arguments) in WLP
and X-WLP.

triggered by each sentence in the protocol. These
relations are crucial to correctly model the
protocols at the process level, and are inherently
missed by sentence-level formalisms, showing the
value of our annotations.

To shed light on the additional process-level
information captured by our approach relative to
WLP, in Table 7 we compare the average number
of arguments per operation node as well as the
amount of operation nodes with no core arguments.
For example, see the swirl instruction at the
top of Figure 1: in WLP, this predicate has
no core role argument and is thus semantically
under-defined. X-WLP correctly captures the core
role of culture tubes. By definition, our use of
input validation by the simulator prevents semantic
under-specification, which is likely a significant
factor in the higher counts for cross-sentence
relations and overall average arguments in X-WLP.

Annotation cost. The time to annotate an
average document of 13.29 sentences was
approximately 53 minutes (roughly 4 minutes per
sentence), not including annotator training. Our
annotator pay was 13 USD / hour. The overall
annotation budget for X-WLP was roughly 3,200
USD.

5 Models

We present two approaches for PEG prediction.
First, in §5.1 we design models for separate graph
sub-component prediction, which are chained to
form a pipeline PEG prediction model. Second, in
§5.2 we present a model which directly predicts the
entire PEG using a span-graph prediction approach.

5.1 Pipeline Model (PIPELINE)
A full PEG representation as defined in §3 can be
obtained by chaining the following models which
predict its sub-components. In all of these, we use
SciBERT (Beltagy et al., 2019) which was trained
on scientific texts similar to our domain.

2196

Mention identification. Given a scientific
protocol written in natural language, we begin
by identifying all experiment-involved text spans
mentioning lab operations (predicates) or entities
and their traits (arguments), which are the building
blocks for PEGs. We model this problem of
mention identification as a sequence tagging
problem. Specifically, we transfer span-level
mention labels, which are annotated in the WLP
corpus into token-level labels using the BIO
tagging scheme, then fine-tune the SciBERT model
for token classification.

Predicate grounding. Next, we ground
predicate nodes into the operation ontology types
discussed in §3. See Table 1 in the Appendix for
the complete list. Predicted mentions are marked
using special start and end tokens ([E-start]
and [E-end]), then fed as input to SciBERT. The
contextual embedding of [E-start] is input to
a linear softmax layer to predict the fine-grained
operation type.

Operation argument role labeling. Once the
operation type is identified, we predict its
semantic arguments and their roles. Given
an operation and an argument mention, four
special tokens are used to specify the positions
of their spans (Baldini Soares et al., 2019). Type
information is also encoded into the tokens, for
example, when the types of the operator and its
argument are mix-op and reagent respectively,
four special tokens [E1-mix-op-start],
[E1-mix-op-end], [E2-rg-start] and
[E2-rg-end] are used to denote the spans
of the mention pair. After feeding the input
into SciBERT, the contextualized embeddings of
[E1-op-mix-start] and [E2-rg-start]
are concatenated as input to a linear layer that
is used to predict the entity’s argument role.
Arguments of an operation can be selected from
anywhere in the protocol, leading to many cross-
sentence operation-argument link candidates. To
accommodate cross-sentence argument roles, we
use the entire document as input to SciBERT for
each mention pair. However, SciBERT is limited
to processing sequences of at most 512 tokens.
To address this limitation, longer documents are
truncated in a way that preserves surrounding
context, when encoding mention pairs.6 Only 8

6 Given an input document, which has more than 512 words,
with n words between two mentions, we truncate the context

of the 279 protocols in our dataset contain more
than 512 tokens.

Temporal ordering. Finally, we model order of
operations using the succ relation (see Figure 3).
These are predicted using a similar approach as
argument role labeling, where special tokens are
used to encode operation spans.

5.2 Jointly-Trained Model (MULTI-TASK)
To explore the benefits of jointly modeling
mentions and relations, we experiment with
a graph-based multi-task framework based on
DYGIE++ model (Wadden et al., 2019). Candidate
mention spans are encoded using SciBERT, and a
graph is constructed based on predicted X-WLP
relations and argument roles. A message-passing
neural network is then used to predict mention
spans while propagating information about related
spans in the graph (Dai et al., 2016; Gilmer et al.,
2017; Jin et al., 2018).

