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Abstract

Few-shot relation classification has attracted great attention recently, and is regarded as an ef-
fective way to tackle the long-tail problem in relation classification. Most previous works on
few-shot relation classification are based on learning-to-match paradigms, which focus on learn-
ing an effective universal matcher between the query and one target class prototype based on
inner-class support sets. However, the learning-to-match paradigm focuses on capturing the sim-
ilarity knowledge between query and class prototype, while fails to consider discriminative infor-
mation between different candidate classes. Such information is critical especially when target
classes are highly confusing and domain shifting exists between training and testing phases. In
this paper, we propose the Global Transformed Prototypical Networks(GTPN), which learns to
build a few-shot model to directly discriminate between the query and all target classes with both
inner-class local information and inter-class global information. Such learning-to-discriminate
paradigm can make the model concentrate more on the discriminative knowledge between all
candidate classes, and therefore leads to better classification performance. We conducted exper-
iments on standard FewRel benchmarks. Experimental results show that GTPN achieves very
competitive performance on few-shot relation classification and reached the best performance on
the official leaderboard of FewRel 2.0 1.

Introduction

Few-shot relation classification aims to build relation extractors with only a few instances. Different
from supervised learning that requires large scale training data of target classes, few-shot learning-based
approaches can effectively build relation extractors with only a few examples (i.e., the support set) of
each target class. This property makes it very appealing in the real application, where the training data
of new target class can be scarce.

Previous few-shot relation classification approaches can be summarized into a learning-to-match
paradigm. Specifically, as shown in Figure 1 (a), these methods try to learn a universal matcher be-
tween the query and each target relation type, and measure their similarity separately to infer the type
of queries. Along this line, Gao (2019a) propose the hybrid attention to attach different importance for
each relation feature, and match the query to each relation type with the reweighted features. Ye (2019)
performs a local matching and aggregation between the query instance and each relation type. Besides,
Gao (2019b) proposes an instance-pair matcher for scoring the similarity between query and each rela-
tion instance. Generally, the goal of these methods is to effectively obtain a query-class matcher with the
limited given instances in the support set.

However, because such learning-to-match based approaches focus on capturing the similarity informa-
tion between query and classes, they are unable to consider discriminative knowledge between different
candidate classes. This can significantly undermine the model performance when target classes are high-
ly confusing, and domain shifting exists between training and testing phases. For example, a query

∗Part of the work was done during an internship at Baidu.
†Corresponding authors.

1https://thunlp.github.io/2/fewrel2 da.html
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Figure 1: Illustration of the motivation for our Global Transformed Prototypical Networks (GTPN). (a) is
the previous learn-to-match paradigm method, that matches the query instance q to each relation support
set S1 and S2, and measures the similarity seperately. (b) is the learn-to-discriminate paradigm of GTPN,
that directly discriminate the query instance q on all relation support sets, and give the normalized scores
on each relation type for further learning of the prototypes.

with relation mention word “contain” may correspond to either a “Component-Whole” relation or a
“Member-Collection” relation. Therefore, under the learning-to-match paradigm, this query will achieve
high matching scores with both two relation types, which may lead to confusion and misclassification
when we determine the instance relation type. Furthermore, the existence of domain shifting can result in
the inaccuracy of the similarity measurement on the out-of-domain relation. To tackle these problems, a
model needs to take discriminative information into consideration, and focus more on how to distinguish
between confusing target relations.

To this end, this paper proposes to resolve few-shot relation classification in a learning-to-discriminate
paradigm. The main idea behind, as shown in Figure 1 (b), is to learn a meta classification model which
can directly generate a relation classifier based on the query and small support sets of all candidate
relations, rather than a meta matcher between the query and one relation. Motivated by this, we design
the Global Transformed Prototypical Networks (GTPN), which takes the query and the support sets of
all target relations as input, and output the probabilities of the input query correspond to each relation
simultaneously. The architecture of GTPN is shown in Figure 2. Specifically, GTPN first encodes the
query and all relation instances in the support sets into the same embedding space. Then we conducted
a multi-view global transformation on each relation instance to extract features of different facets, based
on the knowledge from both intra-relation and inter-relation instances. After that, all representations of
instances of the same relation are summarized to form the class prototypes. Finally, these prototypes,
as well as the query representation, are simultaneously sent into a classifier to determine the relation
type of the input query. The main advantage of GTPN, compared with previous approaches, is that all
candidate relation types are considered jointly rather than independently during relation classification,
which makes the model able to leverage discriminative information between classes to more preciously
distinguish between confusing relation pairs.

