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Abstract

Fine-tuned pre-trained transformers achieve
the state of the art in passage reranking. Un-
fortunately, how they make their predictions re-
mains vastly unexplained, especially at the end-
to-end, input-to-output level. Little known is
how tokens, layers, and passages precisely con-
tribute to the final prediction. In this paper, we
address this gap by leveraging the recently de-
veloped information bottlenecks for attribution
(IBA) framework. On BERT-based models for
passage reranking, we quantitatively demon-
strate the framework’s veracity in extracting
attribution maps, from which we perform de-
tailed, token-wise analysis about how predic-
tions aremade. Overall, we find that BERT still
cares about exact tokenmatching for reranking;
the [CLS] token mainly gathers information
for predictions at the last layer; top-ranked pas-
sages are robust to token removal; and BERT
fine-tuned on MSMARCO has positional bias
towards the start of the passage.

1 Introduction

Pre-trained language models like BERT (Devlin
et al., 2019) have achieved prominent improvements
in both information retrieval (IR) and natural lan-
guage processing (NLP). Concurrently, researchers
have raised wide awareness about the difficulty of
explaining such deep learning models (Guidotti
et al., 2018; Robnik-Šikonja and Bohanec, 2018;
Fong and Vedaldi, 2017). Recently, many papers
scrutinize BERT’s behaviors in various tasks (van
Aken et al., 2019; Clark et al., 2019; Tenney et al.,
2019; Qiao et al., 2019; MacAvaney et al., 2020).
When it comes to token-wise analysis, most of the
work study intra-layer self-attention and how it re-
lates to various linguistic characteristics. Although
these analyses yield unique insights on layer-local
behavior across pairs of tokens, they do not take
a global perspective of how token-wise represen-
tations exactly relate to the prediction. This is
crucial for answering a fundamental question in

interpretability: what hidden features and tokens
contribute the most to the prediction?

To faithfully compute such feature–prediction at-
tribution maps, Schulz et al. (2020) and Jiang et al.
(2020) propose to apply information bottlenecks. In
this paper, we leverage this model-agnostic method
to analyze passage reranking for pre-trained trans-
formers. We first introduce the information bottle-
neck for attribution (IBA) method (Schulz et al.,
2020) in general and elaborate its use in interpreting
passage reranking. Afterwards, we compare it with
two other widely adopted attribution methods to
demonstrate its credibility and justify our choice.
We then carry out detailed analyses on the inner
mechanisms of passage reranking.

BERT reranking (Nogueira and Cho, 2019) starts
a new chapter in information retrieval, as it com-
bines the dual advantages of the speed of sparse
representation (BM25) and the deep contextualiza-
tion of dense representation. To be specific, given a
query @, BM25 returns top-1,000 passages �. The
label A is 1 if a passage 3 ∈ � is relevant to @,
and 0 otherwise. For BERT, the input is [CLS] q
[SEP] d [SEP], and the output label is A. After
fine-tuning, we rerank � based on the output prob-
abilities of relevance. This setting is different from
most NLP tasks, where positive and negative labels
are provided by the dataset, and only one pair of
(input, probability) is required for the final output.

We use IBA to generate attribution maps for
BERT-large (Devlin et al., 2019) fine-tuned on the
MSMARCO dataset (Bajaj et al., 2016) in this
paper. With the attribution maps, we investigate
the following questions:
Q1. What are the similarities and differences
between BERT and BM25?
For the two-stage pipeline, we wonder how BERT’s
ranking mechanism is similar to BM25 and what
it provides that BM25 doesn’t. Through cross-
passage examination, we find that BERT still re-
gards lexical matching as important to some extent,
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similar to BM25. BERT, furthermore, manages
to capture deeper-contextualized relationships be-
tween the query and the relevant passage.
Q2. How do special tokens contribute to rerank-
ing across layers?
In BERT, only the [CLS] token is designed to factor
into prediction. Then how do those special tokens
collect information across layers to capture a con-
textualized relationship? We find that, different
from what attention analyses show, [CLS] starts to
gather the evidence for prediction primarily after
layer 16, especially in layer 24.
Q3. How robust is the top-ranked passage?
One of the special settings of ranking is that we do
not care about the absolute score, as long as the
relevant passage ranks higher than irrelevant ones.
We conduct experiments of token removal for the
top-1 positive passage to test the robustness. We
find that we can truncate up to 22.5% tokens on
average, given reasonable attribution scores, of the
top-ranked passage without affecting its order.
Q4. Does BERT have positional bias?
We then look deeper intowhatmakes those passages
rank higher. We find that BERT, after fine-tuned on
MSMARCO, prefers those passages with inverted
pyramid structure—that is, passages that put impor-
tant information at the start. We further confirm
that it has positional bias towards the start of the
passage through various experiments.

