
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 1281–1291
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1281

Few-Shot Semantic Parsing for New Predicates

Zhuang Li, Lizhen Qu∗, Shuo Huang, Gholamreza Haffari
Faculty of Information Technology

Monash University
firstname.lastname@monash.edu
shua0043@student.monash.edu

Abstract

In this work, we investigate the problems of
semantic parsing in a few-shot learning set-
ting. In this setting, we are provided with k
utterance-logical form pairs per new predicate.
The state-of-the-art neural semantic parsers
achieve less than 25% accuracy on benchmark
datasets when k = 1. To tackle this problem,
we proposed to i) apply a designated meta-
learning method to train the model; ii) reg-
ularize attention scores with alignment statis-
tics; iii) apply a smoothing technique in pre-
training. As a result, our method consistently
outperforms all the baselines in both one and
two-shot settings.

1 Introduction

Semantic parsing is the task of mapping natural
language (NL) utterances to structured meaning
representations, such as logical forms (LF). One
key obstacle preventing the wide application of se-
mantic parsing is the lack of task-specific training
data. New tasks often require new predicates of
LFs. Suppose a personal assistant (e.g. Alexa) is
capable of booking flights. Due to new business re-
quirement it needs to book ground transport as well.
A user could ask the assistant ”How much does it
cost to go from Atlanta downtown to airport?”. The
corresponding LF is as follows:

(lambda $0 e (exists $1 (and (ground transport $1)
(to city $1 atlanta:ci)(from airport $1 atlanta:ci)

(=(ground fare $1) $0))))

where both ground transport and ground fare are
new predicates while the other predicates are used
in flight booking, such as to city, from airport. As
manual construction of large parallel training data
is expensive and time-consuming, we consider the
few-shot formulation of the problem, which re-
quires only a handful of utterance-LF training pairs

∗corresponding author

for each new predicate. The cost of preparing few-
shot training examples is low, thus the correspond-
ing techniques permit significantly faster prototyp-
ing and development than supervised approaches
for business expansions.

Semantic parsing in the few-shot setting is chal-
lenging. In our experiments, the accuracy of the
state-of-the-art (SOTA) semantic parsers drops to
less than 25%, when there is only one example
per new predicate in training data. Moreover, the
SOTA parsers achieve less than 32% of accuracy
on five widely used corpora, when the LFs in the
test sets do not share LF templates in the training
sets (Finegan-Dollak et al., 2018). An LF template
is derived by normalizing the entities and attribute
values of an LF into typed variable names (Finegan-
Dollak et al., 2018). The few-shot setting imposes
two major challenges for SOTA neural semantic
parsers. First, it lacks sufficient data to learn ef-
fective representations for new predicates in a su-
pervised manner. Second, new predicates bring in
new LF templates, which are mixtures of known
and new predicates. In contrast, the tasks (e.g. im-
age classification) studied by the prior work on
few-shot learning (Snell et al., 2017; Finn et al.,
2017) considers an instance exclusively belonging
to either a known class or a new class. Thus, it is
non-trivial to apply conventional few-shot learning
algorithms to generate LFs with mixed types of
predicates.

To address above challenges, we present
ProtoParser, a transition-based neural seman-
tic parser, which applies a sequence of parse ac-
tions to transduce an utterance into an LF template
and fills the corresponding slots. The parser is pre-
trained on a training set with known predicates, fol-
lowed by fine-tuning on a support set that contains
few-shot examples of new predicates. It extends
the attention-based sequence-to-sequence architec-
ture (Sutskever et al., 2014) with the following

1282

novel techniques to alleviate the specific problems
in the few-shot setting:

• Predicate-droput. Predicate-droput is a meta-
learning technique to improve representation
learning for both known and new predicates.
We empirically found that known predicates
are better represented with supervisely learned
embeddings, while new predicates are better
initialized by a metric-based few-shot learn-
ing algorithm (Snell et al., 2017). In order to
let the two types of embeddings work together
in a single model, we devised a training proce-
dure called predicate-dropout to simulate the
testing scenario in pre-training.

• Attention regularization. In this work, new
predicates appear approximately once or twice
during training. Thus, it is insufficient to learn
reliable attention scores in the Seq2Seq archi-
tecture for those predicates. In the spirit of
supervised attention (Liu et al., 2016), we pro-
pose to regularize them with alignment scores
estimated by using co-occurrence statistics
and string similarity between words and pred-
icates. The prior work on supervised attention
is not applicable, because it requires either
large parallel data (Liu et al., 2016), signif-
icant manual effort (Bao et al., 2018; Rabi-
novich et al., 2017), or it is designed only for
applications other than semantic parsing (Liu
et al., 2017; Kamigaito et al., 2017).

• Pre-training smoothing. The vocabulary of
predicates in fine-tuning is higher than that in
pre-training, which leads to a distribution dis-
crepancy between the two training stages. In-
spired by Laplace smoothing (Manning et al.,
2008), we achieve significant performance
gain by applying a smoothing technique dur-
ing pre-training to alleviate the discrepancy.