To verify the effectiveness of GTPN, we conduct thorough experiments on FewRel 1.0 (Han et al.,
2018) and FewRel 2.0 (Gao et al., 2019b), two standard benchmarks for few-shot relation classification.
Experimental results demonstrate that GTPN can achieve effective and robust performance on few-shot
relation classification, even domain shifting exists. Furthermore, GTPN reaches the best performance on
the FewRel 2.0 official leaderboard. These all demonstrate the effectiveness of GTPN and the proposed
learning-to-discriminate paradigm.

Generally, the main contributions of this paper can be summarized as:

• We propose to resolve few-shot relation classification in a learning-to-discriminate paradigm, which
is able to leverage discriminative knowledge for better distinguishing between confusing type pairs,
compared with previous learning-to-match paradigm.
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Figure 2: Framework of GTPN. q is the query instance, Sj
i means the jth support instance of relation i.

• Based on the paradigm, we propose the Global Transformed Prototypical Networks (GTPN), an
effective neural network-based architecture with global transformation for few-shot relation classi-
fication.

• The proposed GTPN achieved the new state-of-the-art performance on the official leaderboard of
FewRel 2.0, which demonstrates the effectiveness of the proposed paradigm and architecture.

Background

This section describes the definition and the notations of few-shot relation classification task. Besides,
we will briefly illustrate previous learning-to-match based approaches.

Relation Classification. Let X = [x0, ..., xn−1] be the sequence which contains n words, e1 = [i, j]
and e2 = [k, l] indicate the entity pair spans, where 0 ≤ i ≤ j, j < k ≤ l and l ≤ n − 1, a relation
instance is defined as (X , e1, e2). For example, (”Steve Jobs was the co-founder of Apple Inc.”, ”Steve
Jobs”, ”Apple Inc.”) is a relation instance. The aim of relation classification is to learn a mapping
function: f : r → c, where c is the relation class. For example, we want mapping (”Steve Jobs was the
co-founder of Apple Inc.”, ”Steve Jobs”, ”Apple Inc.”) to its relation class ”Founder-of”.

Few-Shot Relation Classification. Few-shot relation classification task contains a support set S and a
query instance q, where S = {S1, .., SN} are support sets for N relation classes and each

Si = {s1i , ..., sKi }

contains K support relation instances for relation i. Then the query instance q is to be classified based
on the support relation instances in S. Such a few-shot setting is commonly named as an N-way K-shot
relation classification.

Learning-to-match based Methods. Learning-to-match based methods regard few-shot relation clas-
sification as a matching problem(Vinyals et al., 2016; Snell et al., 2017). Generally, it encodes each
relation class into a prototype, which is learned from its support set Si:

PSi = f(Si) ∈ Rdk ,
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where dk is the dimension of the metric space. Then a matcher is learned to measure the similarity
between each prototype and the query. For classification, it first encodes the query instance to the same
metric space:

Pq = g(q) ∈ Rdk .

Then the matcher computes the distances between the query instance and each prototype of different
relation classes, and the relation class of the query instance is inferred by the nearest distance:

y = argmin
i
D(PSi ,Pq), (1)

where y is the label of the nearest relation class prototype, D(.) is the distance function to measure the
similarity between support set and query instance.

The main drawback of such learning-to-match approaches is that the prototype only contains the in-
formation from the support instances of its own class. This results in the absence of discriminative
knowledge between different candidate classes, which can significantly undermine the performance on
confusing relation type pairs. Besides, the inaccurate measurement of similarities on out-of-domain
relations can also lead to a negative impact on system performance.