2 Related Work

Generally speaking, interpretability methods are
either model specific, applying to only a single
architectural family, or model agnostic, covering a
broad spectrum of supervised models. Since pre-
trained transformers represent the state of the art in
NLP, formodel-specific techniqueswe discuss those
for BERT, the prototypical, most-interpreted trans-
former model. As this work specifically explores
passage reranking, we also provide the necessary
literature about recent progress.

2.1 BERT specific
A number of works investigate the inner mecha-
nisms of BERT. Kovaleva et al. (2019); Clark et al.
(2019) carefully analyze BERT’s attention heads,
noting positive correlation between attention heads
and linguistic features, as well as special tokens.
Looking at attention, Voita et al. (2018) find

that BERT captures anaphora and dependence on
position and length in machine translation. Pointing

out some shortfalls of these papers, Jain andWallace
(2019); Brunner et al. (2019); Serrano and Smith
(2019) argue that attentions often do not reflect how
models make predictions.

Another line of work analyzing BERT use prob-
ing classifier to draw the connection between vec-
tor representation and specific linguistic knowl-
edge (Tenney et al., 2019; Hewitt and Manning,
2019; Liu et al., 2019). Rogers et al. (2020) pro-
vide a thorough literature survey about what we
already know about how BERT works and they’ve
found different probing methods sometimes lead to
contradictory interpretations. A direct remedy is
to look into what BERT looks at during inference
time (i.e. identify important features for prediction,
also known as “attribution methods” in general).
That’s where our work focuses on.

2.2 Attribution maps

Although more commonly applied to convolutional
neural networks in image classification, most attri-
bution methods are model agnostic. They aim to
assign weights to input features according to how
the model makes predictions, with higher weights
corresponding to greater contributions.
The most prevalent methods are gradient-based.

Intuitively, gradients reflect how small changes in
the input affect the final prediction to some extent.
But previous work shows that raw gradients are
noisy and limited to capturing only the local “im-
portance” (Smilkov et al., 2017). To remedy this,
some of them (Sundararajan et al., 2017; Smilkov
et al., 2017) incorporate global importance to miti-
gate this problem, while others (Binder et al., 2016;
Shrikumar et al., 2017; Kindermans et al., 2018)
modify or extend the back-propagation algorithms
directly to emphasize positive contributions with
regard to prediction. However, Sixt et al. (2020)
show that most of the modified back-propagation
methods fail a basic sanity check: invariance to
parameter randomization and label randomization.

LIME (Ribeiro et al., 2016) is not even limited to
differentiable models. They use interpretable mod-
els like decision trees to approximate deep neural
networks, and thus can theoretically interpret any
classifier. However, empirically, LIME’s high de-
mand on memory may worsen its quality compared
to other methods, as we will see in the later section.
Information-theoretic methods are often uncon-

strained by tasks and models as well, while ad-
ditionally providing a unified view of how infor-
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mation flows across models. Guan et al. (2019)
use mutual information to estimate tokens impor-
tance across layers but don’t provide quantitative
evaluation. Bang et al. (2019) also take advantage
of information bottlenecks to interpret predictions,
but they restrict the information by sampling to-
kens, which doesn’t generate a complete attribution
map for every token and limits the interpretation
to be token-wise only. More recently, Schulz et al.
(2020) propose the information bottleneck method
for attribution, which empirically achieves the best
result on multiple evaluation metrics in interpret-
ing images. Jiang et al. (2020) further leverage
this method in NLP and also surpass other model-
agnostic methods on multiple datasets.

2.3 Neural IR
BERT is a game changer for information retrieval.
Lin et al. (2020) even separate neural reranking
techniques into “pre-BERT” and “post-BERT” eras.
Nogueira and Cho (2019) start the post-BERT era
by proposing a two-stage pipeline, using sparse
representations like BM25 to generate candidates
and then neural models like BERT to rerank them.
More recent work explores merging the two-stage
pipeline into an end-to-end dense retrieval, like
DPR (Karpukhin et al., 2020), which still use BERT
as the basic building block for neural information re-
trieval. Therefore, understanding BERT’s behavior
for reranking in the original setting still helps.
Toward this, a few previous works specifically

analyze BERT for reranking: Qiao et al. (2019)
analyze attention to see how BERT attends to stop
words and regular words across layers. MacAvaney
et al. (2020) does a more thorough study of various
reranking models, using carefully designed textual
manipulationmethods. Different from them, we use
a model-agnostic method to generate a token-wise
attribution map, as it provides us with the flexibility
to carry out a layer-wise analysis. Besides, to the
best of our knowledge, no previous work has done
a cross-passage analysis to see patterns across the
ranks of different passages.

