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Abstract

With the increasingly widespread use of
Transformer-based models for NLU/NLP
tasks, there is growing interest in understand-
ing the inner workings of these models, why
they are so effective at a wide range of tasks,
and how they can be further tuned and im-
proved. To contribute towards this goal of en-
hanced explainability and comprehension, we
present InterpreT, an interactive visualization
tool for interpreting Transformer-based mod-
els. In addition to providing various mech-
anisms for investigating general model be-
haviours, novel contributions made in Inter-
preT include the ability to track and visual-
ize token embeddings through each layer of
a Transformer, highlight distances between
certain token embeddings through illustrative
plots, and identify task-related functions of at-
tention heads by using new metrics. Inter-
preT is a task agnostic tool, and its functional-
ities are demonstrated through the analysis of
model behaviours for two disparate tasks: As-
pect Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC).

1 Introduction

In recent years, Transformer-based models
(Vaswani et al., 2017) such as BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019),
XLNET (Yang et al., 2019) and RoBERTa (Liu
et al., 2019) have demonstrated state-of-the-art
performance in many NLP tasks and have become
the gold standard. However, there are many open
questions regarding the behavior of these models.
Phenomena such as why Transformers perform
well on specific examples but not others, as well
as how their internal mechanisms facilitate their
ability to generalize to new tasks and settings
(or lack therof) are not yet fully understood.
Observations and insights which help answer

these questions will be pivotal in driving the
construction of more powerful and robust models.

The pursuit of such answers have spurred the
development of a wide variety of analytical stud-
ies and tools to enable the visualization of infor-
mation encapsulated in Transformer-based mod-
els. Clark et al. (2019), studied the attention mech-
anisms of a pre-trained BERT model to find that
certain heads correspond to specific linguistic pat-
terns. Jawahar et al. (2019) investigated the distri-
bution of phrase-level information throughout the
layers of BERT using t-SNE (van der Maaten and
Hinton, 2008). The visualization tools of Aken
et al. (2020) and Reif et al. (2019) perform a layer-
wise analysis of BERT’s hidden states to under-
stand the internal workings of Transformer-based
models that are fine-tuned for question-answering
tasks. Other tools, such as Vig (2019), focus
on visualizations of the attention matrices of pre-
trained Transformer models. In the work of Ten-
ney et al. (2020), the authors introduce an inter-
active platform for the visualization and interpre-
tation of NLP models. The tool includes, among
other capabilities, attention visualizations, embed-
ding space visualizations, and aggregate analysis.
Other related tools include those by Wallace et al.
(2019) and Hoover et al. (2020). The increasingly
large body of work on the interpretability and eval-
uation of Transformer-based models reveals the
growing need for the development of tools and
systems to aid in the fine-grained analysis and un-
derstanding of these models and their performance
on complex language understanding tasks.

With this goal in mind, we present InterpreT1,
a tool for interpreting Transformers. A key con-
tribution of InterpreT is that it is a single system
that enables users to track hidden representations

1The source code for InterpreT, along with a live demo
and screencast describing its functionality is available at
https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT

https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT
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of tokens throughout each layer of a Transformer
model, as well as visualize and analyze attention
head behaviors. Similarly to Tenney et al. (2020),
InterpreT enables dynamic point selection, aggre-
gation of attention head statistics, visualization of
attention head matrices, and the ability to compare
models. Novel contributions made in InterpreT
include the ability to track and visualize token
embeddings through each layer of a Transformer
(Section 3.2), highlight distances between certain
token embeddings through illustrative plots (Sec-
tion 3.6), and identify task-related functions of at-
tention heads by using new metrics (Section 3.3).

Section 4 demonstrates how the new features
introduced in InterpreT can be used to obtain
novel insights into the underlying mechanisms
used by Transformers to tackle diverse tasks such
as Aspect-Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC). More
generally, these demonstrations illustrate how
such features enable rich, granular analysis of
Transformer models.

2 System Design and Workflow

The system flow consists of two main stages: of-
fline extraction of model specific and task specific
information such as targets, predictions, relevant
hidden states, and attention matrices (henceforth
referred to as “collateral”) and running the appli-
cation itself. During the offline stage, the extracted
hidden states are processed using t-SNE before be-
ing saved to a file. The collateral generated for a
specific model and task is independent of collat-
eral from other models and tasks, which enables
the user to either run the app to examine a sin-
gle model or to compare two different models that
were evaluated on the same task and data. In this
latter case, the collateral files for the two models
are linked at runtime. A detailed specification for
the collateral, along with the source code used to
run InterpreT can be found in our GitHub.