Global Transformed Prototypical Networks

In this section, we introduce our Global Transformed Prototypical Networks (GTPN) for few-shot re-
lation classification. Different from previous work, GTPN follows a learning-to-discriminate paradigm,
which directly takes the query and support sets of all classes as input. Figure 2 shows the framework
of our method. First, GTPN encodes the query and instances in support sets into a hidden vector space
via an instance encoder, as well as a relation marker, which represents whether two support instances
belong to the same relation support set. These embeddings are then all synchronously sent to multi-view
global transformation layers to learn the discriminative information based on both intra-relation and
inter-relation knowledge. Then, we summarize the representations of all instances of the same relation
to generate the prototypes of each class. Finally, the query representation and all prototypes are sent into
a classifier to predict the relation type. In the following, we will describe each step of GTPN in detail.

Instance Encoder
The instance encoder module encodes each instance x into the same embedding space:

h = H(x), h ∈ Rdk , (2)

where dk is the dimension of the embedding space, h is the embedding of each instance, which will
be used for further prototype learning. Recent years, several instance encoders have been proposed, in-
cluding Convolutional Neural Networks (CNN) (Zeng et al., 2014; Han et al., 2018); Recurrent Neural
Networks (RNN) (Hochreiter and Schmidhuber, 1997; Zhou et al., 2016); and the recent Transformer
architecture (Vaswani et al., 2017). Pre-trained language models like BERT (Devlin et al., 2019) also
provide promising encoders for relation instances (Gao et al., 2019b; Baldini Soares et al., 2019). In this
work, we adopt the BERT-based instance encoder similar to (Baldini Soares et al., 2019), which wraps
entities in the instance with special markers [ENTITY] and [/ENTITY], and concatenate the representa-
tions of the first marker [ENTITY] of each entity as the instance embedding.

Relation Marker
Apart from the instance encoder, it is necessary to introduce relation markers to encode whether two
instances belong to the same relation support set. To this end, we propose to use two kinds of relation
markers for GTPN, including:

• Randomly initialized relation encoding. For each instance embedding hi, 1 ≤ i ≤ N ∗K with
relation type ri, we randomly initialize the relation encoding embedding hri ∈ Rdk for it, and add
it with the relation encoding embedding: hi = hi + hri as the new hidden states. For the query
instance, we regard it as the instance of relation rN+1: hq = hq + hrN+1 .
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• One-hot relation encoding. we use an one-hot vector to indicate each relation class, e.g.,
[1, 0, ..., 0] for the first relation class and [0, 1, 0, ..., 0] for the second relation class. For the query
instance, we use the last one-hot vector to indicate the relation class.

The relation markers are directly concatenated to the embeddings from previous instance encoder to
form the instance representations. Finally, we represent the output after instance encoder as:

X = [hq,hs11
, ...,hsK1

, ...,hs1N
, ...,hsKN

]. (3)

Multi-view Global Transformation

After obtaining the representations of all support instances, we will conduct global transformation among
them to learn the knowledge from both intra-relation and inter-relation support sets. This module is
based on a multi-layer transformer model(Vaswani et al., 2017). Specifically, given the embeddings of
all instances, each instance is firstly mapped into multiple views of semantics by a multi-view projection:

vi
j = Wi · hj + bi, (4)

where vi
j is the ith view of the jth instance, Wi is the mapping matrix and bi is the bias for view i.

Then the model will transform the representation of all instances of all relations from each view via an
attention-based mechanism:

vi
j =

N∗K∑
m=0

αjm · vi
m

αjm = Softmax(
vi
j · vi

m
T

√
dk

),

(5)

where αjm is the normalized attention score between the jth and mth instances, the attention score is
divided by dimension dk to rescale the inner product of two vectors. After that, the output representation
of each instance of this transformation layer is obtained by concatenating the representations in its all
views. This output representation is then fed into next global transformation layer. We denote the output
representation of instance Sj

i as oji . Furthermore, we use hq to represent the final output representation
of the given query.