3 IBA Method

3.1 General Introduction to IBA
The starting point of IBA is to keep only the feature-
level information that’s most helpful toward the
final prediction. After a given layer in the target
neural network, we insert an information bottleneck,
which restricts the total amount of information in

the representation. Simultaneously, we maximize
the amount of information important toward the
final prediction.
To be concrete, given an input X ∈ R# and

output Y ∈ R" , an information bottleneck is an
intermediate representation T that maximizes the
following function:

I(Y; T) − V · I(X; T), (1)

where I denotes mutual information, and V is a
hyperparameter that balances the trade-off between
reconstruction I(Y; T) and information restriction
I(X; T). A larger V means a narrower bottleneck
and hence less information through the network.
Intuitively, maximizing I(Y; T) keeps informa-

tion for accurate prediction, while minimizing
I(X; T) filters out unnecessary information. To
obtain the condensed representation T, we con-
struct a loss function based on the intuition above.
For I(Y; T), we can directly use the cross-entropy
loss for classification LCE. For I(X; T), we will
derive it step by step below.
Formally, for a given layer ; of a model, let

X = 5; (H), meaning the output of each layer, where
H is the input of layer ;. We then restrict the
information by injecting noise n into input X, which
results in

T = µ � X + (1 − µ) � n, (2)

where � refers to element-wise multiplication, 1
is an all-one vector, µ ∈ R# is the weighting pa-
rameter controlling the balance between signal and
noise whose dimension is the same as input X. For
each dimension, we constrain µ8 ∈ [0, 1], setting
µ8 = f(αi), where f is the sigmoid function, to
simplify the training process. And αi is the pa-
rameter that we are learning for each dimension.
From Eq. 2 we can see that when µ = 0, that is, all
the information is discarded; only noise is passed
through (T = n). Taking that into account, in order
to preserve the magnitude of the input for the next
layer, it’s desirable to keep n the same mean and
variance as X. Therefore, we have n ∼ N(`X, f

2
X).

This condition doesn’t always ensure T to have ex-
actly the same mean and covariance with X though.
And the model is recovered after training the bot-
tleneck to ensure the covariance shift doesn’t affect
interpreting subsequent instances.

After obtaining T, we can now evaluate I(X; T).
By definition,

I(X; T) = EX [� ! [%(T|X)‖%(T)]], (3)
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where � ! means Kullback–Leibler (KL) diver-
gence and %(T|X), %(T) are probability distribu-
tions. As %(T) =

∫
%(T|X)%(X)dX, there is no

analytical expression for %(T). We use the standard
variational approximation &(T) = N(`X, f

2
X) to

substitute %(T). Note that we estimate each `X
and fX empirically. The variational approximation
assumes that each dimension is distributed inde-
pendently and normally. The normal distribution
comes from the observation that activations after
linear and convolutional layers tend to be Gaussian-
like (Klambauer et al., 2017; Borovykh, 2018). The
independence assumption, on the other hand, does
not hold in general, but it just overestimates the
mutual information, so it gives an upper bound of
mutual information between X and T:

I(X; T) ≤ EX [� ! [%(T|X)‖&(T)]] . (4)

Proof can be found in Appendix A.
An upper bound means when the approximation

between X and T is 0, their mutual information is
guaranteed to be 0, which is a desired property, as
we expect I(X,T) to be small.

Combining Eq. 4 with the cross entropy for
classification, we have our loss function:

L = LCE + V · EX [� ! [%(T|X)‖&(T)]] . (5)

Note that we negate the sign for minimization. V
can be viewed as the gate controlling the relative
importance between the two loss components. After
getting T from above, we calculate how much
information T still contains about X using Eq. 3.
This gives us the contribution of each dimension
in every token. In order to generate the token-wise
attribution map, we sum over the feature–token axis
to obtain an attribution score for each token.

3.2 IBA for Passage Reranking Analysis
The procedure of using BERT to rerank pas-
sages (Nogueira and Cho, 2019) can be charac-
terized as follows: Given query @, and a list of
passages �, 3 ∈ � is returned by BM25. BERT
then assigns the relevance score '(@, 3), the logits
for the probability that the passage is regarded as
relevant, to each pair of @ and 3. LCE in this case is
the same as the cross entropy in Nogueira and Cho
(2019). We use BERT-large model fine-tuned on
MSMARCO dataset for experiments. In order to
getT, we optimize the learning parameterα. At the
beginning of the training, we start with T ≈ X to
keep the information of X in T as much as possible.

Thus, we initialize α 9 = 5 for each dimension 9
as it results in µ 9 = 0.993, which is close to 1 as
desired. During optimization, we fix the training
steps to 10 and repeat a sample 10 times to inject
different noise, which altogether requires 100 total
steps to generate an attribution map for a single
instance. Another important hyperparameter is V.
We empirically pick V ≈ 10 × LCE

LIB
, as suggested

in (Jiang et al., 2020).
To compare the effectiveness of IBA with other

attribution methods, we carry out a degradation
test. The essential idea of a degradation test is to
remove the most important :% tokens, excluding
special tokens, identified by different attribution
methods and measure the drop of the probability
with respect to the given label.