Our extensive experiments on three benchmark cor-
pora show that ProtoParser outperforms the
competitive baselines with a significant margin.
The ablation study demonstrates the effectiveness
of each individual proposed technique. The results
are statistically significant with p≤0.05 according
to the Wilcoxon signed-rank test (Wilcoxon, 1992).

2 Related Work

Semantic parsing There is ample of work on
machine learning models for semantic parsing.

The recent surveys (Kamath and Das, 2018; Zhu
et al., 2019) cover a wide range of work in this
area. The semantic formalism of meaning rep-
resentations range from lambda calculas (Mon-
tague, 1973), SQL, to abstract meaning representa-
tion (Banarescu et al., 2013). At the core of most re-
cent models (Chen et al., 2018; Cheng et al., 2019;
Lin et al., 2019; Zhang et al., 2019b; Yin and Neu-
big, 2018) is SEQ2SEQ with attention (Bahdanau
et al., 2014) by formulating the task as a machine
translation problem. COARSE2FINE (Dong and
Lapata, 2018) reports the highest accuracy on GEO-
QUERY (Zelle and Mooney, 1996) and ATIS (Price,
1990) in a supervised setting. IRNET (Guo et al.,
2019) and RATSQL (Wang et al., 2019) are two
best performing models on the Text-to-SQL bench-
mark, SPIDER (Yu et al., 2018). They are also de-
signed to be able to generalize to unseen database
schemas. However, supervised models perform
well only when there is sufficient training data.

Data Sparsity Most semantic parsing datasets
are small in size. To address this issue, one line
of research is to augment existing datasets with
automatically generated data (Su and Yan, 2017;
Jia and Liang, 2016; Cai and Yates, 2013). Another
line of research is to exploit available resources,
such as knowledge bases (Krishnamurthy et al.,
2017; Herzig and Berant, 2018; Chang et al., 2019;
Lee, 2019; Zhang et al., 2019a; Guo et al., 2019;
Wang et al., 2019), semantic features in different
domains (Dadashkarimi et al., 2018; Li et al., 2020),
or unlabeled data (Yin et al., 2018; Kočiskỳ et al.,
2016; Sun et al., 2019). Those works are orthog-
onal to our setting because our approach aims to
efficiently exploit a handful of labeled data of new
predicates, which are not limited to the ones in
knowledge bases. Our setting also does not require
involvement of humans in the loop such as active
learning (Duong et al., 2018; Ni et al., 2019) and
crowd-sourcing (Wang et al., 2015; Herzig and Be-
rant, 2019). We assume availability of resources
different than the prior work and focus on the prob-
lems caused by new predicates. We develop an
approach to generalize to unseen LF templates con-
sisting of both known and new predicates.

Few-Shot Learning Few-shot learning is a type
of machine learning problems that provides a hand-
ful of labeled training examples for a specific task.
The survey (Zhu et al., 2019) gives a comprehen-
sive overview of the data, models, and algorithms

1283

t Actions
t1 GEN [(ground transport va)]
t2 GEN [(to city va ve)]
t3 GEN [(from airport va ve)]
t4 GEN [(= (ground fare va) va)]
t5 REDUCE [and :- NT NT NT NT]
t6 REDUCE [exists :- va NT]
t7 REDUCE [lambda :- va e NT]

Table 1: An example action sequence.

proposed for this type of problems. It categorizes
the models into multitask learning (Hu et al., 2018),
embedding learning (Snell et al., 2017; Vinyals
et al., 2016), learning with external memory (Lee
and Choi, 2018; Sukhbaatar et al., 2015), and gener-
ative modeling (Reed et al., 2017) in terms of what
prior knowledge is used. (Lee et al., 2019) tack-
les the problem of poor generalization across SQL
templates for SQL query generation in the one-shot
learning setting. In their setting, they assume all the
SQL templates on test set are shared with the tem-
plates on support set. In contrast, we assume only
the sharing of new predicates between a support set
and a test set. In our one-shot setting, only around
10% of LF templates on test set are shared with the
ones in the support set of GEOQUERY dataset.

3 Semantic Parser

ProtoParser follows the SOTA neural seman-
tic parsers (Dong and Lapata, 2018; Guo et al.,
2019) to map an utterance into an LF in two steps:
template generation and slot filling1. It implements
a designated transition system to generate tem-
plates, followed by filling the slot variables with
values extracted from utterances. To address the
challenges in the few-shot setting, we proposed
three training methods, detailed in Sec. 4.

Many LFs differ only in mentioned atoms, such
as entities and attribute values. An LF template is
created by replacing the atoms in LFs with typed
slot variables. As an example, the LF template of
our example in Sec. 1 is created by substituting i)
a typed atom variable ve for the entity “atlanta:ci”;
ii) a shared variable name va for all variables “$0“
and “$1“.

