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Abstract

Amazon Mechanical Turk (AMT) has re-
cently become one of the most popular crowd-
sourcing platforms, allowing researchers from
all over the world to create linguistic datasets
quickly and at a relatively low cost. Amazon
provides both a web interface and an API for
AMT, but they are not very user-friendly and
miss some features that can be useful for NLP
researchers. In this paper, we present Easy-
Turk, a free tool that improves the potential of
Amazon Mechanical Turk by adding to it some
new features. The tool is free and released un-
der an open source license.

A video showing EasyTurk and its features is
available on YouTube.1

1 Introduction

In the last years, deep learning algorithms have
achieved state-of-the-art results in most NLP tasks
such as textual inference, machine translation, hate
speech detection (Socher et al., 2012). Despite their
accuracy, deep learning algorithms have a major
downside, i.e. they require large amounts of data to
be trained, making the data bottleneck issue even
more problematic than with other machine learn-
ing algorithms like SVM (Gheisari et al., 2017).
The need to leverage large amounts of manually
annotated data has become a major challenge for
the NLP community, since linguistic annotation
performed by domain experts is both expensive
and time-consuming. This explains why crowd-
sourcing platforms, offering access to a large pool
of potential annotators, have been successfully used
for the creation of annotated datasets.

Amazon Mechanical Turk (AMT) is probably
the most widely used platform of this kind, en-
abling the distribution of low-skill but difficult-to-
automate tasks to a network of humans who could

1https://youtu.be/OmKJOrNpGSs

work in parallel, when and where they prefer, for
a certain amount of money. The availability of a
lot of workers at the same time allows researchers
all over the world to annotate large datasets in a
fraction of the time and the money needed doing
it through the recruitment of domain experts. Fur-
thermore, crowd-workers are spread all over the
world, offering the possibility to have annotation
performed in different languages by native speak-
ers. In the last years, AMT turned out to be suc-
cessful in a wide range of NLP annotations, such as
named entities from e-mails (Lawson et al., 2010)
or medical texts (Yetisgen et al., 2010), subjectivity
word sense disambiguation (Akkaya et al., 2010),
image captioning (Rashtchian et al., 2010), and
much more.

Unfortunately, annotations obtained by AMT
workers are often of low quality, since: (i) they are
non-expert and therefore they can make mistakes
in annotations; (ii) some of them are spammers
who try to maximise the earnings by submitting
random answers as quickly as possible. Mitigat-
ing the effect of errors in datasets annotated by
crowd-workers is one of the biggest challenge in
using AMT. One mitigation strategy adopted by re-
searchers is usually to collect multiple annotations
of the same instance, and apply different methods
to deal with this information redundancy. Most of
the times, majority voting seems to be an appro-
priate strategy, i.e. the final label assigned to an
instance is the one provided by the majority of the
workers, even if they are not all in agreement. How-
ever, if spammers always choose the same answer
to finish the task quicker, this strategy would finally
assign a wrong label to the textual instance.

While past works have described how to suc-
cessfully deal with non-expertness (Callison-Burch,
2009; Mohammad and Turney, 2010), it is more
challenging to identify spammers. Some tools
(Hovy et al., 2013) deal with the problem offline,

https://youtu.be/OmKJOrNpGSs
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when the task is completed, trying to identify spam-
mers using redundant annotations and comparing
the answers given by all crowd-workers. In this
context, spammers are correctly identified, but they
are nevertheless paid because their annotations are
filtered out after the task is closed.

Another idea to find spammers is to use a gold
standard, a set of very easy-to-understand instances,
previously annotated by an expert, that a careful
worker should not miss. In this paradigm, when
a worker gives the wrong answer to a gold ques-
tion, one may infer that the annotator is trying to
cheat and should be blocked. The AMT API pro-
vide a way to do it automatically, but the feature
is not included in the web interface, therefore the
only way to get this result is by writing a program
(in Python, php, or any supported language) that
checks whether the gold instances have been an-
swered correctly or not.

In this paper, we describe EasyTurk, both a web
interface and a powerful API that tackles all these
issues and enhances the experience of using AMT.
The tool can aggregate more than one instance
of a task in a single page shown to the worker,
concealing also gold standard instances. Further-
more, EasyTurk can be configured to take an ac-
tion, e.g. block a worker when he or she misses
too many gold answers, marking the already-given
questions as not reliable. Finally, the software is
open source and its user-friendly interface has been
implemented using most recent guidelines for us-
ability and responsiveness.