The initial value of : is 11 and we increase :
until all the tokens are removed, shown as the G-axis
in Figure 1a. H-axis means the normalized average
probability drop after removing a certain percentage
of tokens: ?̄ (H |G

′)−<
>−< where G ′ represents input with

certain tokens removed, > is the original probability
before tokens removal, and< is the minimum of the
fully degraded instance’s probability across all attri-
bution methods. We conduct the experiment across
the entire MSMARCO dev set (6980 queries).
We compare the result with two other popular

model-agnostic attributionmethods, LIME (Ribeiro
et al., 2016) and Integrated Gradients (IG) (Sun-
dararajan et al., 2017), each representing a different
category of attribution methods: LIME uses in-
terpretable models like decision trees and linear
models to approximate the black box, while IG is a
variation of using the gradient of the predicted out-
put with respect to given input features. To provide
a simple baseline, we also compare the result with
“Random,” where tokens are removed randomly.
We expect a better attribution method will have a
steeper slope, meaning removing important tokens
identified by the method significantly deteriorates
the performance. As shown in Figure 1, IBA
outperforms all other three methods with a 61.3%
probability drop comparing with second-placed
IG, which makes for a 29.0% drop. The absolute
probability drop value can be seen in Table 1.

4 Experiments and Analyses

Figure 1c shows an example of important tokens in
the query and the passage identified by IBA. Aside
from token matching like “pH” and “water”, deeper
semantic relatedness like “acid” and “neutral” are
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what is the ph of water mean
a ph number measures from 
0 to ##14 how acidic or al 
##kali ##ne a liquid is - - 
anything above 7 is al ##kali 
##ne and anything below 7 
is acid . water has a ph 
level of 7 - - it ' s neutral , 
meaning it has the same 
amount of acids and al 
##kali ##s , which balance 
each other out .

(c) Qualitative example

Figure 1: Degradation test on MSMARCO with BERT-large, followed by an attribution map example.

Methods > − ?̄(H |G′)
Random 0.135
LIME 0.043
IG 0.265
IBA 0.565

Table 1: Probability drop after removing first :% im-
portant tokens identified by these methods.

also stressed. More examples and analysis are
shown in Appendix G.
Given the attribution maps, we are now able to

study which tokens BERT looks at for reranking.
To be specific, we exploit IBA to extract the top-
20 most important tokens M for each (@, 3), @ ∈
&, 3 ∈ �, where & and � represent the query list
and the passage list. We carry out our experiment
under two different settings:
1. & consists of 1,000 randomly selected queries

from the entire MSMARCO passage reranking
dev set. � is composed of the human annotated
relevant passages. We then apply IBA to all 24
layers to get top-20 tokensM for each (@, 3).

2. & consists of 105 queries from a subset of the
MSMARCOpassage reranking dev set, provided
by Pyserini (Lin et al., 2021). � comprises top-
50 passages that BERT-large retrieves for each
query. For these experiments, we fix the layer ;
that we insert the information bottleneck after.

For setting 1, we aim at cross-layer analysis for
relevant passages. Specifically, we identify if lower
layers show different focus from higher layers. This
setting is similar to GLUE-like (Wang et al., 2018)
classification tasks where we want to find general
patterns about BERT. The reason for using the top
20 is that, in our sampled instances, the average
tokenized query length is 9.2, and we also want to

see the emphasized tokens in passages. For setting 2,
we perform cross-passage analysis to investigate
different patterns between higher-ranked passages
and lower-ranked passages. The choice of the top-
50 cutoff is due to frugality: the recall@50 (0.817)
is comparable to the recall@1000 (0.848), with
much less computation.

4.1 Passage-Level Patterns

It’s well known that two-stage ranking pipelines
use both exact token matching and semantic re-
latedness (Lin et al., 2020). As BM25 estimates
relevance purely by lexical matching, we wonder
if BERT still relies on exact match and what else
BERT provides.
Q1. What are the similarities and differences
between BERT and BM25?
To answer this question, we first study the cor-

relation between higher ranking scores and higher
lexical matching between queries and passages.
To measure the degree of lexical matching, we

use the Jaccard index under experimental setting 2:
J =

|D8∩E9 |
|D8∪E9 | , {D8 , E 9 |D8 ∈ @∩M, E 9 ∈ 3∩M}, where

8 ∈ [1, |@ |], 9 ∈ [1, |3 |], remember that M is the
top-20 tokens extracted by IBA.

For each query @, we calculate the Jaccard index
for every passage 38 in the top-50 passages. We
then average them across all queries. We choose
to insert the information bottleneck after layer 16,
as it is the most informative one according to our
degradation test.
As we see in Figure 2a, the Jaccard index de-

creases as the rank of the passages becomes lower.
In general, the higher1 the rank is, the more over-
lapped the important tokens between the query and

1“Higher” rank actually means lower order: passages with
order 1 have higher rank than passages with order 2, etc.