(lambda va e (exists va (and (ground transport va)
(to city va ve)(from airport va ve) (=(ground fare va) va))))

1Code and datasets can be found in this repos-
itory: https://github.com/zhuang-li/
few-shot-semantic-parsing

Formally, let x = {x1, ..., xn} denote an NL utter-
ance, and its LF is represented as a semantic tree
y = (V, E), where V = {v1, ..., vm} denotes the
node set with vi ∈ V , and E ⊆ V × V is its edge
set. The node set V = Vp ∪ Vv is further divided
into a template predicate set Vp and a slot value set
Vv. A template predicate node represents a pred-
icate symbol or a term, while a slot value node
represents an atom mentioned in utterances. Thus,
a semantic tree y is composed of an abstract tree
τy representing a template and a set of slot value
nodes Vv,y attaching to the abstract tree.

In the few-shot setting, we are provided with a
train set Dtrain, a support set Ds, and a test set
Dtest. Each example in either of those sets is an
utterance-LF pair (xi,yi). The new predicates ap-
pear only in Ds and Dtest but not in Dtrain. For
K-shot learning, there are K (xi,yi) per each new
predicate p in Ds. Each new predicate appears also
in the test set. The goal is to maximize the accu-
racy of estimating LFs given utterances in Dtest by
using a parser trained on Dtrain ∪ Ds.

3.1 Transition System

We apply the transition system (Cheng et al., 2019)
to perform a sequence of transition actions to gen-
erate the template of a semantic tree. The transition
system maintains partially-constructed outputs us-
ing a stack. The parser starts with an empty stack.
At each step, it performs one of the following tran-
sition actions to update the parsing state and gener-
ate a tree node. The process repeats until the stack
contains a complete tree.

• GEN [y] creates a new leaf node y and pushes
it on top of the stack.

• REDUCE [r]. The reduce action identifies
an implication rule head : −body. The rule
body is first popped from the stack. A new
subtree is formed by attaching the rule head
as a new parent node to the rule body . Then
the whole subtree is pushed back to the stack.

Table 1 shows such an action sequence for generat-
ing the above LF template. Each action produces
known or new predicates.

3.2 Base Parser

ProtoParser generates an LF in two steps: i)
template generation, ii) slot filling. The base archi-
tecture largely resembles (Cheng et al., 2019).

https://github.com/zhuang-li/few-shot-semantic-parsing
https://github.com/zhuang-li/few-shot-semantic-parsing

1284

Template Generation Given an utterance, the
task is to generate a sequence of actions a =
a1, ..., ak to build an abstract tree τy.

We found out LFs often contain idioms, which
are frequent subtrees shared across LF templates.
Thus we apply a template normalization procedure
in a similar manner as (Iyer et al., 2019) to pre-
process all LF templates. It collapses idioms into
single units such that all LF templates are converted
into a compact form.

The neural transition system consists of an en-
coder and a decoder for estimating action probabil-
ities.

P (a|x) =
|a|∏
t=1

P (at|a<t,x) (1)

Encoder We apply a bidirectional Long Short-
term Memory (LSTM) network (Gers et al., 1999)
to map a sequence of n words into a sequence of
contextual word representations {e}ni=1.

Template Decoder The decoder applies a stack-
LSTM (Dyer et al., 2015) to generate action se-
quences. A stack-LSTM is an unidirectional LSTM
augmented with a pointer. The pointer points to a
particular hidden state of the LSTM, which repre-
sents a particular state of the stack. It moves to a
different hidden state to indicate a different state of
the stack.

At time t, the stack-LSTM produces a hidden
state hd

t by hd
t = LSTM(µt,h

d
t−1), where µt is a

concatenation of the embedding of the action cat−1

estimated at time t−1 and the representation hyt−1

of the partial tree generated by history actions at
time t− 1.

As a common practice, hd
t is concatenated with

an attended representation ha
t over encoder hidden

states to yield ht, with ht = W

[
hd
t

ha
t

]
, where W is

a weight matrix and ha
t is created by soft attention,

ha
t =

n∑
i=1

P (ei|hd
t)ei (2)

We apply dot product to compute the normalized
attention scores P (ei|hd

t) (Luong et al., 2015).
The supervised attention (Rabinovich et al., 2017;
Yin and Neubig, 2018) is also applied to facilitate
the learning of attention weights. Given ht, the
probability of an action is estimated by:

P (at|ht) =
exp(cᵀatht)∑

a′∈At
exp(cᵀa′ht)

(3)

where ca denotes the embedding of action a, and
At denotes the set of applicable actions at time

t. The initialization of those embeddings will be
explained in the following section.

Slot Filling A tree node in a semantic tree may
contain more than one slot variables due to tem-
plate normalization. Since there are two types of
slot variables, given a tree node with slot variables,
we employ a LSTM-based decoder with the same
architecture as the Template decoder to fill each
type of slot variables, respectively. The output of
such a decoder is a value sequence of the same
length as the number of slot variables of that type
in the given tree node.

