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Abstract

This paper describes a system developed to
summarize multiple answers challenge in the
MEDIQA 2021 shared task collocated with
the BioNLP 2021 Workshop. We propose an
extractive summarization architecture based
on several scores and state-of-the-art tech-
niques. We also present our novel prosper-
thy-neighbour (PtN) strategies to improve per-
formance. Our model has been proven to
be effective with the best ROUGE-1/ROUGE-
L scores, being the shared task runner-up
by ROUGE-2 F1 score (over 13 participated
teams).

1 Introduction

Biomedical documents are available with the
tremendous amount on the Internet, together with
several search engines (e.g., Pubmed®1) and
question-answering systems (e.g., CHiQA2) de-
veloped. However, the returned results of these
systems still contain a lot of noise and duplication,
making them difficult for users without medical
knowledge to quickly grasp the main content and
get the necessary information. Hence, generating
a shorter condensed form with important informa-
tion would benefit many users as it saves time and
can retrieve massive useful information. This mo-
tivation leads to the growing interest among the
research community in developing automatic text
summarization methods. The BioNLP-MEDIQA
2021 shared task3 (Ben Abacha et al., 2021) aims
to attract further research efforts in text summa-
rization and their applications in medical Question-
Answering (QA). This shared task is motivated by
a need to develop relevant methods, techniques,
and gold standards for text summarization in the

∗Contributed equally & Names are in alphabetical order
†∗Corresponding author

1https://pubmed.ncbi.nlm.nih.gov/
2https://chiqa.nlm.nih.gov/
3https://sites.google.com/view/
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medical domain and their application to improve
the domain-specific QA system. Task 2 - Summa-
rization of Multiple Answers focuses on develop-
ing multi-document summarization approaches that
could synthesize and compress information from
answers to a medical question.

According to Radev et al. (2002) a summary
is defined as ‘a text that is produced from one
or more texts, that conveys important information
in the original text(s), and that is no longer than
half of the original text(s) and usually, significantly
less than that’. Automatic text summarization is
the task of condensing the document(s) and gen-
erating a compressed summary, which is shorter
but preserves key information content and overall
meaning. A summary can be generated through
extractive or abstractive approaches (or hybrid).
Typically, to produce an abstractive summariza-
tion, we need to use advanced linguistic techniques
to ‘understand’ the text as well as re-generate the
summary in natural language from useful infor-
mation. Up to now, the research community is
focusing more on extractive summarization. This
approach tries to achieve coherent and meaningful
summaries in a more simple and faster way than
the abstractive approach. Extractive summarization
chooses important sentences (or phrases) from the
original documents (without any modification) and
merges them to generate a summary.

Our proposed model for the multi-answer sum-
marization task follows extractive summarization
approaches. We try to select sentences contain-
ing the most important information in the original
answers. Our novel contributions are: (i) Propos-
ing the question-driven scores to ensure that the
summary is the answer to the question, (ii) Propos-
ing Prosper-thy-neighbour (PtN) strategies, which
increase the constraint of neighbouring sentences,
to take advantage of paragraph information in the
answer. (iii) Combining several scores that success-
fully applied for summarization problem, includ-

https://pubmed.ncbi.nlm.nih.gov/
https://chiqa.nlm.nih.gov/
https://sites.google.com/view/mediqa2021
https://sites.google.com/view/mediqa2021
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ing TF-IDF, Lexrank, and Textrank with optimized
weights, (iv) Improving the maximal marginal rele-
vance technique (MMR) for multi-document sum-
marization with BERT-based embedding to im-
prove the performance.

The remaining of this paper is organized as fol-
lows: Section 2 gives a brief introduction to some
state-of-the-art related works. Section 3 describes
task data and our proposed model. Section 4 is
the experimental results and our discussion. And
finally, the conclusion.