501

passages are. We also calculate Spearman’s corre-
lation (Spearman, 1961) AB to gauge the degree of
monotonic association. We find that AB = −0.98,
indicating a strong monotonic relation between the
Jaccard index and passages order. Does this cor-
relation hold among all tokens between the query
and passage? Figure 2b shows the Jaccard index
J′ =

|D′
8
∩E′

9
|

|D′
8
∪E′

9
| , {D

′
8
, E′
9
|D′
8
∈ @, E′

9
∈ 3} across pas-

sages. We see it shows a similar trend to J, confirm-
ing that even if BM25 returns passages that have
higher lexical matching with query, token matching
between queries and passages still plays an impor-
tant role when BERT is reranking. But using all of
the tokens between the query and the passage ob-
tains a correlation coefficient of AB = −0.71, which
is lower than using important tokens only. We argue
that it’s because IBA interprets in a way that’s more
aligned with the specific tokens that BERT looks at
when reranking.
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(b) Whole query and passage.

Figure 2: Across top-50 passage analysis.

We further investigate what BERT provides that
BM25 doesn’t. Specifically, we look into what
3BERT gets right but 3BM25 gets wrong. We notice
that BERT captures more contextualized relevance
between the query and passage, while the BM25-
returned answer has more “superficial” relevance
- 3BM25 seems to talk about the topic but doesn’t
really answer the question. The example shown
in Figure 3 demonstrates that passage returned by
BM25 seems highly related to the topic—“cognitive
impairment” but instead of explaining what the goal
is, it is explaining what “cognitive impairment”’s
definition is. On the contrary, BERT not only
returns the passage related to “cognitive impairment”
but also the goal. More discussions about semantic
similarity are in Appendix F.

4.2 Layer-Level Patterns

Downstream tasks often rely on BERT’s [CLS] vec-
tor at the last layer as input, and that’s also true for

Query: what is the goal for the child with a cognitive impairment
BM25 ranked 1st:  A cognitive impair‐
ment is a condition where your child 
has some problems with ability to think 
and learn. Children with a cognitive im‐
pairment often have trouble with such 
school subjects as math and reading. 
cognitive impairment is a condition 
where your child has some problems 
with ability to think and learn. Children 
with a cognitive impairment often have 
trouble with such school subjects as 
math and reading.

BERT ranked 1st:  Promoting 
optimum development. The 
goal for children with cognitive 
impairment is the promotion of 
optimum social, physical, cog‐
nitive, and adaptive develop‐
ment as individuals within a 
family and community. Voca‐
tional skills are only one part 
of that goal. The focus must 
also be on the family and 
other aspects of development.

Figure 3: Top-1 passage by BM25 and BERT.

reranking. It’s intriguing to know the layer at which
[CLS] starts to learn the relevance. Clark et al.
(2019) thoroughly analyze BERT’s self-attention
mechanism for each layer. While they provide in-
sight into how tokens attend to one another, the
attention weights themselves often do not corre-
late with measures of feature importance (Jain and
Wallace, 2019).
Q2. How do special tokens contribute to rerank-
ing across layers?
We insert an information bottleneck after each

layer for 24-layer attribution maps. First we inspect
how the [CLS] token gets emphasized across the
layers. Figure 4a shows the attribution score across
24 layers in experimental setting 1, with 95% confi-
dence intervals. Note that the score is normalized
between 0 to 1 for each token but it doesn’t add up to
1 for each instance. We further normalize the attri-
bution score by dividing the sum of the attribution
scores at each layer to account for different layers’
scale. As we can see in the plot, the attribution
score for [CLS] across layers first decreases from
layers 1–7, then goes up and fluctuates between
layers 7–16, until finally increasing from layer 16 to
24. This differs fromwhat attention analysis reveals
in Kovaleva et al. (2019) and Clark et al. (2019),
where they demonstrate that attention heads attend
to [CLS] in earlier layers but attend to [SEP] in
later layers. It’s not contradictory, though, because
we inspect feature importance with respect to the
predicted output. Since [CLS] at the final layer is
treated as a summary representation for the whole
sentence to perform classification, it’s intuitive that
[CLS] is regarded as an important feature in the
final layers.

What about the [SEP] tokens? Figure 4b shows
the attribution score averaged between the two
present [SEP] tokens—recall that BERT inserts
two for every input. They become increasingly
important with a certain amount of fluctuation from
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(a) CLS attribution score across layers.
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(b) SEP attribution score across layers. (c) Stats of 1,000 relevant (@, 3).