2 Amazon Mechanical Turk

Amazon Mechanical Turk2 is an online market-
place for hiring workers and submit to them atomic
tasks that are usually easy for humans but difficult
for machines. The atomic unit of work is called
Human Intelligent Task (HIT).

AMT has two kinds of users: requesters and
workers. The formers create the HITs (using the
API or the web interface) and upload them to the
Amazon servers, along with the fee that will pay for
each of them to be completed. The latters search
the HIT database, choose the preferred tasks and
complete them in exchange for monetary compen-
sation.

Requesters can restrict the range of workers al-
lowed to complete the task, based on demography,
school level, spoken languages, and so on. Some

2http://www.mturk.com/

requirements are free for the requester (for example
the living country of the worker), but normally they
raise the price of the HITs. Requesters can also
assign custom qualifications to workers in order to
filter out them during the submission of the HITs
to the system.

The platform also provides an automatic mecha-
nism that allows multiple unique workers to com-
plete the same HIT. This is useful, for example in
NLP tasks, for which requesters usually need more
than one answer for each HIT, so that the majority
label can be selected, resulting in a higher-quality fi-
nal annotation thanks to the ‘wisdom of the crowd’.
Each annotation instance (a pair worker-HIT) is
called assignment.

Requesters have the option of rejecting the an-
swer of a particular worker, in which case they are
not paid. The above-described custom qualifica-
tions can be used to filter out, for a particular task,
workers who did not reach sufficient accuracy in
previous HITs. In specific cases, for example as a
consequence of particularly sloppy annotations, a
worker can be blocked and is not able to perform
HITs for the requester anymore.

One of the main issues with using AMT is that
some features are available only using the API,
while others can be used only in the web interface.
For example, through the web interface a requester
can upload a TSV file with the data to be annotated,
or select which qualifications the workers should
have to complete the HITs. These two features are
not available in the API, but one can automatise ac-
ceptance/rejection of the worker job only through
it. Given the above constraints, we developed Easy-
Turk so to allow non-skilled users to submit HITs
without using a specific programming language,
such as Python or Java, while using the features
available through APIs.

3 Description of EasyTurk

EasyTurk is composed of three modules: (i) the
web interface; (ii) the API; (iii) the server. Most
of the features included in EasyTurk are accessible
directly from the web interface, but are managed
by the server.

3.1 More annotations in one HIT

The original web interface of AMT has a power-
ful graphical editor for the templates, used by the
requester to display the data they want the worker
to annotate. After creating the template file, one

http://www.mturk.com/
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Figure 1: Selection box for mixing gold and unknown data.

can upload a text document with the data (usually
a CSV or XML file), and then AMT submits the
HITs (one per file record/line) to the workforce.

In NLP, it often happens that a task corresponds
to a binary assignment, meaning that an instance is
labeled with a value in the set true/false. Usually
researchers have a list of instances in one single
file (for example a JSON or CSV file). Submitting
the record one by one, one per HIT, would be more
expensive for the requester and time-consuming
for workers, because they would need to click the
confirm button after each instance annotation and
wait for the new HIT to load, even if it is just a
sentence or a short string.

In EasyTurk the requester can go beyond this
limitation easily, by creating a template with mul-
tiple slots for the data. Then, using a sequential
naming standard (for example, text1, text2,
text3, etc.), the tool will automatically infer the
number of records to fill in the template.

3.2 Upload of a gold standard

In AMT, the requester has two options to check
the annotation accuracy. First, they can perform an
offline check (after the whole task has ended) using
the information obtained by majority voting (Hovy
et al., 2013). As an alternative, AMT provides a
mechanism to check the answer of a HIT against
a gold standard. Depending on the worker answer,
the system can accept or reject the HIT automati-
cally. As outlined in Section 2, this is one of the

features available only in the API, and missing in
the web interface.

In EasyTurk, the requester can optionally add a
document with some additional data containing the
correct annotation. When populating the template,
they can select how many gold instances need to
be added for each HIT (see Figure 1), and decide
- among a set of available options - the behavior
of the system when the worker misses the gold
instance(s).

In order to avoid that a worker is blocked or
restricted for having missed a single answer, the
system can check the accuracy of the workers on a
span of HITs, and then take action after the worker
completed at least that span (see Figure 2).