2 Related works

From the early 1950s, various methods have been
proposed for extractive summarization (Allahyari
et al., 2017). Some of them are based on the idea of
using scores to choose the most important phrases
in the documents. Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) (Hovy et al., 1999;
Christian et al., 2016) is a frequency-based score to
detect important sentences by calculating the scores
of its words. Lexrank (Erkan and Radev, 2004)
and Textrank (Mihalcea and Tarau, 2004) are two
graph-based methods that rank sentences/words
using their degree centrality. Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein, 1998;
Bennani-Smires et al., 2018) is one of the most
well-known approaches for multi-document sum-
marization. It is a diversity-based re-ranking
method based on the document similarities and can
be used to remove redundancy in the summaries.
Although encouraging results have been reported,
most of these scores are applied individually. Since
each score type has its unique contribution, com-
bining them may help to improve the performance.
Hence, we propose an architecture to take advan-
tage of several scores with weights and calculate a
final combined score.

With the advent of machine learning techniques
in NLP, many research projects tried to apply ma-
chine learning methods to extractive summarization
tasks, from the Naive Bayes, Decision tree, Sup-
port vector machine (Gambhir and Gupta, 2017)
to deep learning models. Most recently, Savery
et al. (2020) improved the Bidirectional auto regres-
sive transformer (BART) with a question-driven
approach, but it is more well-known for abstractive
summarization, which is not discussed in-depth in
this paper.

3 Materials and Methods

3.1 Shared task data
The MEDIQA-AnS Dataset (Savery et al., 2020) is
used as the training data set. The validation and the
test sets are the summaries that were created by the
experts from the original answers generated by the
question-answering system namely CHiQA4. Ta-
ble 1 gives our statistics on the given datasets (see
(Ben Abacha et al., 2021) for detailed description
of shared task data).

An important observation is that answers often
tend to have related sentences in a passage that
makes an important ‘point’. Some adjacent sen-
tences are structured in a deductive manner (e.g.,
several explanatory sentences follow after a stated
sentence) or inductive (e.g., the last sentence is the
conclusion of previous sentences). Extracting these
whole pieces of text ensures a complete summary
while enhancing fluency and natural language re-
semblance. Our prosper-thy-neighbour strategies
are proposed to take advantage of this characteris-
tic.

Table 1: Statistics of the datasets.

Statistic
aspects

Training Validation TestArticle Section
Questions 156 156 50 80
Average
A per Q 3.54 3.54 3.85 3.80
Sent per A 84.93 29.07 14.50 13.03
Sent per SSum 6.31 6.31 - -
Sent per MSum 10.30 10.30 11.06 -
Compression ratio
SSum 0.12 0.49 - -
MSum 0.06 0.18 0.33 -

A: Answer, Q: Question, Sent: Sentence,
SSum: Single-answer Summary,
MSum: Multi-answer Summary

3.2 Proposed model
The overall architecture of our Prosper-thy-
Neighbour (PtN) summarization model is shown
in Figure 1. It comprises four main phases: pre-
processing, single document summarization, multi-
document summarization and post-processing
phases.

3.2.1 Pre-processing
The pre-processing phase receives question Q and
a set of corresponding answers (documents) D =
{di}ni=1 as the input. ScispaCy (Neumann et al.,
2019), which is based on SpaCy (Honnibal et al.,

4https://chiqa.nlm.nih.gov

https://chiqa.nlm.nih.gov
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Figure 1: The proposed Prosper-thy-neighbour model.

2020) models, is used for the typical pre-processing
techniques (i.e. segmentation and tokenization) in
terms of biomedical, scientific and clinical text. We
also construct two normalization modules. (i) The
coarse-grained normalization is applied to the an-
swer only. It removes noise from the raw text (non-
ASCII characters, HTML tags, duplicate spacing,
etc.) (ii) The fine-grained normalization includes
stop-words removing, lower-casing, stemming, and
full form generation (Schwartz and Hearst, 2002)
for biomedical abbreviations. Finally, BioBERT
(Lee et al., 2020), which is designed for multiple
biomedical text mining tasks, is used for part-of-
speech tagging, named entities/keywords recog-
nizing and embedding generating. BioBERT-based
embeddings are 768− dimensional vectors used for
calculating the similarity of words and sentences.