Figure 4: Normalized attribution scores of special tokens across layers; dataset statistics under setting 1.

layer 1 to layer 16, after which [SEP]’s attribution
scores drop, around the point where BERT starts
to emphasize [CLS]. We combine the two [SEP]
tokens because we find that both of them behave
similarly, with the first [SEP] having a slightly
higher attribution score. The possible explanation
is that the first [SEP] is also responsible for iden-
tifying the boundary between the query and the
passage, thus more important for reranking than the
final [SEP]. Plots for separate [SEP]’s scores and
weights can be seen in Appendix D.

Combining the above plots and the degradation
tests across layers in Figure 1b, we conjecture that
the [CLS] token initially serves as a classification
prior to condition the tokens in the early layers (1–7)
with [SEP] increasing participation. Then, BERT
gathers more general syntactic information (Hewitt
and Manning, 2019), until layer 16, after which
the [CLS] token slowly aggregates class-specific
information and at layer 24 becomes the most im-
portant token for classification. Figure 1b (the full
24-layer degradation test is shown in Appendix B)
echos the findings from previous work (Liu et al.,
2019), demonstrating that the middle layers are the
most informative ones for prediction. To be exact,
layer 16 (2

3 of the total number of layers) is the most
informative one in our experiment with BERT-large,
the same fraction as what Jiang et al. (2020) find
with BERT-base.

# required % required
(@, 31) 8.9 10.39
(31) 18.52 22.49

Table 2: Truncation test on top-1 pair/passage.

4.3 Truncation Test
Different from other downstream tasks, passage
reranking usually involves scores for 1,000 pas-
sages to generate the final result. Instead of absolute
scores for passages, we only care if relevant pas-
sages have higher scores than irrelevant passages.

Recent work (Bai et al., 2020; Formal et al., 2021)
starts to incorporate sparsemechanisms (adding and
removing tokens) in order to elevate efficiency for
the first-stage ranking. We ask how token removal
affects those true positive passages.
Q3. How robust is the top-ranked passage?
Specifically, we want to know how many unim-

portant tokens we can remove before the top-1
passage falls to second place. Once again, we use
the IBA-generated attribution map and then remove
those tokens with lowest attribution scores, until the
ranking score for the top-1 passage drops below the
second one. As in the reranking setting, the input
is always a query–passage pair (@, 3), and we have
two experimental settings: (1) removing tokens that
appear in both @ and 3; and (2) removing tokens
that appear in only 3. We include the result under
both settings and report the truncated number, as
well as the percentage needed in Table 2.

Surprisingly, even if BERT assigns an extreme
score to the passage, making the score close to one
another (Qiao et al., 2019), it still takes up to 22.5%
tokens on average for top-1 passage to downgrade
to the second place.
Obviously, removing tokens from the query

quickly deteriorates the ranking score. Passages-
only seem to have more redundant tokens that can
be safely removed, even though sentences in the
passage will become incomplete and broken after
token removal. Note that this experiment removes
only tokens of the top-1 passage. We attach the
comprehensive results and discussion of truncating
tokens in all passages in Appendix G.

4.4 Positional Bias
MacAvaney et al. (2020) observe that changing the
sentence order has negative effects when reranking
with BERT. They suggest that either the model is
affected by the discourse-level signal (e.g., topics
discussed earlier in passages) or the model encodes
positional bias.
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(b) First two sentences swapped.
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(c) Reversed sentence order.
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(d) Randomized sentence order.

Figure 5: Position index of important tokens in passages; stats of tested passages.

Precision@1 MRR MRR@10 Recall@3 Recall@50 Recall 1000
Original 0.276 0.411 0.403 0.427 0.817 0.848
Swapped 0.219 0.362 0.352 0.408 0.813 0.848

Randomized 0.200 0.343 0.332 0.384 0.803 0.848
Reversed 0.181 0.332 0.321 0.390 0.803 0.848

Table 3: Reranking metrics after changing sentence order.

Q4. Does BERT have positional bias?
To investigate if BERT has positional bias, we

first plot the position index of G8 where {G8 |G8 ∈
M ∩ 3}. Specifically, we insert the bottleneck
after every layer under experimental setting 1—
1000 relevant pairs of (@, 3)—and then accumulate
the count of each position index for all 24 layers
(plots for each layer is also shown in Appendix H).
Statistics about randomly selected (@, 3) are shown
in Figure 4c. As we show in Figure 5a, tokens at
the start of passages (e.g., position index from 0
to 20) have significantly higher occurrences than
tokens appearing later.
We then conduct three controlled experiments:

(1) swapping the first two sentences; (2) reversing
the order of all sentences; and (3) randomizing the
order of sentences. Wemaintain the order of within-
sentence tokens in order to keep the discourse com-
plete and coherent. The plots are shown in Figure 5.
We see that, although changing the order results in
more later-appearing tokens emphasized, the start of
the passages still have incomparable dominance. To
quantify the effect of swapping sentences, random-
izing sentences, and reversing sentences, we calcu-
late ?(relevant|{original, swap, random, reverse}).
We find that ?(relevant|original) = 0.939,
?(relevant|swap) = 0.920, ?(relevant|random) =

0.918, ?(relevant|reverse) = 0.897. The probabil-
ity drops after every change of sentence order. The
more the order changes, the more the probability
drops (i.e., the negative effect is reversed order >
randomized > swapped). Given that BERT assigns
extreme reranking scores to most (@, 3) pairs (e.g.,
scores are mostly either close to 0 or close to 1), it’s
unclear whether changing the order of sentences
affects the final result.