3.3 Automatic block/restrict the workers

When a worker misses a considerable amount of
gold instances, the requester can decide what will
be the behavior of the tool. Figure 2 shows the
range of possible options. First of all, one has to
decide whether to accept or reject the assignment.
In the second case, the worker can be restricted or
blocked. With restriction, it is intended that this
worker cannot participate any more in the tasks of
the current project, but they are allowed to com-
plete HITs when a new project from the same re-
quester is submitted to AMT. EasyTurk uses AMT
qualifications to this purpose.3 When a worker is

3A qualification is a custom property that a requester can
assign to one or more workers. In EasyTurk, each project is as-



109

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 2: Selection box for managing the behavior of the tool depending on the workers’ answers.

blocked, instead, they will not see any more any
HIT submitted by the requester. Both properties
(restriction and block) are reversible.

To limit spammers (see Section 1), a worker can
be blocked/restricted also when HITs are being sub-
mitted by a worker too fast, showing for example
that the worker is not even reading the instances
before annotation.

3.4 User management

When running EasyTurk, the user is asked to pro-
vide an administration password. With this cre-
dentials, the administrator can create new users,
each of which having its own username and pass-
word. Each user is then linked to its AMT API keys,
allowing a single instance of EasyTurk to serve dif-
ferent users having different AMT accounts. A flag
can be set to switch a user to work on the Sandbox
version of AMT.

sociated with a qualification: when a requester wants to restrict
a worker, the tool assigns the qualification to the worker, and
consequently the task is hidden in the AMT worker console
for them.

3.5 The web interface
The web interface of EasyTurk is written using
VueJS.4 The structure of the website is build with
Tailwind CSS5, the design is inspired by Material
Design.6

Through the interface, requesters can group
HITs into projects, and follow all the steps from the
project definition to the visualisation of the results.

Project definition. The general information about
the project (description, reward, time alotted
for the workers, layout, qualifications needed,
and so on) are given and a project is created.

Data insertion. In this phase, a file with the data
is uploaded to the system (plus an additional
file, if needed, for the gold standard, see Sec-
tion 3.2).

HITs generation. The HITs are generated by
grouping the data (depending on how many
items the requester wants for each HIT) and
optionally mixing it with the gold standard
(Figure 1).

4https://vuejs.org/
5https://tailwindcss.com/
6https://material.io/

https://vuejs.org/
https://tailwindcss.com/
https://material.io/
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Condition management. The requester sets the
tool behaviour in specific cases, for instance
when a worker misses the gold standard (Fig-
ure 2).

HITs submission. The HITs are submitted to
AMT in bunches of predetermined size (set
by the requester).

HITs monitoring. The dot matrix interface gives
an overview on how the task is going (see
Figure 3). In this phase, the requester can
control all the aspects of the annotations: the
approval rate, the speed, the workers, and so
on.

Retrieval of Results. The resulting annotations
(even when the gold is missed or the HIT is
rejected) can be visualised and downloaded in
JSON format.

In developing EasyTurk, we wanted to stress the
importance of having a readable overview of how
the annotation is going, from the HITs submission
to the retrieval of the results. We found the dot ma-
trix chart7 to be an effective solution to achieve this
goal (see Figure 3). Each dot represents a HIT and
is painted with a different color depending on how
many assignments have been rejected or whether
the gold instances have been missed. Different col-
orization strategies have been chosen to highlight
the different status of the HITs: unassigned, pend-
ing, completed. Using this interface, a considerable
presence of red dots may point out that the gold
standard was ambiguous, allowing the requester to
tune it better in the future.

3.6 The API
An API supporting the web interface and written in
php is included in the EasyTurk package. It can be
used also as a standalone program to integrate the
features of the tool into third-part packages. Since
the web interface relies on this API to work prop-
erly, it is mandatory to install it to take advantage
of the web interface.

3.7 The server
The last part of EasyTurk is a server script, written
in php. It performs all the tasks needed to update
the information based on the AMT APIs (for ex-
ample, the status of a HIT or the triggering of the
actions described in Section 3.3).

7https://datascientist.reviews/
dot-matrix-chart/

EasyTurk can also be configured to work with
Amazon Simple Notification Service8 (SNS), so
that most of the information about the HITs can be
updated almost in real time.

4 Release

EasyTurk is completely free, available on GitHub,9

and released as open-source under the Apache 2.0
license.10 The web interface is developed in VueJS
and needs NodeJS11 to be compiled and launched.

Both the API and the server are written in php12

and need a machine with at least version 7 of the in-
terpreter and MySQL server13 installed. The server
can be run as a service and does not need other
particular dependencies to work. The API, instead,
must be configured to work in a web server (such
as Apache14 or Nginx15).