3.2.2 Single-answer extractive
summarization

Using information from the pre-processing phase,
the single-document extractive summarization
phase generates the summary for every single an-

swer. Our extractive summarization model tries
to determine which sentences are important to the
document by sentence scoring.

Sentences scoring: Since it is difficult to identify
the importance of sentences from a single point of
view, hence, we use three different types of scores:
Frequency-based scores, graph-based scores and
question-driven scores.

Frequency-based score: Term Frequency - In-
verse Document Frequency (TF-IDF) (Salton and
McGill, 1986) is the probabilistic method that re-
flects the importance of words in a set of documents
by a float number. The TF-IDF score of a word
w contained in document d of document set D is
defined as tfidf(w, d,D). We apply two rules to
improve TF-IDF: (i) Boosting the TF-IDF score of
keywords, and (ii) Assigning TF-IDF score to 0 if
it is lower than a pre-selected threshold. The TF-
IDF score of a sentence is the cumulative TF-IDF
scores of its component words.

Graph-based scores are used to determine
which sentences and words seem to be the core
of a document. Lexrank and Textrank are two of
the most well-known methods of this approach.

Lexrank (Erkan and Radev, 2004) computes sen-
tence importance based on the concept of eigenvec-
tor centrality in a graph representation of sentences.
A document is considered as a graph, each node
represents a sentence. Two nodes have a weighted
edge depending on the similarity of their corre-
sponding sentences. Cosine similarity is used to
calculate the similarity between two sentences x
and y (see Formula 1). In which, x and y are rep-
resented by TF-IDF vectors of n dimensions, i.e.,
X and Y respectively (n is the number of distin-
guished tokens in two sentences).

sim(x, y) =
X · Y

‖X‖ × ‖Y ‖
(1)

To calculate the centrality of a node, we analyze the
weight of its connected edges and the centrality of
adjacent nodes (Formula 2). If a sentence is similar
to many other sentences, it has higher centrality
and conceived having a certain ability to represent
other sentences.

p(u) =
d

n
+(1−d)

∑
v∈adju

sim(u, v)∑
z∈adjv sim(z, v)

p(v)

(2)
where adju is the set of nodes that adjacent to u, n
is the number of nodes and d is the damping factor.
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Textrank (Mihalcea and Tarau, 2004) is mostly
similar to Lexrank. It calculates the centrality of
terms instead of the centrality of sentences as in
Formula 3. In the PtN model, if the Textrank score
is lower than a predefined threshold, we assign it
to 0. The Textrank score of a sentence is the sum
of Textrank scores of its participated terms.

sim(X,Y ) =
|w|w ∈ X and w ∈ Y |
log(|X|) + log(|Y |)

(3)

in which w is the token andX and Y are two terms.
Question-driven scores are used to give higher

priorities to sentences that are related to the ques-
tions. These scores are proposed to focus on the
answer summarization task, ensuring that the sum-
mary is a suitable answer to the question.

Question-similarity score uses the BioBERT and
Cosine distance (Formula 1) to calculate the simi-
larities between the question and sentences in all of
its answers. Formally, qb(sentence), the question-
similarity score of a sentence is defined as:

qb(sentence) = sim(sentence, question) (4)

Keyword-based score is determined by the per-
centage of question keywords that appear in a sen-
tence. Let K is the set of question keywords,
kw(sentence) is the keyword-based score of a sen-
tence, it is defined by the following formula:

kw(sentence) =
|{k : k ∈ K}|

|K|
(5)

Scores combination: All scores are normalized
in the range [0− 1] by using Min-Max normaliza-
tion. We then combine them into a final sentence
score by using optimized weights (see Formula 6.

score =w1 × tfidf
+ w2 × lexrank + w3 × textrank
+ w4 × querybase+ w5 × keywords

(6)

in which, wi is the weight of each score. They are
fine-tuned on the validation set.