This approach requires computing hidden state
representations for all Opn4q pairs of spans in
an input text, which for long sequences, will
exhaust GPU memory. While Wadden et al. (2019)
considered primarily within-sentence relations,
our model must consider relations across the
entire protocol, which makes this a problem of
practical concern. To address this, we encode a
sliding window of w adjacent sentences when the
full protocol does not fit into memory, allowing
smaller windows for the start and end of the
protocol, and concatenate sentences within each
window as inputs to the model. As a result, each
sentence is involved in w windows leading to
repeated, possibly contradicting predictions for
both mentions and relations. To handle this,
we output predictions agreed upon by at least k
windows, where k is a hyperparameter tuned on a
development set.

6 Experiments

In §5, we presented a pipelined approach to PEG
prediction based on SciBERT and a message-
passing neural network that jointly learns span
and relation representations. Next, we describe
the details of our experiments and present
empirical results demonstrating that X-WLP
supports training models that can predict PEGs
from natural language instructions.

to keep at most p512´ nq{2 words for each side.

2197

Data Split System F1

original
Kulkarni et al. (2018) 78.0
Wadden et al. (2019) 79.7
PIPELINE 78.3

X-WLP-eval PIPELINE 74.7

Table 8: Mention identification test set F1 scores for
models on the WLP dataset. Top: WLP dataset with the
original train/dev/test split. Bottom: excluding X-WLP
protocols from the WLP training data, and using them
for evaluation.

Data. X-WLP is our main dataset including 279
fully annotated protocols. Statistics of X-WLP
are presented in Table 4. Additionally, we have
344 protocols from the original WLP dataset. We
use this auxiliary data only for training mention
taggers in the pipeline model, and use X-WLP for
all other tasks. For argument role labeling and
temporal ordering, negative instances are generated
by enumerating all possible mention pairs whose
types appear at least once in the gold data. We use
5-fold cross validation; 2 folds (112 protocols) are
used for development, and the other 3 folds (167
protocols) are used to report final results.

Model setup. The PIPELINE framework employs
a separate model for each task, by default using
the propagated predictions from previous tasks as
input. In addition, we evaluate the model for each
task with gold input denoted as PIPELINE(gold).
Finally, the MULTI-TASK framework learns all
tasks together and we decompose its performance
into the component subtasks.

Implementation details. We use the uncased
version of SciBERT7 for all our models due to the
importance of in-domain pre-training. The models
under the PIPELINE system are implemented using
Huggingface Transformers (Wolf et al., 2020), and
we use AdamW with the learning rate 2 ˆ 10´5

for SciBERT finetuing. For the MULTI-TASK

framework, we set the widow size w to 5, the
maximum value that enables the model to fit in
GPU memory. For all other hyperparameters,
we follow the settings of the WLP experiments
in (Wadden et al., 2019).

6.1 Results
The results of the two models on the different
subtasks are presented in Tables 8- 11. We identify
three main observations based on these results.

7 https://github.com/allenai/scibert

System P R F1

MULTI-TASK 76.0 69.0 72.3
PIPELINE 71.8 76.3 74.0
‚ w/ gold mentions 79.0 80.2 79.6

Table 9: Predicate grounding test set results.

Task MULTI-TASK PIPELINE # gold
Core
‚ All roles 57.9 53.7 2839
‚ All roles (gold mentions) - 76.5 2839
‚ ARG0 61.0 57.1 2313
‚ ARG1 36.1 32.9 412
‚ ARG2 69.7 61.4 114

Non-Core
‚ All roles 55.7 48.8 4826
‚ All roles (gold mentions) - 78.1 4826
‚ site 58.7 55.4 962
‚ setting 77.4 74.7 974
‚ usage 35.6 33.0 296
‚ co-ref 39.8 36.7 1014
‚ measure 63.3 56.6 804
‚ modifier 51.0 41.8 519
‚ located-at 9.7 13.3 179
‚ part-of 0.5 10.8 78

Temporal Ordering 61.8 57.3 2176
Temp. Ord. (gold mentions) - 76.3 2176

Table 10: Operation argument role labeling (core and
non-core roles, decomposed by relation) and temporal
ordering test set F1 performance.

Split MULTI-TASK PIPELINE # gold
Intra-sentence 63.4 58.2 2160
Inter-sentence 32.5 39.1 679

Table 11: Operation argument role labeling (core
roles) test set F1, decomposed based on whether
the operation and the argument are triggered within
the same sentence (intra-sentence) versus different
sentences (inter-sentence).