4 Few-Shot Model Training

The few-shot setting differs from the supervised
setting by having a support set in testing in addi-
tion to train/test sets. The support set contains k
utterance-LF pairs per new predicate, while the
training set contains only known predicates. To
evaluate model performance on new predicates, the
test set contains LFs with both known and new
predicates. Given the support set, we can tell if a
predicate is known or new by checking if it only
exists in the train set.

We take two steps to train our model: i) pre-
training on the training set, ii) fine-tuning on the
support set. Its predictive performance is measured
on the test set. We take the two-steps approach
because i) our experiments show that this approach
performs better than training on the union of the
train set and the support set; ii) for any new support
sets, it is computationally more time efficient than
training from scratch on the union of the train set
and the support set.

There is a distribution discrepancy between the
train set and the support set due to new predicates,
the meta-learning algorithms (Snell et al., 2017;
Finn et al., 2017) suggest to simulate the testing
scenario in pre-training by splitting each batch into
a meta-support set and a meta-test set. The mod-
els utilize the information (e.g. prototype vectors)
acquired from the meta-support set to minimize
errors on the meta-test set. In this way, the meta-
support and meta-test sets simulate the support and
test sets sharing new predicates.

However, we cannot directly apply such a train-
ing procedure due to the following two reasons.
First, each LF in the support and test sets is a
mixture of both known predicates and new predi-
cates. To simulate the support and test sets, the
meta-support and meta-test sets should include

1285

both types of predicates as well. We cannot as-
sume that there are only one type of predicates.
Second, our preliminary experiments show that if
there is sufficient training data, it is better off train-
ing action embeddings of known predicates c (Eq.
(3)) in a supervised way, while action embeddings
initialized by a metric-based meta-learning algo-
rithm (Snell et al., 2017) perform better for rarely
occurred new predicates. Therefore, we cope with
the differences between known and new predicates
by using a customized initialization method in fine-
tuning and a designated pre-training procedure to
mimic fine-tuning on the train set. In the follow-
ing, we introduce fine-tuning first because it helps
understand our pre-training procedure.

4.1 Fine-tuning
During fine-tuning, the model parameters and the
action embeddings in Eq. (3) for known predicates
are obtained from the pre-trained model. The em-
bedding of actions that produce new predicates cat
are initialized using prototype vectors as in proto-
typical networks (Snell et al., 2017). The proto-
type representations act as a type of regularization,
which shares the similar idea as the deep learning
techniques using pre-trained models.

A prototype vector of an action at is constructed
by using the hidden states of the template decoder
collected at the time of predicting at on a support
set. Following (Snell et al., 2017), a prototype
vector is built by taking the mean of such a set of
hidden states ht.

cat =
1

|M |
∑
ht∈M

ht (4)

where M denotes the set of all hidden states at the
time of applying the action at. After initialization,
the whole model parameters and the action em-
beddings are further improved by fine-tuning the
model on the support set with a supervised training
objective Lf .

Lf = Ls + λΩ (5)

where Ls is the cross-entropy loss and Ω is an
attention regularization term explained below. The
degree of regularization is adjusted by λ ∈ R+.

Attention Regularization We address the
poorly learned attention scores P (ei|hd

t) of
infrequent actions by introducing a novel attention
regularization. We observe that the probabil-
ity P (aj |xi) =

count(aj ,xi)
count(xi)

and the character

similarity between the predicates generated
by action aj and the token xi are often strong
indicators of their alignment. The indicators
can be further strengthened by manually anno-
tating the predicates with their corresponding
natural language tokens. In our work, we adopt
1 − dist(aj , xi) as the character similarity,
where dist(aj , xj) is normalized Levenshtein
distance (Levenshtein, 1966). Both measures
are in the range [0, 1], thus we apply g(aj , xi) =
σ(·)P (aj |xi) + (1 − σ(·)char sim(aj , xi) to
compute alignment scores, where the sigmoid func-
tion σ(wᵀ

phd
t) combines two constant measures

into a single score. The corresponding normalized
attention scores is given by

P ′(xi|ak) =
g(ak, xi)∑n
j=1 g(ak, xj)

(6)

The attention scores P (xi|ak) should be similar
to P ′(xi|ak). Thus, we define the regularization
term as Ω =

∑
ij |P (xi|aj) − P ′(xi|aj)| during

training.

4.2 Pre-training
The pre-training objective are two-folds: i) learn
action embeddings for known predicates in a super-
vised way, ii) ensure our model can quickly adapt
to the actions of new predicates, whose embed-
dings are initialized by prototype vectors before
fine-tuning.

Predicate-dropout Starting with randomly ini-
tialized model parameters, we alternately use one
batch for the meta-loss Lm and one batch for opti-
mizing the supervised loss Ls.