Prosper-thy-neighbour strategies:
As described in Section 3.1, an important sentence
may need some adjacent sentences to clarify or
support it. Hence, answers often tend to have con-
tinuous segments of sentences that make important
‘points’. Since the aforementioned scores do not

consider the neighbours of a sentence, our prosper-
thy-neighbour strategies are proposed to take ad-
vantage of this characteristic. There are three dif-
ferent prosper-thy-neighbour strategies: cluster-
boosting, relative-boosting and centre-boosting.

Cluster-boosting: We calculate the averaged
scores of n continuous sentences (n = 3, 4, 5) as
cluster scores. We then select top-k clusters with
the highest average scores. The sentence score is
set equal to its highest cluster score. Sentences that
are not selected in any clusters are assigned the
score of 0.

Relative-boosting is performed by three steps:

• Step 1: Find top-n highest-score sentences
with their original orders.

• Step 2: For consecutive selected sentences, let
L is the position of the preceding sentence, R
is the position of the following sentence. If
R − L + 1 ≤ k (k is predefined), step 3 is
executed.

• Step 3: Let scorei be the score of the i-th
sentence. The final scores finali of all sen-
tences having the position between L and R
are updated by the following formula:

finali = maxRj=L(scorej) (7)

Centre-boosting: Let scorei be the score of
i-th sentences. The final score finali of sentence
i-th is updated by the following formula:

finali = max
min(i+R−1,n)
j=max(i−L+1,1)scorej (8)

in which, n is the number of sentences, L and R
is the number of sentences that impact the current
sentence i in two directions: left and right. With
centre-boosting, the important sentence strongly
affects its adjacent sentences.

However, with these prosper-thy-neighbour
strategies, the selected neighbour sentences can
bring redundant information, i.e., we may keep too
many sentences to the left/right of an important
sentence. Those redundancies can be cut off in the
post-processing phase (Section 3.2.4).

Ranking and and Filtering Sentences We
use the final score boosted by the prosper-thy-
neighbour strategy to rank the sentences. There
are several ways to choose sentences for the single-
document extractive summary: getting top-n or
top-p% of sentences, using the threshold to fil-
ter unimportant sentences. In the proportion- and



315

threshold-based approach, the number of sentences
depends on the document length and sentence scor-
ing. It might probably cause an unexpected bias
in the next multi-document summarization phase.
Based on the experimental results on the validation
set, we fix the number of selected sentences in each
document.

3.2.3 Multi-answer extractive summarization
Multiple extractive single-answer summaries from
the previous phase are merged into a single docu-
ment. Since the previous phase chooses an equal
number of sentences for all answers, there might
be some redundant sentences. Since the current
sentence scores are based on separate documents,
we re-calculate them as in the merged document by
using the proposed score described in Section 3.2.2.
The filtering step then removes some lowest-score
sentences.

Maximal Marginal Relevance (MMR): (Car-
bonell and Goldstein, 1998) is also used to re-
duce redundancy while maintaining query rele-
vance. MMR works in the selected appropriate
sentence in merged documents. It is the combina-
tion of the relevance and diversity concepts, in a
controllable way. Let Si is the i-th sentence, its
MMR score is calculated based on the similarities
between Si, the answer D and the question Q (For-
mula 9). The similarity to the question and the
duplication with other sentences affects the MMR
score through the ratio λ. In which, BioBERT is
used to represent sentences and question and Co-
sine distance is used to calculate the similarities.
We use the MMR score to discard duplicated and
question-irrelevant sentences, i.e., remove m sen-
tences having the lowest MMR score.