Prototype-based Classification

After obtaining the global transformed instance representations, we calculate the prototype of each class
by averaging the representations of all instances in its support set:

pi =
1

K

K∑
k=1

oki , (6)

where pi is the prototype of relation i. Then we calculate the probability of the query being an instance
of relation yi by sending the query representation hq and all prototypes into a softmax-based classifier:

P(yi|Si, q; θ) =
exp(−D(pi,hq))∑N
j=1 exp(−D(pj ,hq))

. (7)

Here D is a score function between the prototype and the query. In this paper, we simply choose D to
be the Euclidean distance function. But it can be easily replaced with other parametrized functions such
as MLP. Finally, we choose the relation yi with maximum probability as the relation class of the given
query:

y = argmax
i
P(yi|Si, q, θ) . (8)
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Hyperparameter Value
Batch Size 1

Layer Number 1, 2, 3
View Number 1, 2, 4, 8
Learning Rate 10−5

Weight Decay 10−6

Optimization strategy Adam
Learning Rate Decay 0.6

Learning Rate Decay Step 1000
Maximun Sequence Length 256

Table 1: Hyperparameter settings.

Model Learning

Similar to previous work (Han et al., 2018; Gao et al., 2019b), all components in GTPN are trained in an
end-to-end manner. Specifically, given a training task with N support relations (Sn, yn) and one query
instance (q, yq), GTPN is learned by minimizing the following loss function:

J (θ) = −
N∑

n=1

I(yn) logP (yn|Sn, q, θ), (9)

where yn is the relation of support set Sn and I(.) is an indicator function:

I(yn) =

{
1, yn = yq

0, yn 6= yq
, (10)

which indicates whether the relation corresponds to the golden relation of the given query.

Experiments

Experimental Settings

Datasets. We conducted experiments on two standard few-shot relation classification benchmark-
s: FewRel 1.0 (Han et al., 2018) dataset and FewRel 2.0 Domain Adaptation(Gao et al., 2019b)
dataset 2. FewRel 1.0 is constructed based on the articles from Wikipedia. FewRel 2.0 Domain
Adaptation task further extends FewRel 1.0 by introducing an additional test data from PubMed foot-
notehttps://www.ncbi.nlm.nih.gov/pubmed/, which is a large database of biomedical literature, and is
significantly different from Wikipedia train set. Totally, FewRel 1.0 consists of 100 relation classes and
700 instances for each relation class, and the standard 64/16/20 of train/validate/test relation class splits
are adopted in our experiments. While FewRel 2.0 shares the same training data with FewRel 2.0, but a
different test set including XXX relations in medical domain.

Baselines. We compared GTPN with the following published baselines:

• Bert-Pair (Gao et al., 2019b): A few-shot model that utilize the BERT sequence-pair model to
measure similarity between two instances.

• DaFeC (Cong et al., 2020): An inductive unsupervised domain adaptation framework for few-shot
relation classification.

• Proto-Adv(Bert) (Gao et al., 2019b): The adversarial trained prototypical networks with Bert as
the encoder.

• Proto-Bert (Gao et al., 2019b): The vanilla prototypical networks using Bert as the encoder and the
[CLS] token to represent the instance.

2https://github.com/thunlp/FewRel
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Model
FewRel 2.0

5-Way 5-Way 10-Way 10-Way Avg.1-Shot 5-Shot 1-Shot 5-Shot

Proto-CNN 35.1 49.4 23.0 35.2 35.7
Proto-Bert 40.1 51.5 26.5 36.9 38.8
Proto-Adv(Bert) 41.9 54.7 27.4 37.4 40.4
Proto-Adv(CNN) 42.2 58.7 28.9 44.4 43.6
DaFeC 61.2 77.0 47.6 64.8 62.7
BERT-PAIR 67.4 78.6 54.9 66.9 66.9
CP 79.7 84.9 68.1 79.8 78.1
MTB* 74.7 87.9 62.5 81.1 76.6

GTPN 80.0 92.6 69.25 86.9 82.2

Table 2: Accuracies(%) on FewRel 2.0 test sets. * is reported in Peng et al., [2020].