First, PIPELINE outperforms MULTI-TASK on
the operation classification task in Table 9, as it
uses all protocols from WLP as additional training
data to improve mention tagging.

Second, MULTI-TASK performs better than the
PIPELINE approach on most relation classification
tasks in Table 10, but is worse than PIPELINE when
PIPELINE uses gold mentions, demonstrating that
jointly modeling mentions and relations helps in
mitigating error propagation.

Third, cross-sentence relations are challenging
for both models, as shown in Table 11. This
explains the low performance of co-ref, which
is comprised of 92.4% cross-sentence relations.

In addition, there are a couple of interesting
points to note. In Table 8, the performance of
PIPELINE on the X-WLP subset is lower than its
performance on the WLP test set, likely because

https://github.com/allenai/scibert

2198

there are fewer protocols in the training set. For
the relation-decomposed performance in Table 10,
we can see that some of the relations like “ARG2”
can be correctly predicted by MULTI-TASK using
only a few gold labels while some more widely
used relations are harder to learn, such as “ARG0”
and “site”; indeed, “ARG2” is only used in the
spin operation (see Table 3), while the other roles
participate in more diverse contexts.

7 Related Work

Natural Language Processing (NLP) for scientific
procedural text is a rapidly growing field. To-
date, most approaches have focused on text-
mining applications (Isayev, 2019) and typically
annotate only shallow, sentence-level semantic
structures (e.g., Fig. 1, top). Examples include
WLP (Kulkarni et al., 2018) and materials science
procedures (Mysore et al., 2019; Kuniyoshi et al.,
2020). Recent interest in automation of lab
procedures has also led to sentence-level annotation
of procedural texts with action sequences designed
to facilitate execution (Vaucher et al., 2020).

However, as noted in recent concurrent
work (Mehr et al., 2020), neither sentence-level
semantic structures nor action sequences are
sufficient for the goal of converting text to
a machine-executable synthesis procedure; for
this purpose, a more structured, process-level
semantic representation is required. In particular,
executable representations require a structured
declaration of the locations and states of the
different materials throughout a process, details
not represented by sentence-level annotations.
Our simulator can naturally represent such
information by maintaining a stateful model of
the process. Simulation fidelity can be controlled
by implementing the execution semantics of
operations to the level of detail required.

Mehr et al. (2020) have similarly proposed a
process-level executable representation, but use
an NLP pipeline consisting primarily of rules and
simple pattern matching, relying on a human-in-
the-loop for corrections; linking our approach with
their framework is a promising future direction.

Structurally, PEGs are similar to abstract
meaning representation (AMR; Banarescu et al.
2013), allowing us to use agreement and
performance metrics developed for AMR. In
contrast with the sentence-level AMR, a major
challenge in this work is annotating and predicting

procedure-level representations.8

Another line of research focuses on procedural
text understanding for more general domains:
simple scientific processes (Dalvi et al., 2018),
open domain procedural texts (Tandon et al., 2020),
and cooking recipes (Kiddon et al., 2015; Bosselut
et al., 2018). These works represent process-level
information and entity state changes, but typically
feature shorter processes, simpler language and an
open ontology, compared with our domain-specific
terminology and grounded ontology.

Our framework also provides a link to text-based
game approaches to procedural text understanding.
Tamari et al. (2019) modelled scientific procedures
with text-based games but used only synthetic data.
Our simulator enables leveraging recent advances
on text-based games agents (e.g., (Adhikari et al.,
2020)) towards natural language understanding.

8 Conclusion

We developed a novel meaning representation and
simulation-based annotation interface, enabling
the collection of process-level annotations of
experimental procedures, as well as two parsers
(pipeline and joint modelling) trained on this
data. Our dataset and experiments present
several directions for future work, including the
modelling of challenging long range dependencies,
application of text-based games for procedural
text understanding, and extending simulation-based
annotation to new domains.

Acknowledgments

We would like to thank Peter Clark, Noah
Smith, Yoav Goldberg, Dafna Shahaf, and Reut
Tsarfaty for many fruitful discussions and helpful
comments, as well as the X-WLP annotators:
Pranay Methuku, Rider Osentoski, Noah Zhang
and Michael Zhan. This work was partially
supported by an Allen Institute for AI Research
Gift to Gabriel Stanovsky. This material is
based upon work supported by the NSF (IIS-
1845670) and the Defense Advanced Research
Projects Agency (DARPA) under Contract No.
HR001119C0108. The views, opinions, and/or
findings expressed are those of the author(s) and
should not be interpreted as representing the official
views or policies of the Department of Defense or
the U.S. Government.