In a batch for Lm, we split the data into a meta-
support set and a meta-test set. In order to simulate
existence of new predicates, we randomly select a
subset of predicates as ”new”, thus their action em-
beddings c are replaced by prototype vectors con-
structed by applying Eq. (4) over the meta-support
set. The actions of remaining predicates keep their
embeddings learned from previous batches. The
resulted action embedding matrix C is the combi-
nation of both.

C = (1−mᵀ)Cs + mᵀCm (7)

where Cs is the embedding matrix learned in a su-
pervised way, and Cm is constructed by using pro-
totype vectors on the meta-support set. The mask
vector m is generated by setting the indices of ac-
tions of the ”new” predicates to ones and the other

1286

Algorithm 1: Predicate-Dropout
Input :Training set D, supervisely trained action

embedding Cs, number of meta-support
examples k, number of meta-test examples
n per one support example,
predicate-dropout ratio r

Output :The loss Lm.
Extract a template set T from the training set D
Sample a subset Ti of size k from T
S := ∅ # meta-support set
Q := ∅ # meta-test set
for t in Ti do

Sample a meta-support example s′ with template
t from D without replacement

Sample a meta-test set Q′ of size n with template
t from D

S = S ∪ s′

Q = Q ∪Q′

end
Build a prototype matrix Cm on S
Extract a predicate set P from S
Sample a subset Ps of size r × |P| from P as new

predicates
Build a mask m using Ps

With Cs, Cm and m, apply Eq. (7) to compute C
Compute Lm, the cross-entropy on Q with C

to zeros. We refer to this operation as predicate-
dropout. The training algorithm for the meta-loss
is summarised in Algorithm 1.

In a batch for Ls, we update the model parame-
ters and all action embeddings with a cross-entropy
loss Ls, together with the attention regularization.
Thus, the overall training objective becomes

Lp = Lm + Ls + λΩ (8)

Pre-training smoothing Due to the new predi-
cates, the number of candidate actions during the
prediction of fine-tuning and testing is larger than
the one during pre-training. That leads to distribu-
tion discrepancy between pre-training and testing.
To minimize the differences, we assume a prior
knowledge on the number of actions for new pred-
icates by adding a constant k to the denominator
of Eq. (3) when estimating the action probability
P (at|ht) during pre-training.

P (at|ht) =
exp(cᵀatht)∑

a′∈At
exp(cᵀa′ht) + k

(9)

We do not consider this smoothing technique dur-
ing fine-tuning and testing. Despite its simplicity,
the experimental results show a significant perfor-
mance gain on benchmark datasets.

5 Experiments

Datasets. We use three semantic parsing datasets:
JOBS, GEOQUERY, and ATIS. JOBS contains

640 question-LF pairs in Prolog about job list-
ings. GEOQUERY (Zelle and Mooney, 1996) and
ATIS (Price, 1990) include 880 and 5,410 utterance-
LF pairs in lambda calculas about US geography
and flight booking, respectively. The number of
predicates in JOBS, GEOQUERY, ATIS is 15, 24,
and 88, respectively. All atoms in the datasets are
anonymized as in (Dong and Lapata, 2016).

For each dataset, we randomly selected m pred-
icates as the new predicates, which is 3 for JOBS,
and 5 for GEOQUERY and ATIS. Then we split
each dataset into a train set and an evaluation set.
And we removed the instances, the template of
which is unique in each dataset. The number of
such instances is around 100, 150 and 600 in JOBS,
GEOQUERY, and ATIS. The ratios between the
evaluation set and the train set are 1:4, 2:5, and
1:7 in JOBS, GEOQUERY, and ATIS, respectively.
Each LF in an evaluation set contains at least a
new predicate, while an LF in a train set contains
only known predicates. To evaluate k-shot learn-
ing, we build a support set by randomly sampling k
pairs per new predicate without replacement from
an evaluation set, and keep the remaining pairs as
the test set. To avoid evaluation bias caused by
randomness, we repeat the above process six times
to build six different splits of support and test set
from each evaluation set. One for hyperparameter
tuning and the rest for evaluation. We consider at
most 2-shot learning due to the limited number of
instances per new predicate in each evaluation set.

Training Details. We pre-train our parser on the
training sets for {80, 100} epochs with the Adam
optimizer (Kingma and Ba, 2014). The batch size
is fixed to 64. The initial learning rate is 0.0025,
and the weights are decayed after 20 epochs with
decay rate 0.985. The predicate dropout rate is 0.5.
The smoothing term is set to {3, 6}. The number
of meta-support examples is 30 and the number of
meta-test examples per support example is 15. The
coefficient of attention regularization is set to 0.01
on JOBS and 1 on the other datasets. We employ
the 200-dimensional GLOVE embedding (Penning-
ton et al., 2014) to initialize the word embeddings
for utterances. The hidden state size of all LSTM
models (Hochreiter and Schmidhuber, 1997) is 256.
During fine-tuning, the batch size is 2, the learn-
ing rates and the epochs are selected from {0.001,
0.0005} and {20, 30, 40, 60, 120}, respectively.