Model
FewRel 1.0

5-Way 5-Way 10-Way 10-Way Avg.1-Shot 5-Shot 1-Shot 5-Shot

Proto-Adv(CNN) 70.3 84.6 56.3 74.7 71.5
Proto-Adv(Bert) 73.4 82.3 61.5 72.6 72.4
Proto-CNN 74.5 88.4 62.4 80.5 76.4
HATT – 90.1 – 83.1 –
Proto-Bert 80.7 89.6 71.5 82.9 81.2
MLMAN 83.0 92.7 73.6 87.3 84.1
BERT-PAIR 88.3 93.2 80.6 87.0 87.3
Bert-EM 89.8 93.6 83.4 88.6 88.9
REGRAB 90.3 94.3 84.1 89.9 89.6
CP 95.1 97.1 91.2 94.7 94.5
MTB 93.9 97.1 89.2 94.3 93.6

GTPN 89.4 97.0 84.4 93.8 91.2

Table 3: Accuracies(%) on FewRel 1.0 test sets. MTB and CP pretrained the matcher on Wikipedia,
which is also the source of FewRel 1.0. While Pony introduced additional world knowledge to improve
the performance. So there results are not directly comparable with GTPN.

• Proto-Adv(CNN) (Gao et al., 2019b): The adversarial trained prototypical networks with CNN as
the encoder.

• Proto-CNN (Gao et al., 2019b): The vanilla prototypical networks using CNN as the encoder.

• REGRAB (Qu et al., 2020): A bayesian meta-learning method that utilize additional global relation
graph knowledge.

• Bert-EM (Baldini Soares et al., 2019): A simple Bert-based prototypical networks that wrap entity
with special markers.

• MTB (Baldini Soares et al., 2019): The same base model with Bert-EM, and uses large-scaled wiki
data to pre-train the model, which is of the source with FewRel 1.0.

• MLMAN (Ye and Ling, 2019): The multi-level matching and aggregation network that involve
intr-class information and support-query interactions.
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• HATT (Gao et al., 2019a): The hybrid attention-based prototypical networks that also includes
local context to avoid noisy data.

• CP (Peng et al., 2020): This model utilizes the same model of Bert-EM and proposes a different
contrastive-based pretraining on Wikipedia.

Evaluation Metrics. We follow the settings in FewRel (Han et al., 2018) and adopt the official eval-
uation scripts 3 to evaluate the accuracy of all models on tasks including 5-way 1-shot, 5-way 5-shot,
10-way 1-shot, and 10-way 5-shot tasks.

Hyperparameter Settings and Infrastructure specifications. In the experimental period, we fix all
the hyper-parameters listed in Table 1 during training stage except for the layer number and view number.
We conducted grid search on validation set of FewRel 1.0 to find the best layer number and view number,
which will be detailedly analyzed in the following. We train and evaluate our model using one Titan
RTX GPU with about 24GB memory. Each training period costs about 2 hours for about 15000 steps of
batches. The trainable parameters of GTPN are about 4M, excluding the BERT parameters.

Overall Results

Table 2 shows the overall results on FewRel 2.0 Domain Adaptation task and Table 3 shows the result on
FewRel 1.0. From these tables, we can see that comparing with previous work:

1. GTPN achieves the very competitive performance on few-shot relation classification. From
Table 2, we can see that GTPN achieved the best performance on the FewRel 2.0 domain adaptation
task. Besides, we can also see that in Table 3, GTPN achieved a very competitive performance on the
Fewrel 1.0. Note that the top 2 systems (i.e. MTB and CP) on FewRel 1.0 introduced additional in-
domain knowledge into the task, and therefore is not directly comparable with GTPN. Specifically,
MTB and CP pretrained the matcher on Wikipedia, which is also the source of FewRel 1.0. While
the second-best model introduced additional world knowledge to improve the performance. On the
contrast, GTPN achieves very strong performance without introducing any additional knowledge,
which demonstrates the effectiveness of GTPN.

2. GTPN is robust when domain shifting exists. In FewRel 2.0 domain adaptation task, GTPN
outperforms all other baseline models with a large margin, and also reaches the Top 1 in leaderboard
of FewRel 2.0 domain adaptation benchmark, which demonstrates that GTPN is very robustness in
few-shot relation classification task even without any knowledge of the target domain. We believe
that this is because the proposed learning-to-discriminate paradigm can transfer more knowledge
between different domains than previous learning-to-match paradigm. Besides, the learning-to-
discriminate paradigm also more corresponds to the nature of few-shot relation classification task.
These all results in the performance improvements when domain shifting exists.