8 In addition, in contrast with AMR, PEG nodes are directly
mapped to the trigger spans in the document.

2199

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté,

Mikuláš Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and Will Hamilton. 2020. Learning dynamic belief
graphs to generalize on text-based games. Advances
in Neural Information Processing Systems, 33.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching
the blanks: Distributional similarity for relation
learning. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2895–2905, Florence, Italy. Association for
Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In LAW@ACL.

Maxwell Bates, Aaron J Berliner, Joe Lachoff, Paul R
Jaschke, and Eli S Groban. 2017. Wet lab accelerator:
a web-based application democratizing laboratory
automation for synthetic biology. ACS synthetic
biology, 6(1):167–171.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3615–3620,
Hong Kong, China. Association for Computational
Linguistics.

Antoine Bosselut, Corin Ennis, Omer Levy, Ari
Holtzman, Dieter Fox, and Yejin Choi. 2018.
Simulating action dynamics with neural process
networks. In International Conference on Learning
Representations.

Shu Cai and Kevin Knight. 2013. Smatch: an
evaluation metric for semantic feature structures.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 748–752, Sofia, Bulgaria.
Association for Computational Linguistics.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2018. Textworld: A learning
environment for text-based games. In Workshop on
Computer Games, pages 41–75. Springer.

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative
embeddings of latent variable models for structured
data. In International conference on machine
learning, pages 2702–2711.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for

process paragraph comprehension. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 1595–1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio
Satta. 2017. An incremental parser for Abstract
Meaning Representation. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 536–546, Valencia, Spain.
Association for Computational Linguistics.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural
message passing for quantum chemistry. In
Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org.

Olexandr Isayev. 2019. Text mining facilitates materials
discovery. Nature, 571(7763):42–43.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola.
2018. Junction tree variational autoencoder for
molecular graph generation. In International
Conference on Machine Learning.

Stephen C Johnson. 1977. Lint, a C program checker.
Citeseer.

Daniel Jurafsky and James H. Martin. 2009. Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics,
and Speech Recognition, second edition. Pearson
Prentice Hall.

Ben Keller, Justin Vrana, Abraham Miller, Garrett
Newman, and Eric Klavins. 2019. Aquarium: The
Laboratory Operating System version 2.6.0.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 982–
992, Lisbon, Portugal. Association for Computational
Linguistics.

Paul Kingsbury and Martha Palmer. 2003. Propbank:
the next level of treebank.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and
Raghu Machiraju. 2018. An annotated corpus
for machine reading of instructions in wet lab
protocols. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 97–
106, New Orleans, Louisiana. Association for
Computational Linguistics.

Fusataka Kuniyoshi, Kohei Makino, Jun Ozawa, and
Makoto Miwa. 2020. Annotating and extracting
synthesis process of all-solid-state batteries from

https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://openreview.net/forum?id=rJYFzMZC-
https://openreview.net/forum?id=rJYFzMZC-
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://doi.org/10.1038/d41586-019-01978-x
https://doi.org/10.1038/d41586-019-01978-x
https://doi.org/10.5281/zenodo.2583232
https://doi.org/10.5281/zenodo.2583232
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/N18-2016
https://doi.org/10.18653/v1/N18-2016
https://doi.org/10.18653/v1/N18-2016
https://www.aclweb.org/anthology/2020.lrec-1.239
https://www.aclweb.org/anthology/2020.lrec-1.239

2200

scientific literature. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 1941–1950, Marseille, France. European
Language Resources Association.

Peter L Lee and Benjamin N Miles. 2018. Autoprotocol
driven robotic cloud lab enables systematic machine
learning approaches to designing, optimizing, and
discovering novel biological synthesis pathways. In
SIMB Annual Meeting 2018. SIMB.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A
general framework for information extraction using
dynamic span graphs. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3036–3046, Minneapolis, Minnesota.
Association for Computational Linguistics.

S. Hessam M. Mehr, Matthew Craven, Artem I.
Leonov, Graham Keenan, and Leroy Cronin. 2020.
A universal system for digitization and automatic
execution of the chemical synthesis literature.
Science, 370(6512):101–108.