3 Application Features

3.1 Overview

Key features of InterpreT include plots for the vi-
sualization and tracking of t-SNE representations
of hidden states through the layers of a Trans-
former, a plot presenting summary statistics, cus-
tom metrics to quantify attention head behavior,
and attention matrix visualizations. In addition,

InterpreT includes a multi-select feature that en-
ables groups of examples to be selected in the t-
SNE plot and used as input to other plots in the ap-
plication, as well as the flexibility to be used both
for analyzing a single model and for visualizing
the differences in behaviors between two models.
In general, the core functionalities present in In-
terpreT are model and task agnostic, working for
a wide-variety of architectures, sequence lengths,
and tasks.

3.2 t-SNE Embeddings
A central component of InterpreT is the abil-
ity to visualize the contextualized embeddings of
specific tokens throughout the layers of a Trans-
former. Following van Aken et al. (2019) and
Jawahar et al. (2019), we use t-SNE to project
hidden representations of tokens after each Trans-
former layer onto a two-dimensional space, creat-
ing disjoint t-SNE spaces for each layer of each
model. In the resulting t-SNE plot, token embed-
dings can be visualized for a specific model and
layer, and colored using various color schemes
(Figure 1d). An example selected in the t-SNE
plot is tracked and continues to be highlighted in
the new t-SNE space when the model or the layer
is changed.

3.3 Head Summary
InterpreT includes a head summary plot that dis-
plays attention head summary statistics for each
head and layer (Figure 1b). For a given sen-
tence, all attention weights are obtained in a
matrix of size (num layers × num heads ×
sentence length × sentence length) and com-
pute statistics over the final two dimensions, yield-
ing a summary plot of size (num layers ×
num heads). The following statistics are cur-
rently supported:

The Standard Deviation of an attention head is
generated by calculating the standard deviation of
the corresponding attention matrix weights. Intu-
itively, the standard deviation of an attention head
increases as the attention patterns become less uni-
form, allowing a user to easily identify heads that
exhibit interesting behaviors.

The Attention Matrix Correlation is obtained
by computing the correlation between an atten-
tion matrix and an arbitrary, same-size matrix. In
Section 4.1.2, this correlation is computed using a
binary matrix that encodes syntactic dependency
relations, analogous to the parse matrix used in

https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT
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Figure (1) The InterpreT user interface (rearranged for print) for the task of coreference resolution (see Section
4.2). The UI includes a short description of the currently selected models and example at the top, along with the
main features (a-e) described in Section 3.

Pereg et al. (2020). This formulation of a “gram-
mar correlation” metric provides an indicator of
an attention head’s ability to identify syntactic re-
lations in a sentence.

The Task-Specific Attention Intensity option
allows a user to define and display custom met-
rics that highlight specific attention patterns. In
Section 4.2.2, a “coreference intensity” metric is
devised to pinpoint attention heads with an affin-
ity for identifying coreference relationships. For
this metric, each entry in the summary plot repre-
sents the attention weight between the coreferent
spans being evaluated (if the span contains more
than one token, the maximum is taken), for each
head of each layer.

When running InterpreT with two models, the
head summary plot can be used to visualize differ-
ences in the summary statistics between both mod-
els. As mentioned previously, the multi-select fea-
ture can be used with any of the summary statistic
options. When using multi-select, the statistics are
averaged over the selected examples, enabling the

user to analyze general trends in attention behav-
ior.

3.4 Attention Matrix/Map

Similarly to other systems, InterpreT provides the
ability to display the attention patterns and weights
exhibited by specific attention heads, which can be
selected by clicking on a specific head and layer in
the head summary plot. These attention patterns
can be displayed as either a heatmap (“matrix”
view) or a token “map” (“map” view) visualization
used in Clark et al. (2019). There is an option to
switch between the two views in-app (Figure 1c).
These visualizations can become unwieldy when
using large sequence lengths, but this will not af-
fect the functionality of the rest of the system.

3.5 Summary Table

A short summary table is provided, which contains
task-specific information such as predicted token
classifications and the gold (target) labels for the
selected sentence/example (Figure 1a).
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(a) (b) (c)

Figure (2) Baseline (a) and LIBERT (b,c) final layer t-SNE embeddings of aspect terms colored by domain (a,b)
and aspect extraction sentence level F1 score (c) as seen in InterpreT.

3.6 Average t-SNE Distance Per Layer
To complement t-SNE visualization of the hidden
states, InterpreT also introduces a novel plot show-
ing the average t-SNE space distance between spe-
cific groups of terms across all of the Transform-
ers’ layers (Figure 1e). Section 4.2.1 demonstrates
how information conveyed in this plot contributes
towards novel interpretations of the inner work-
ings of BERT.

4 Use Cases

The examples presented in this section focus on
the analysis of bidirectional encoders using Inter-
preT, however the system can be applied to gener-
ative models or encoder-decoder architectures as
well, so long as the appropriate collateral can be
generated. Further examples of use cases along
with instructions on how to use InterpreT for cus-
tom applications is detailed in our GitHub.