1287

JOBS GEOQUERY ATIS JOBS GEOQUERY ATIS p-values

SEQ2SEQ (pt) 11.27 20.00 17.23 14.58 33.01 18.76 3.32e-04
SEQ2SEQ (cb) 11.70 7.64 2.25 21.49 14.36 7.91 6.65e-06
SEQ2SEQ (os) 14.18 11.38 4.45 30.46 33.59 10.17 5.30e-05
COARSE2FINE (pt) 10.91 24.07 17.44 13.83 35.63 21.08 1.48e-04
COARSE2FINE (cb) 9.28 14.50 0.42 19.61 28.93 9.25 2.35e-06
COARSE2FINE (os) 6.73 10.35 5.26 16.08 28.55 17.73 1.13e-05
IRNET (pt) 16.00 20.00 17.12 19.06 35.05 20.11 2.86e-05
IRNET (cb) 19.67 21.90 5.60 28.22 44.08 15.73 2.76e-03
IRNET (os) 14.91 18.78 4.95 30.84 40.97 18.05 2.47e-04
DA 18.91 9.67 4.29 21.31 20.88 17.18 1.13e-06
PT-MAML 11.64 9.76 6.83 17.76 22.52 12.28 1.73e-06
Ours 27.09 27.49 19.27 32.5 48.45 22.48

Table 2: Evaluation of learning results on three datasets. (Left) The one-shot results. (Right) The two-shot results.

Baselines. We compared our methods with
five competitive baselines, SEQ2SEQ with atten-
tion (Luong et al., 2015), COARSE2FINE (Dong
and Lapata, 2018), IRNET (Guo et al., 2019), PT-
MAML (Huang et al., 2018) and DA (Li et al.,
2020). COARSE2FINE is the best performing super-
vised model on the standard split of GEOQUERY

and ATIS datasets. PT-MAML is a few-shot learn-
ing semantic parser that adopts Model-Agnostic
Meta-Learning (Finn et al., 2017). We adapt PT-
MAML in our scenario by considering a group of
instances that share the same template as a pseudo-
task. DA is the most recently proposed neural
semantic parser applying domain adaptation tech-
niques. IRNET is the strongest semantic parser that
can generalize to unseen database schemas. In our
case, we consider a list of predicates in support sets
as the columns of a new database schema and incor-
porate the schema encoding module of IRNET into
the encoder of our base parser. We choose IRNET

over RATSQL (Wang et al., 2019) because IRNET

achieves superior performance on our datasets.
We consider three different supervised learning

settings. First, we pre-train a model on a train set,
followed by fine-tuning it on the corresponding
support set, coined pt. Second, a model is trained
on the combination of a train set and a support
set, coined cb. Third, the support set in cb is over-
sampled by 10 times and 5 times for one-shot and
two-shot respectively, coined os.

Evaluation Details. The same as prior
work (Dong and Lapata, 2018; Li et al., 2020),
we report accuracy of exactly matched LFs as the
main evaluation metric.

To investigate if the results are statistically sig-
nificant, we conducted the Wilcoxon signed-rank
test, which assesses whether our model consistently
performs better than another baseline across all

evaluation sets. It is considered superior than t-
test in our case, because it supports comparison
across different support sets and does not assume
normality in data (Demšar, 2006). We include the
corresponding p-values in our result tables.

5.1 Results and Discussion

Table 2 shows the average accuracies and signif-
icance test results of all parsers compared on all
three datasets. Overall, ProtoParser outper-
forms all baselines with at least 2% on average
in terms of accuracy in both one-shot and two-
shot settings. The results are statistically signif-
icant w.r.t. the strongest baselines, IRNET (cb) and
COARSE2FINE (pt). The corresponding p-values
are 0.00276 and 0.000148, respectively. Given
one-shot example on JOBS, our parser achieves
7% higher accuracy than the best baseline, and
the gap is 4% on GEOQUERY with two-shots ex-
amples. In addition, none of the SOTA baseline
parsers can consistently outperform other SOTA
parsers when there are few parallel data for new
predicates. In one-shot setting, the best supervised
baseline IRNET (cb) can achieve the best results
on GEOQUERY and JOBS among all baselines, and
on two-shot setting, it performs best only on GEO-
QUERY. It is also difficult to achieve good perfor-
mance by adapting the existing meta-learning or
transfer learning algorithms to our problem, as evi-
dent by the moderate performance of PT-MAML
and DA on all datasets.