Ben Miles and Peter L. Lee. 2018. Achieving
reproducibility and closed-loop automation in
biological experimentation with an iot-enabled lab
of the future. SLAS TECHNOLOGY: Translating
Life Sciences Innovation, 23(5):432–439. PMID:
30045649.

Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin
Huang, Haw-Shiuan Chang, Emma Strubell, Jeffrey
Flanigan, Andrew McCallum, and Elsa Olivetti.
2019. The materials science procedural text corpus:
Annotating materials synthesis procedures with
shallow semantic structures. In Proceedings of the
13th Linguistic Annotation Workshop, pages 56–64.

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, and Martha Palmer.
2018. AMR beyond the sentence: the multi-
sentence AMR corpus. In Proceedings of the
27th International Conference on Computational
Linguistics, pages 3693–3702, Santa Fe, New
Mexico, USA. Association for Computational
Linguistics.

Gurpur Rakesh D Prabhu and Pawel L Urban. 2017.
The dawn of unmanned analytical laboratories. TrAC
Trends in Analytical Chemistry, 88:41–52.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. Brat: A web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter
of the Association for Computational Linguistics,
EACL ’12, page 102–107, USA. Association for
Computational Linguistics.

Ronen Tamari, Hiroyuki Shindo, Dafna Shahaf, and
Yuji Matsumoto. 2019. Playing by the book: An
interactive game approach for action graph extraction
from text. In Proceedings of the Workshop on
Extracting Structured Knowledge from Scientific
Publications, pages 62–71, Minneapolis, Minnesota.
Association for Computational Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural
text. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6408–6417, Online. Association for
Computational Linguistics.

Alain C. Vaucher, Federico Zipoli, Joppe Geluykens,
Vishnu H. Nair, Philippe Schwaller, and Teodoro
Laino. 2020. Automated extraction of chemical
synthesis actions from experimental procedures.
Nature Communications, 11(1):1–11.

David Wadden, Ulme Wennberg, Yi Luan, and
Hannaneh Hajishirzi. 2019. Entity, relation,
and event extraction with contextualized span
representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5784–5789, Hong Kong,
China. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Nozomu Yachie and Tohru Natsume. 2017. Robotic
crowd biology with maholo labdroids. Nature
Biotechnology, 35(4):310–312.

https://www.aclweb.org/anthology/2020.lrec-1.239
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.1126/science.abc2986
https://doi.org/10.1126/science.abc2986
https://doi.org/10.1177/2472630318784506
https://doi.org/10.1177/2472630318784506
https://doi.org/10.1177/2472630318784506
https://doi.org/10.1177/2472630318784506
https://www.aclweb.org/anthology/C18-1313
https://www.aclweb.org/anthology/C18-1313
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

2201

A Annotation Schema

In the following subsections, we provide further
details of the annotation schema used. Section
§A.1 describes how the ontology was constructed
based on Autoprotocol, and §A.2 provides details
on ontology coverage for the X-WLP protocols
which were chosen for annotation. Section §A.3
details the rules defining valid PEG edges, or what
relations can hold between various entity types.
The annotation guidelines given to annotators are
available on the project web page.

A.1 Ontology Construction
Operation nodes correspond to “action” entities
in WLP. In X-WLP, to facilitate conversion to
executable instructions, we further add a fine-grain
operation type; for each operation, annotators were
required to select the closest operation type, or a
general type if none applied.

To define our operation type ontology, we
consulted the Autoprotocol (Miles and Lee,
2018) open source standard used for executable
biology lab protocols. Autoprotocol defines
35 different operation types,9 from which we
grouped relevant types into higher level clusters;
X-WLP operation types are broadly aligned with
Autoprotocol operation types, but are more general
in scope, to not limit applicability to any one
platform. For example, we use a more general
measure operation type rather than the specific
types of measurement operations in Autoprotocol
(spectrophotometry, measure-volume,
etc.).

Table 12 maps between X-WLP operation
types and their equivalents in Autoprotocol, if
one exists. The X-WLP operation types do
not perfectly overlap with Autoprotocol as the
former is written for humans, while the latter
is designed for the more constrained domain of
robot execution. Accordingly, some operations not
currently supported in Autoprotocol were added,
like wash. See Table 1 for example mention spans
for each X-WLP operation type.

The set of supported operations was chosen to
maximize coverage over the types of operations
found in the sentence-level annotations of WLP
(see §A.2 below for details).