4.1 Cross-Domain Aspect Based Sentiment
Analysis (ABSA)

A fundamental task in fine-grained sentiment anal-
ysis is the extraction of aspect and opinion terms.
For example, in the sentence “The chocolate cake
was incredible”, the aspect term is chocolate cake
and the opinion term is incredible. Supervised
learning approaches have shown promising results
in single-domain setups where the training and the
testing data are from the same domain. However,
these approaches typically do not scale across do-
mains, where only unlabeled data is available for
the target domain. It has been shown that syntax,
which is a basic trait of language and is therefore
domain invariant, can help bridge the gap between
domains (Ding et al., 2017; Wang and Jialin Pan,
2018).

In a recent work (Pereg et al., 2020), externally
generated dependency relations are integrated into
a pre-trained BERT model through the addition

of a 13th attention head which incorporates the
dependency relations into its Syntactically-Aware
Self-Attention Mechanism. This model is referred
to as Linguistically Informed BERT (LIBERT).
InterpreT is used to analyze LIBERT and a Base-
line model that shares the same size and structure
as LIBERT but does not incorporate syntactic in-
formation for the cross-domain ABSA task, where
both models are fine-tuned on laptop reviews and
are evaluated on restaurant reviews (Pontiki et al.,
2014, 2015; Wang et al., 2016). LIBERT and
the Baseline model achieved aspect extraction F1
scores of 0.5143 and 0.4254 respectively on vali-
dation data from the restaurant domain.

4.1.1 Visualizing the Domain Gap

InterpreT is used to visualize how the incorpo-
ration of dependency relations in LIBERT con-
tributes to bridging the gap between domains. Fig-
ure 2 depicts the final layer aspect term t-SNE em-
beddings from the restaurant and laptop domains
produced by LIBERT and Baseline. The plot of
the Baseline embeddings (2a) gives a prototypical
depiction of the “domain gap” challenge present
in cross-domain setups, through the clear separa-
tion of in-domain (blue) and out-of-domain (red)
aspects. Conversely, the plot of LIBERT’s embed-
dings (2b) demonstrates how LIBERT has learned
to push the embeddings of some aspect terms from
the out-of-domain region into the in-domain re-
gion, effectively overcoming the “domain gap”
challenge for these examples. Furthermore, in the
plot colored by the aspect extraction F1 score (2c),
it is seen that LIBERT achieves a high F1 score on
the out-of-domain examples that now overlap with
in-domain examples, highlighting the usefulness
of such visualizations for analyzing model perfor-
mance and extensibility.

https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT
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(a)

(b)

Figure (3) InterpreT’s Head Summary plot displaying aggregated grammar correlation using multi-selection for
LIBERT (a) along with an example of the the attention matrix of selected attention head (head 13 in layer 4) (b).

4.1.2 Grammar Correlation

A key feature of InterpreT is the addition of met-
rics to help identify attention heads which carry
out specific functions. For analyzing LIBERT, the
“grammar correlation” metric described in Sec-
tion 3.3 is used to identify attention heads with an
affinity for detecting syntactic relations. Figure 3a
demonstrates the result of using multi-selection to
compute the average grammar correlation in each
of LIBERT’s attention heads aggregated over mul-
tiple examples.

As expected, the Syntactically-Aware Self At-
tention head (head 13) tends to show much higher
grammar correlation than the regular Self Atten-
tion heads. Utilizing the granularity provided in
the head summary plot, it is observed that LIB-
ERT’s 13th head seems to only express an affinity
for parsing syntactic relations in layers 2,3,4, and
11. This is unexpected behavior, as the syntax in-
formation is relayed identically to the 13th head
across all layers. To investigate further, InterpreT
can be used to display attention matrices from
head 13 in layers that have high grammar corre-
lation. One such attention matrix, for an out-of-
domain example, is displayed in Figure 3b. In this
attention matrix visualization, it can be seen how
LIBERT’s 13th head identifies syntactic relations
such as the adjectival modifier relation between
“staff” and “attentive”, and how this can be use-
ful for the cross-domain ABSA task where “staff”
and “attentive” are aspect and opinion terms (re-
spectively) in an out-of-domain example.

4.2 Coreference Resolution in the Winograd
Schema Challenge (WSC)

In this section, the utility of InterpreT is show-
cased for a markedly different task: coreference
resolution. Coreference resolution is a challeng-
ing NLP task that often requires a nuanced under-
standing of context and sentence semantics. This
task is the basis of the Winograd Schema Chal-
lenge (WSC) from the SuperGLUE benchmark
(Alex Wang, 2020), where the goal is to deter-
mine whether or not a pronoun is the correct ref-
erent of a given noun phrase. In this analysis of
WSC, InterpreT demonstrates how information in
the attention matrices and the hidden states of a
Transformer can be used to understand the implicit
mechanisms contributing to its ability to identify
coreferent terms. BERT-base (uncased) is chosen
for this analysis and is fine-tuned using the WSC
task training set.