3. GTPN is even more effective on 5-shot learning paradigm. Comparing with the improvement
over the 1-shot settings, GTPN achieves more improvements on 5-shot settings. We believe that
this is because a little bit more support instances could provide more sufficient discriminative infor-
mation between different relations, and therefore results in better learning-to-discriminate perfor-
mance.

Detailed Analysis

In this section, we conducted detailed analysis on the behavior of GTPN. Since the test sets of both
FewRel 1.0 and FewRel 2.0 are unavailable to the public, we choose FewRel 1.0 validation set as the
development set to select model, and use FewRel 2.0 validation set as the test set to evaluate the final
performance for each model.

3https://github.com/thunlp/FewRel

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1012-1023, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Model
5-Way 5-Way 10-Way 10-Way
1-Shot 5-Shot 1-Shot 5-Shot

Bert-EM 79.0 88.4 64.4 84.4
Bert-EM+GTPN 82.8 91.4 71.0 86.0

(a) Accuracies (%) of GTPN over base encoder on FewRel
2.0. Bert-EM is our reimplement of Soares et al., (2019).

Relation 5-Way 5-Way 10-Way 10-Way
Encoding 1-Shot 5-Shot 1-Shot 5-Shot

One-hot 82.8 91.4 71.0 86.0
Random 82.2 90.2 71.4 86.2
None 82.2 91.0 68.6 85.8

(b) Accuracies(%) with different relation encodings of GTPN
on FewRel 2.0 validation set.

View 5-Way 5-Way 10-Way 10-Way
Number 1-Shot 5-Shot 1-Shot 5-Shot

1 81.8 90.4 69.2 84.6
2 82.6 90.8 69.8 86.0
4 82.8 91.4 71.0 86.0
8 82.4 89.6 68.4 85.6

(c) Accuracies(%) with different view numbers of GTPN on
FewRel 2.0 validation set.

Layer 5-Way 5-Way 10-Way 10-Way
Number 1-Shot 5-Shot 1-Shot 5-Shot

1 82.8 91.4 71.0 86.0
2 81.8 89.4 69.4 85.8
3 80.4 88.2 68.2 83.6

(d) Accuracies(%) with different layer numbers of GTPN on
FewRel 2.0 validation set.

Effect of GTPN with Different Instance Encoder. This experiment analyzes the effect of GTPN over
the base instance encoder. We reproduce Bert-EM as the base encoder for GTPN and use the Prototypical
Networks on Bert-EM as comparison. As we can see from Table 4a, with the same instance encoder,
GTPN significantly outperforms vanilla Prototypical Networks, which means that the improvement of
GTPN does not stem from the power of instance encoder, but from the effective learning-to-discriminate
paradigm.

Effect of Relation Marker. In this experiment, we study the effect of different relation markers we
proposed of GTPN. For fair comparison, we fix the layer number to 1 and the view number to 4. As
shown in Table 4b, we can see that the performance of different kinds of one-hot and random relation
markers are quite similar. One-hot relation marker performs slightly better on 5-way settings, while
random marker performs slightly better on 10-way settings. However, the difference between them is not
large, which means that both of them are effective relation marker for GTPN.

Effect of Transformation Layer Number. In this experiment, we study the effect of different trans-
formation layer of GTPN. For fair comparison, we fixed all other hyper-parameters the same as the main
experimental setting and the view number to 4. The layer number in this experiment is varied from 1 to
3. From the results shown on Table 4d, we can see that model with one transformation layers performs
relatively best and more layer number leads the performance to fall. This is perhaps because the global
transformation in GTPN is fully-connected with all instances in the task. Hence one layer is enough
to capture global information from all other instances. Besides, the limited training data size can also
undermine the performance of deep models, because it requires more training data to learn effective
parameters.