9 Based on https://github.com/autoprotocol/
autoprotocol-python/blob/master/
autoprotocol/instruction.py as of January
2021.

A.2 Ontology Coverage

To identify candidate protocols for annotation
which were well covered by the ontology, we
created a mapping between ontology instruction
types and the 100 most frequent text-spans of
WLP action entities (constituting 74% of all
action spans in WLP). WLP action text spans that
didn’t correspond to any ontology instruction were
mapped to a general label; action text spans that
could be mapped to the ontology we call ontology-
covered actions. For annotation in X-WLP, we
then selected WLP protocols estimated to have a
high percentage of ontology-covered actions (based
on the mapping above). This simple method was
found to be effective in practice, as measured by the
actual ontology coverage of X-WLP annotations,
summarized in Fig. 4.

For each annotated protocol, we calculated the
percentage of known (not general) operations.
Fig. 4 plots, for each coverage percentile (y-axis),
the percentage (x-axis) of X-WLP protocols with
at least y percent known operations. From the plot
we can see for example that half of the protocols in
X-WLP have >90% ontology coverage, and 90%
of the protocols have >70% ontology coverage.

X-WLP Operation Autoprotocol Instructions

Spin Spin
Convert N/A
Seal Seal, Cover
Create Oligosynthesize, Provision
General N/A
Destroy N/A

Measure

Absorbance, Fluorescence,
Luminescence, IlluminaSeq,
SangerSeq, MeasureConcentration,
MeasureMass, MeasureVolume,
CountCells, Spectrophotometry,
FlowCytometry, FlowAnalyze,
ImagePlate

Mix Agitate
Remove Unseal, Uncover

Temperature Treatment Thermocycle, Incubate,
FlashFreeze

Transfer

AcousticTransfer,
MagneticTransfer,
Dispense, Provision,
LiquidHandle, Autopick

Wash N/A
Time N/A

Table 12: Mapping between X-WLP operation types
and corresponding Autoprotocol instructions (if any
exist). Autoprotocol operations tend to be more specific
as they are intended for machine execution. X-WLP
protocols are written for humans, so operation types are
defined at a higher level of abstraction.

https://github.com/autoprotocol/autoprotocol-python/blob/master/autoprotocol/instruction.py
https://github.com/autoprotocol/autoprotocol-python/blob/master/autoprotocol/instruction.py
https://github.com/autoprotocol/autoprotocol-python/blob/master/autoprotocol/instruction.py

2202

Figure 4: Plot displaying for each coverage percentile
(y-axis), the percentage (x-axis) of X-WLP protocols
with at least y percent known (ontology-covered)
operations.

A.3 Syntax governing PEG edges

Formally, edges are represented by triplets of the
form ps, r, tq where s and t are argument nodes
and r is a core or non-core role. Dependent on a
particular role r, certain restrictions may apply to
the fine-grained type of s and t, as described below.

A.3.1 Core Roles

Core roles, displayed in Table 3, represent
operation specific roles, for example “ARG1” for
the seal operation is a seal entity representing the
seal of the “ARG0” argument. For core roles, the
following restrictions hold:

• Source nodes s are restricted
to any of the object types s P

treagent, device, seal, locationu representing
physical objects. The only exception to this
rule is that “ARG1” for the seal operation
must be a seal entity.

• Target node t is a predicate of one of the types
in Table 1.

• r is a core argument relation, r P

tARG0,ARG1,ARG2u or ARG* for short.
• Certain roles may be required for a valid

predicate t, for example the transfer
operation requires at minimum both source
and target arguments to be specified by the
ARG0 and “site” roles, respectively.

Role Source Types Target Types

co-ref Object Object
measure Measurement Object
setting Setting Object

modifier Modifier Object, Operation,
Measurement

usage Method, Object Operation
located-at Object Object
part-of Object Object

Table 13: Details of non-core roles and restrictions
on source and target node types. Object is short for
the set of entity types representing physical objects:
treagent, device, seal, locationu.

A.3.2 Non-core Roles
Non-core roles (e.g., “setting”, “site”, or “co-ref”)
indicate predicate-agnostic labels. For example, the
site argument always marks the location in which
a predicate is taking place. Non-core roles are
displayed in Table 13, and role-specific restrictions
on s and t are listed under “Source Types” and
“Target Types”, respectively.