The problems of few-shot learning demonstrate
the challenges imposed by infrequent predicates.
There are significant proportions of infrequent pred-
icates on the existing datasets. For example, on
GEOQUERY, there are 10 predicates contributing
to only 4% of the total frequency of all 24 predi-
cates, while the top two frequent predicates amount

1288

JOBS GEOQUERY ATIS JOBS GEOQUERY ATIS p-values

Ours 27.09 27.49 19.27 32.50 48.45 22.48
- sup 23.63 18.86 12.91 26.91 39.51 14.89 1.44e-05
- proto 22.91 18.77 13.24 29.16 38.93 16.81 1.77e-05
- reg 29.27 18.10 13.66 31.03 39.61 18.58 9.60e-04
- strsim 22.18 19.62 10.14 28.41 47.09 19.98 9.27e-04
- cond 23.27 19.05 9.63 27.66 40.97 17.50 4.37e-05
- smooth 24.36 23.60 15.23 30.84 44.95 18.71 3.27e-03

Table 3: Ablation study results. (Left) The one-shot learning results. (Right) The two-shot learning results.

to 42%. As a result, the SOTA parsers achieve
merely less than 25% and 44% of accuracy with
one-shot and two-shots examples, respectively. In
contrast, those parsers achieve more than 84% ac-
curacy on the standard splits of the same datasets
in the supervised setting.

Infrequent predicates in semantic parsing can
also be viewed as a class imbalance problem, when
support sets and train sets are combined in a cer-
tain manner. In this work, the ratio between the
support set and the train set in JOBS, GEOQUERY,
and ATIS is 1:130, 1:100, and 1:1000, respectively.
Different models prefer different ways of using the
train sets and support sets. The best option for
COARSE2FINE and SEQ2SEQ is to pre-train on a
train set followed by fine-tuning on the correspond-
ing support set, while IRNET favors oversampling
in two-shot setting.

Ablation Study We examine the effect of differ-
ent components of our parser by removing each of
them individually and reporting the corresponding
average accuracy. As shown in Table 3, remov-
ing any of the components almost always leads to
statistically significant drop of performance. The
corresponding p-values are all less than 0.00327.

To investigate predicate-dropout, we exclude ei-
ther supervised-loss during pre-training (-sup) or
initialization of new predicate embeddings by pro-
totype vectors before fine-tuning (-proto). It is clear
from Table 3 that ablating either supervisely trained
action embeddings or prototype vectors hurts per-
formance severely.

We further study the efficacy of attention regular-
ization by removing it completely (-reg), removing
only the string similarity feature (-strsim), or con-
ditional probability feature (-cond). Removing the
regularization completely degrades performance
sharply except on JOBS in the one-shot setting.
Our further inspection shows that model learning
is easier on JOBS than on the other two datasets.
Each predicate in JOBS almost always aligns to

Figure 1: (Round) The support set with the lowest accu-
racy. (Box) The support set with the highest accuracy.

the same word across examples, while a predicate
can align with different word/phrase in different
examples in GEOQUERY and ATIS. The perfor-
mance drop with -strsim and -cond indicates that
we cannot only reply on a single statistical measure
for regularization. For instance, we cannot always
find predicates take the same string form as the cor-
responding words in input utterances. In fact, the
proportion of predicates present in input utterances
is only 42%, 38% and 44% on JOBS, ATIS, and
GEOQUERY, respectively.

Furthermore, without pre-training smoothing (-
smooth), the accuracy drops at least 1.6% in terms
of mean accuracy on all datasets. Smoothing en-
ables better model parameter training by more ac-
curate modelling in pre-training.

Support Set Analysis We observe that all mod-
els consistently achieve high accuracy on certain
support sets of the same dataset, while obtaining
low accuracies on the other ones. We illustrate the
reasons of such effects by plotting the evaluation
set of GEOQUERY. Each data point in Figure 1 de-
picts an representation, which is generated by the
encoder of our parser after pre-training. We applied
T-SNE (Maaten and Hinton, 2008) for dimension
reduction. We highlight two support sets used in
the one-shot setting on GEOQUERY. All exam-

1289

ples in the highest performing support set tend to
scatter evenly and cover different dense regions in
the feature space, while the examples in the lowest
performing support set are far from a significant
number of dense regions. Thus, the examples in
good support sets are more representative of the
underlying distribution than the ones in poor sup-
port sets. When we leave out each example in the
highest performing support set and re-evaluate our
parser each time, we observe that the good ones
(e.g. the green box in Figure 1) locate either in or
close to some of the dense regions.

6 Conclusion and Future Work

We propose a novel few-shot learning based seman-
tic parser, coined ProtoParser, to cope with
new predicates in LFs. To address the challenges
in few-shot learning, we propose to train the parser
with a pre-training procedure involving predicate-
dropout, attention regularization, and pre-training
smoothing. The resulted model achieves superior
results over competitive baselines on three bench-
mark datasets.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ra-
tionales. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1903–1913.

Qingqing Cai and Alexander Yates. 2013. Semantic
parsing freebase: Towards open-domain semantic
parsing. In Second Joint Conference on Lexical and
Computational Semantics (* SEM), Volume 1: Pro-
ceedings of the Main Conference and the Shared
Task: Semantic Textual Similarity, pages 328–338.

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2019. Zero-
shot text-to-sql learning with auxiliary task. arXiv
preprint arXiv:1908.11052.