Effect of View Number. In this experiment, we verify the effect of different view numbers. we vary
the view number of GTPN from 1, 2, 4 to 8, and fix the layer number to 1. From the result shown on Table
4c, we can see that with the view number increases, the performance of GTP also improved. The model
with 2 and 4 view number reach the relatively best performance on FewRel 2.0, and the model with
single view performs the worst. We believe that this is because the relation representation may contain
several perspectives of semantics. So with multi-view semantics, the model is easier to find the specific
semantic and aggregates more information with other instances with the similar features. Besides, the
model with 8 views are marginally worse than model with 4 views, which may indicate that 4 views are
enough to capture different aspects information.
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Related Work

Relation Classification. Relation classification has long been an important information extraction task.
Conventional methods commonly employ syntax structure-based representations, e.g., dependency tree
(Bunescu and Mooney, 2005) and constituent tree(Qian et al., 2008; Nguyen et al., 2009). In recent years,
neural network-based methods dominate relation classification. (Zeng et al., 2014) proposed to encode
relation instances via convolutional neural networks (CNN). (Zhou et al., 2016) proposed an attention-
based BiLSTM (AttBLSTM) for instance encoding and classification. (Wang et al., 2016) proposed a
multi-level attention CNNs for capturing multi-level lexical and semantic features. (Peng et al., 2017)
tried to incorporate dependency information into neural networks by extending tree LSTM (Tai et al.,
2015). (Velikovi et al., 2018) proposed graph attention networks (GATs) to incorporate the dependency
information. The main drawback of supervised methods is that they require a large amount of annotated
data, which is costly and cannot be easily obtained when adapting to new relation classes.

Few-Shot Learning. To resolve the annotated data bottleneck problem, few-shot learning is a promis-
ing approach. Many few-shot algorithms have been proposed in Computer Vision (CV) and Natural
Language Processing (NLP), which can be categorized into two main paradigms, metric-learning based
methods (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017) and meta-learning based meth-
ods (Andrychowicz et al., 2016; Santoro et al., 2016; Ravi and Larochelle, 2017; Finn et al., 2017;
Munkhdalai and Yu, 2017; Mishra et al., 2018). Recently, many research interests have been focused
on metric-based methods(Oreshkin et al., 2018; Sung et al., 2018; Liu et al., 2019; Gidaris et al., 2019;
Zhou et al., 2020; Yang et al., 2021).

Few-Shot Relation Classification. (Han et al., 2018) proposed a few-shot learning task in relation clas-
sification, and adopted many few-shot learning methods into relation classification, including prototype-
based method (Snell et al., 2017), meta-learning method (Mishra et al., 2018) and graph neural network
(Satorras and Estrach, 2018). Since then, many prototype-based methods have been proposed for relation
classification. (Baldini Soares et al., 2019) utilize the pre-trained language model BERT (Devlin et al.,
2019) for relation encoding and use prototypes to represent different relation classes. (Qu et al., 2020)
adds knowledge from graph to guide the meta-gradient for bayesian meta-learning. (Gao et al., 2019a)
designed hybrid attention to learn a local matcher between intra-class instances, query and each support
instances. (Ye and Ling, 2019) proposed the multi-level matching and aggregation network which up-
dates support and query instances by matching and aggregating evidence on each support set. (Gao et
al., 2019b) directly average the support-query scores using the BERT sequence-pair classification model
for relation classification. We can see that the methods in few-shot relation classification are mostly in a
learning-to-match paradigm, The matcher learned in these model are difficult to handle confusing reltion
types, as well the domain shift. Thus, in this paper, we propose the learn-to-discriminate-based GTPN to
tackle these limitations.

Conclusions

In this paper, we propose the Global Transformed Prototypical Networks, which switches previous
learning-to-match paradigm to the learning-to-discriminate paradigm, and therefore can make the mod-
el concentrate more on the discriminative knowledge between all candidate relations. GTPN learns to
build a few-shot model to directly discriminate between the query and all target classes with both inner-
class local information and inter-class global information. Experiments on FewRel 1.0 and FewRel 2.0
demonstrate that GTPN achieves very competitive performance on few-shot relation classification, and
reached the best performance on the FewRel 2.0 domain adaptation task. Which shows our method can
benefit both further study and practice in few-shot relation classification.
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