5 Related Work

Since 2005, when AMT was released, an increasing
number of researchers has used this platform for re-
search purposes. In particular, the NLP community
has taken advantage of AMT to bring linguistic
resources to a new scale, also with the support of
Amazon. For example, in 2010 Amazon sponsored
a workshop during the NAACL conference, where
researchers were given 100 dollars of credit on
the platform to run an annotation task and answer
some meta-research questions, such as how non-
expert workers can perform complex annotations,
or how can one ensure high quality annotations
from crowd-sourced contributors.

Some past works have dealt with the above-
mentioned issues related to crowd-worker quality.
In (Hovy et al., 2013), the authors present a soft-
ware that, after a round of annotations using AMT,
tries to understand which workers perform better
and, consequently, which are the best annotations
to consider and which to discard when there is re-
dundancy, in an unsupervised fashion. In (Wais
et al., 2010), the efficiency of AMT is analysed
over 100,000 local business listings for an online
directory. A mechanism for filtering low-quality
workers in order to build a reliable workforce that

8https://aws.amazon.com/it/sns/
9https://github.com/dhfbk/easyturk

10https://www.apache.org/licenses
11https://nodejs.org/it/
12https://www.php.net/
13https://www.mysql.com/
14https://httpd.apache.org/
15https://www.nginx.com/

https://datascientist.reviews/dot-matrix-chart/
https://datascientist.reviews/dot-matrix-chart/
https://aws.amazon.com/it/sns/
https://github.com/dhfbk/easyturk
https://www.apache.org/licenses
https://nodejs.org/it/
https://www.php.net/
https://www.mysql.com/
https://httpd.apache.org/
https://www.nginx.com/
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Figure 3: The dot matrix showing the HITs.

has high accuracy is described, to understand better
the problem of quality control in crowdsourcing
systems.

Some attempts have also been done to improve
the potential of AMT by writing new frameworks
on top of the AMT API. CloudResearch, formerly
TurkPrime, (Litman et al., 2017) was born for this
purpose and at the time of launch was free to use
for researchers. Now it is part of a bigger company
and is not free any more. LingoTurk (Pusse et al.,
2016) is an open-source, freely available crowd-
sourcing client/server system aimed primarily at
psycholinguistic experimentation, where custom
and specialized user interfaces are required but not
supported by popular crowdsourcing task manage-
ment platforms. OpenMTurk (Feeney et al., 2018)
is a free and open-source administration tool for
managing research studies using AMT. TurKit (Lit-
tle et al., 2010) is a toolkit for prototyping and
exploring truly algorithmic human computation,
while maintaining a straightforward imperative pro-
gramming style. Turktools (Erlewine and Kotek,
2016) is a set of free, open-source tools that allow
linguists to post studies online and simplify the
interaction with AMT. TurkGate16 provides better
control and verification of workers’ access to an
external site and allows the grouping of HITs, so
that workers may only access one survey within a
group. AMTI,17 developed at the Allen Institute
for AI, is a command-line interface for AMT that

16https://github.com/gideongoldin/
TurkGate

17https://github.com/allenai/amti

emphasizes the ability to quickly iterate on and run
reproducible crowdsourcing experiments.

Finally, AMT is integrated to add human annota-
tions in more complex tools. Qurk (Marcus et al.,
2011), for example, is a query system for managing
annotation workflows.

6 Conclusion and Future Work

In this paper, we presented EasyTurk, a free pro-
gram that improves the potential of Amazon Me-
chanical Turk by adding some features which are
not present out-of-the-box. In particular, the re-
quester has now the ability to insert multiple in-
stances of the task in a single HIT, and option-
ally mix them with a gold standard, that can be
used to track the accuracy of the workers. Finally,
when some events are triggered (for example a
worker answering too quickly to a HIT or missing
the gold standard), EasyTurk can be programmed
to take an action such as reject the assignment, or
block/restrict the worker.

The tool is free and open source, and can be
downloaded from GitHub and installed locally.

In the future, we are planning to implement new
features. For example, the system can intercept
spammers using also a particular pattern of answers
(for example a set of HIT where the same answer
is always selected). We also would like to include
in EasyTurk a collection of templates for basic
annotations (for example, yes/no, a set of possible
answers, a free text, and so on), so that requesters
do not need any more to create their template on
the AMT website.

https://github.com/gideongoldin/TurkGate
https://github.com/gideongoldin/TurkGate
https://github.com/allenai/amti
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