Bo Chen, Le Sun, and Xianpei Han. 2018. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. arXiv preprint arXiv:1809.00773.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2019. Learning an executable neu-
ral semantic parser. Computational Linguistics,
45(1):59–94.

Javid Dadashkarimi, Alexander Fabbri, Sekhar
Tatikonda, and Dragomir R Radev. 2018. Zero-shot
transfer learning for semantic parsing. arXiv
preprint arXiv:1808.09889.

Janez Demšar. 2006. Statistical comparisons of clas-
sifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. arXiv preprint
arXiv:1601.01280.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2018. Ac-
tive learning for deep semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 43–48.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
lstm.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Jonathan Herzig and Jonathan Berant. 2018. Decou-
pling structure and lexicon for zero-shot semantic
parsing. arXiv preprint arXiv:1804.07918.

1290

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! rapid and effective data col-
lection for semantic parsing. arXiv preprint
arXiv:1908.09940.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and
Maosong Sun. 2018. Few-shot charge prediction
with discriminative legal attributes. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 487–498.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language
to structured query generation via meta-learning. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 732–738.

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer.
2019. Learning programmatic idioms for scalable
semantic parsing. arXiv preprint arXiv:1904.09086.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Aishwarya Kamath and Rajarshi Das. 2018. A survey
on semantic parsing. CoRR, abs/1812.00978.

Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hi-
rao, Masaaki Nagata, Hiroya Takamura, and Man-
abu Okumura. 2017. Supervised attention for
sequence-to-sequence constituency parsing. IJC-
NLP 2017, page 7.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomáš Kočiskỳ, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. arXiv
preprint arXiv:1609.09315.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1526.

Dongjun Lee. 2019. Clause-wise and recursive decod-
ing for complex and cross-domain text-to-sql gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6047–6053.

Dongjun Lee, Jaesik Yoon, Jongyun Song, Sanggil Lee,
and Sungroh Yoon. 2019. One-shot learning for text-
to-sql generation. arXiv preprint arXiv:1905.11499.

Yoonho Lee and Seungjin Choi. 2018. Gradient-based
meta-learning with learned layerwise metric and sub-
space. arXiv preprint arXiv:1801.05558.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Zechang Li, Yuxuan Lai, Yansong Feng, and Dongyan
Zhao. 2020. Domain adaptation for semantic pars-
ing. arXiv preprint arXiv:2006.13071.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan
Berant, and Matt Gardner. 2019. Grammar-
based neural text-to-sql generation. arXiv preprint
arXiv:1905.13326.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3093–3102.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1789–1798.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Christopher D Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to information re-
trieval. Cambridge university press.

Richard Montague. 1973. The proper treatment of
quantification in ordinary english. In Approaches to
natural language, pages 221–242. Springer.

Ansong Ni, Pengcheng Yin, and Graham Neubig. 2019.
Merging weak and active supervision for semantic
parsing. arXiv preprint arXiv:1911.12986.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Patti J Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation

1291

and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149.

Scott Reed, Yutian Chen, Thomas Paine, Aäron
van den Oord, SM Eslami, Danilo Rezende, Oriol
Vinyals, and Nando de Freitas. 2017. Few-
shot autoregressive density estimation: Towards
learning to learn distributions. arXiv preprint
arXiv:1710.10304.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems,
pages 4077–4087.

Yu Su and Xifeng Yan. 2017. Cross-domain se-
mantic parsing via paraphrasing. arXiv preprint
arXiv:1704.05974.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Yibo Sun, Duyu Tang, Nan Duan, Yeyun Gong, Xi-
aocheng Feng, Bing Qin, and Daxin Jiang. 2019.
Neural semantic parsing in low-resource settings
with back-translation and meta-learning. arXiv
preprint arXiv:1909.05438.

I Sutskever, O Vinyals, and QV Le. 2014. Sequence to
sequence learning with neural networks. Advances
in NIPS.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. In Advances in neural informa-
tion processing systems, pages 3630–3638.

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson. 2019.
Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
1332–1342.

Frank Wilcoxon. 1992. Individual comparisons by
ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

Pengcheng Yin, Chunting Zhou, Junxian He, and Gra-
ham Neubig. 2018. StructVAE: Tree-structured la-
tent variable models for semi-supervised semantic
parsing. In The 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050–1055.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019a. Editing-based sql query generation for cross-
domain context-dependent questions. arXiv preprint
arXiv:1909.00786.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019b. Broad-coverage se-
mantic parsing as transduction. arXiv preprint
arXiv:1909.02607.

Q. Zhu, X. Ma, and X. Li. 2019. Statistical learning for
semantic parsing: A survey. Big Data Mining and
Analytics, 2(4):217–239.

https://arxiv.org/abs/1806.07832v1
https://arxiv.org/abs/1806.07832v1
https://arxiv.org/abs/1806.07832v1
https://doi.org/10.26599/BDMA.2019.9020011
https://doi.org/10.26599/BDMA.2019.9020011