Therefore, we also conduct experiments of chang-
ing the order sentence with the subset of the MS-
MARCO passage reranking dev set. We present
these results in Table 3. Swapping sentences sub-
stantially deteriorates the result; randomizing and
reversing the sentences further worsens the result.

The above experiments suggest that the sentence
order in the passage carries high importance in
reranking with BERT. Specifically, passages with
the inverted pyramid structure would be preferred,
as they present important information at the begin-
ning of the passages. More discussion on positional
bias can be found in Appendix E.

5 Conclusions
In this work, we leverage IBA to examine BERT
for reranking. We compare ranking mechanisms
between BM25 and BERT, finding that BERT still
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values token matching, and it also learns deeper rel-
evance between queries and passages. We further
analyze special tokens across layers and demon-
strate patterns that [CLS] aggregate evidence. We
then investigate the robustness of top-ranked pas-
sages. Finally, we find that BERT fine-tuned on
MSMARCO has positional bias towards the start
of the passage. In summary, attribution maps can
explain models’ predictions and serve well as an
observation tool that helps us visualize patterns,
resulting in improved hypothesis formulation and
experimental design.
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A Proof of Variational Upper Bound
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B All 24 Layer Degradation Result

Figure 6 shows the degradation test result for all
24 layers. As we can see, middle layers show the
steepest slope at first, indicating they are the most
capable ones of capturing important tokens. The
reason why layer 24 gets a slow probability drop
is because special tokens like [CLS] and [SEP]
are not removed in degradation test while [CLS] is
regarded as the most important token in layer 24.
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Figure 6: 24-layer degradation test result

C Qualitative Anlysis

Table 4 shows a few examples with highlighted im-
portant tokens. We can see top-10 most important
tokens across query and passage not only show the
token matching but also capture semantic related-
ness. For example, “much” in the query of the first
example is highlighted. “number”, “million” and
“$” sign, which are highly related to the concept
of “much”, are also highlighted. Similarly, in the
second example, BERT identifies that the core of
the question – “same document”. In the corre-
sponding passage, it emphasizes “or” as well as
“mortgage” before that and “trust” after that. In the
third example, the query is about “stronger”, which
is again, captured by BERT, and related tokens like
“vs” and “roughtly equivalent” are highlighted.

D Detailed [SEP] Attribution Score
across Layers

Figure 7 contains plots showing [CLS] weight
and two [SEP] scores as well as weights across
layers. As we’ve discussed in Section 4.2, Figure 7c
shows how important [CLS] is compared with
other tokens across layers—that is, we divide the
attribution score by the sum of all of the tokens’
attribution scores. It’s even more clear that the
[CLS] token aggregates all tokens’ information in
the final layer and becomes the most important
token for prediction. The first [SEP] has slightly
higher weight than the second one. It’s probably
because the first [SEP] indicates the boundary
between query and document, which is an important
information to learn for reranking. But in general
they show similar patterns.

E Further Discussion on Positional Bias

We find that BERT prefers passages with important
information emphasized at the beginning. But is
this preference a real “bias”? Will it cause mis-
judgement because of emphasizing too much on
the start of the passages? To answer this ques-
tion, we design an experiment to see if passages
with higher reranked scores (than the ground truth
passages) also happen to get key tokens empha-
sized earlier. Concretely, for those instances that
have incorrectly ranked negative passages higher
than the positive one, we regard each token D8 in
@ as a query, and we find the position of corre-
sponding token E 9 that appears in 3 where D8 = E 9 .
Then, we calculate the mean reciprocal rank for
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Query Document

how much did nr ##a
give to congress

m ##em ##bers of congress pay attention to these numbers , and they know that in
the last election cycle the nr ##a spent $ 18 . 6 million on various campaigns , a
says lee dr ##ut ##man , who has studied the role of gun money in politics for the sunlight
foundation .

is mortgage and deed
of trust the same
document

the mortgage or deed of trust is recorded in the county land records , usually shortly
after the borrow ##ers sign it . if the loan is fully paid off , the lend ##er will record a
release ( or satisfaction ) of mortgage or a rec ##on ##vey ##ance of deed ( which is used
in conjunction with deeds of trust ) in the county land records .

which is stronger

hydro ##co ##don ##e
or ox ##y ##co ##don
##e

dos ##age conversion : hydro ##co ##don ##e vs . ox ##y ##co ##don ##e . in terms

of strength , 5 ##mg of ox ##y ##co ##don ##e is roughly equivalent of 7 . 5 of

hydro ##co ##don ##e . that is the conversion required to bring about the same effects .
hydro ##co ##don ##e would work better if you happen to be a lightweight person with a
weak stomach .