Example Coreference Candidates
(Fred, he) (George, he)

“... got back” False True
“... got up” True True

Table (1) Predictions of the fine-tuned BERT model
for the two examples. The values in bold are correct
predictions.

4.2.1 Spatial Convergence of Coreferent
Terms

While analyzing WSC with InterpreT, the sys-
tem’s wide-ranging capabilities gave rise to a
novel observation, wherein it was discovered that a
fine-tuned BERT model pushes closer together the
embeddings of terms it predicts to be coreferent.
Figure 4a displays the average distance per layer
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(a)

(b)

Figure (4) InterpreT summary plots for WSC. These plots display summary statistics for the average predicted
span token distance per layer (a) and coreference intensity metric (b) for fine-tuned BERT aggregated over the full
dataset.

(a) (b)

(c) (d)

Figure (5) InterpreT plots tracking specific examples in WSC. These plots depict the final layer t-SNE embed-
dings and attention map visualizations of head 10 layer 7 for the following examples: “Fred watched TV while
George went out to buy groceries. After an hour he got back” (a,c), and “Fred watched TV while George went out
to buy groceries. After an hour he got up.” (b,d). In (a) and (b), the yellow stars indicate candidate mention spans,
and “He” and “George” are almost overlapping.

between terms which BERT predicts to be coref-
erent (blue) and terms which BERT predicts to not
be coreferent (red), aggregated over the full WSC
dataset. It is observed that in BERT’s final layers,
the model learns to modify the hidden representa-
tions of terms to increase or decrease the distance
between them based on whether or not it predicts

they are coreferents. This behavior can also be
seen in the green trace, which measures the dif-
ference in the average distance of terms predicted
to be coreferent and those that are not predicted to
be coreferent.

Additionally, Figures 5a and 5b show a specific
example of this phenomenon with the sentences:
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“Fred watched TV while George went out to buy
groceries. After an hour he got back” (Figure 5a
and Table 1) and “Fred watched TV while George
went out to buy groceries. After an hour he got
up.” (Figure 5b and Table 1). These two exam-
ples show how changing a single token (“back”
became “up”) significantly alters the sentence se-
mantics, as in the first example, “he” refers to
“George”, and in the second example “he” refers
to “Fred”. InterpreT enables us to visualize this
behavior using the t-SNE plots. Figure 5a show
how for the first example, “he” and “George” are
much closer together than “he” and “Fred” are.
Figure 5b shows how in the second example, the
change from “he got back” to “he got up” is re-
flected in BERT’s behavior, where the representa-
tion of “Fred” to be pushed much closer to “he”
than in the first example.

4.2.2 Attention Patterns between Coreferent
Terms

Another feature of InterpreT is the ability to utilize
custom metrics, such as the “coreference inten-
sity” metric described in Section 3.3. Coreference
intensity is visualized using the head summary
plot in Figure 4b. The figure shows that the fine-
tuned model highlights attention heads that seem
to perform well as coreferent predictors. Darker
shades of red correspond to higher attention be-
tween the two coreferents being evaluated. It ap-
pears that the heads which are the most involved
in the coreference resolution task after fine-tuning
are the 7th head of layer 10 and the 3rd head of
layer 11.

This new metric is used to examine the example
previously presented with “Fred”, “George”, and
“he”. Figures 5c and 5d show the attention ma-
trix visualizations for the head selected in Figure
4b (head 7 in layer 10). The token map visualiza-
tion depicts how “he” attends heavily to “George”
in the first example (5c) while attending to both
“Fred” and “George” in the second example (5d).

5 Conclusion and Future Work

InterpreT is a generic system for interpreting
Transformers, as evident through its suite of tools
for understanding general model behaviors and
for enabling granular analysis of attention patterns
and hidden states for individual examples. The
capabilities provided by InterpreT empower users
with new insights into what their models are learn-
ing, as illustrated in the visualization of the mit-

igation of the “domain gap” for ABSA and in
the novel discovery of the spatial convergence of
coreferent terms in WSC. These examples show-
case how the fine-grained analysis enabled by In-
terpreT affords a higher level of insight that is
indispensable for interpreting model behavior for
complex language understanding tasks.

InterpreT is an ongoing development effort. Fu-
ture work will include support for additional use
cases as well as additional analysis and interactiv-
ity features, such as the ability to dynamically add
and modify examples while the app is running.
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