Table 4: Top-10 most important tokens identified by IBA in three examples. ‘[CLS]’ and ‘[SEP]’ are ignored.
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(c) CLS attribution weight.
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Figure 7: Special tokens attribution scores and weights.

USE sent-bert(p) sent-bert(n)
BM25 top-1 0.540 0.593 0.578
BERT top-1 0.483 0.731 0.563

Table 5: Cosine similarity between query and top-1 pas-
sage returned by different methods. “p” refers to pre-
trained model paraphrase-MiniLM-L6-v2”, “n” refers
‘bert-base-nli-mean-tokens‘

all E 9 — MRR = 1
|@∩3 |

∑ |@∩3 |
9=1

1
position(E9 ) . We then

aggregate the MRR for all higher-ranked negative
passages (HRNPs) and compare it with theMRR for
the lower-ranked positive passages (LRPPs). When
we aggregate by the “max” function, we find that,
in 86.2% of cases, HRNPs have higher MRR than
LRPPs. Averaging all MRRs for HRNPs gives us
0.191, while it’s 0.103 for averaging LRPPs. These
numbers are 63.8%, 0.129, and 0.103, respectively

if we aggregate by the arithmetic mean. We can-
not say that the reason for those negative passages
ranking higher is due to matched tokens appear-
ing earlier, but we do note a correlation between
HRNPs and early-appearing matched tokens.
Driven by this positional bias, we are also cu-

rious about how positional index correlates with
the passages’ ranks. We compute the average po-
sitional index ?8 for each document’s top-20 most
important tokens, and then average ?8 for each
query. As we show in Fig. 8, higher-ranked pas-
sages do have earlier tokens emphasized, meaning
that passages with important tokens stressed earlier
are preferred. When comparing the top-1 doc-
ument returned by BERT 3BERT with the top-1
document returned by BM25 3BM25, this prefer-
ence also exists. We compute the MRR across
all tokens in the query and passages like we do
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Figure 8: Positional index.

in Section 4.4 for those passages 3BERT ≠ 3BM25
and 3BERT makes the correct prediction. We find
that even BM25 is almost all about term matching,
with J(@, 3BERT) = 0.062, J(@, 3BM25) = 0.074,
considering the position, MRR(@, 3BERT) = 0.127
is still higher than MRR(@, 3BM25) = 0.099.

F Note on Semantic Similarity
Measurement

We also find that it is hard to measure the con-
textualized relevance between query and passages
by simply calculating cosine similarity q between
query vectors and document vectors. We encode @,
3BERT, 3BM25 and don’t find that q([(@), [(3BERT))
is higher than q([(@), [(3BM25)) when using
the Universal Sentence Encoder or Sentence-
BERT (Reimers and Gurevych, 2019), denoted
as [, pre-trained on an NLI dataset. However,
if using a Sentence-BERT pre-trained on a para-
phrase corpus (specifically the model “paraphrase-
MiniLM-L6-v2”) to measure semantic similar-
ity, q([(@), [(3BERT)) is significantly higher than
q([(@), [(3BM25)) as “paraphrase-MiniLM-L6-
v2’s” pretrained corpus includes MSMARCO
triplet. Tempting as it is to conclude that BERT
has indeed captured semantic similarity that BM25
hasn’t, it’s unfair to use a pre-trained model with
prior knowledge on MSMARCO to measure the
semantic similarity. Therefore, we think BERT has
learned a deeper relevance between the query and
document, but it cannot be simply measured by
vaguely defined semantic similarity.

G Truncation Test across All Passages

To further measure the trade-off between compres-
sion and quality, we do truncation test for all pas-
sages. Specifically, given a 6% of tokens kept for
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Figure 9: Average truncation MRR.

every single document, we measure final ranking
performance—MRR score. The result is shown
in Figure 9. From the result, we can see that trun-
cating doc only is more robust than truncating both
query and doc. On average, with 90% tokens of
passage kept, we have MRR = 0.311. But for the
maximum, we can get MRR = 0.392 with 90%
tokens, which is very close to the original score,
and that depends on what tokens we remove.

H Position Index for Important Tokens
across 24 Layers

Shown in Figure 10, layer 24 is the outlier, where
most tokens emphasized are in the middle of the
document. For other layers, it’s still the start of
passages that is emphasized.
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Figure 10: Positional index across 24 layers