MMRi =argmax
Si∈D

[λ(sim(Si, Q)

− (1− λ)maxj 6=isim(Si, Sj))] (9)

3.2.4 Post-processing
For each segment of continuously selected sen-
tences, we find the position of the most important
sentence which has the highest combined score.
Then, for other sentences in the segment, if the dis-
tance from their position to the important sentence
exceeds a predefined k parameter, those should be
eliminated in the final multi-document extractive
summary.

4 Experimental results

4.1 Evaluation metrics
We adopt the official task evaluations with ROUGE
scores (Lin and Och, 2004) including ROUGE-1,
ROUGE-2 and ROUGE-L. ROUGE-n Recall (R),
Precision (P ) and F1 between predicted summary
and referenced summary are calculated as in For-
mulas 10, 11 and 14, respectively. Choosing
correct sentences help to increase ROUGE-n R
and P .

ROUGE-n P =
|Matched N-grams|

|Predict summary N-grams|
(10)

ROUGE-n R =
|Matched N-grams|

|Reference summary N-grams|
(11)

ROUGE-L P =
Length of the LCS

|Predict summary tokens|
(12)

ROUGE-L R =
Length of the LCS

|Reference summary tokens|
(13)

ROUGE-L recall (R), precision (P ) and F1 are
calculated as in Formula 12, 13 and 14, respec-
tively. ROUGE-L uses the Longest Common Sub-
sequence (LCS) between predicted summary and
referenced summary and they are normalized by
the tokens in the summary.

F1 = 2× R×R
P +R

(14)

4.2 Comparative models
We use the official results of the MEDIQA shared
task as a comparison to other participated teams on
the multi-answer summarization task.

For a detailed evaluation of the effectiveness of
the single-answer summarization phase, we also
make some comparisons with related works:

• Lead-3: First three sentences of an article
were taken as a summary.

• k-random sentences: k random sentences
were selected as a summary.

• k-best ROUGE: k sentences with the highest
ROUGE-L score relative to the question were
selected.
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Table 2: Official results of the MEDIQA 2021: Task 2 - Multi-Answer Summarization.

Team ROUGE-1 ROUGE-2 ROUGE-L
F1 HOLMS BERTscore

F1P R F1 P R F1
paht_nlp 0.471 0.878 0.585 0.407 0.767 0.508 0.435 0.706 0.804
UETrice 0.528 0.814 0.611 0.432 0.680 0.504 0.441 0.738 0.796
XIaoHouZi 0.464 0.864 0.577 0.395 0.748 0.495 0.431 0.699 0.797
ChicHealth 0.474 0.842 0.578 0.398 0.718 0.489 0.426 0.703 0.792
I_have_no_flash 0.472 0.843 0.573 0.397 0.719 0.488 0.425 0.745 0.791

Only show results of top-5 participated teams.
The highest results in each column are highlighted in bold.

• Bidirectional long short-term memory (BiL-
STM) network (Hochreiter and Schmidhuber,
1997): The most relevant sentences in an arti-
cle were selected by a BiLSTM.

• Pointer-generator network (See et al., 2017):
A hybrid sequence-to-sequence attention
model which creates summaries with two ap-
proaches: copying text and create new text
from the source documents.

• Bidirectional auto-regressive transformer
(BART) (Savery et al., 2020): A transformer-
based encoder-decoder model improved with
a question-driven approach.

The results of these comparative models are taken
from experimental results reported in Savery et al.
(2020).

4.3 Task final results and comparison
Based on the validation set experiments, the num-
ber of selected sentences in single-answer sum-
marization is 7 per answer. In the multi-answer
summarization phase, the score-based filter selects
top-20 sentences in the merged document, then
MMR removes 5 lowest-score sentences. There-
fore, our multi-answer document summaries have
15 sentences (or less, based on the length of the
original answers). Post-processing with distance
value k = 3 often removes 2-4 sentences. The
final outputs often have ∼13 sentences. Since both
cluster-boosting and relative-boosting show their
drawbacks with the lower F1-score performance
on the validation set, we use the centre-boosting
strategy in our optimal model.

4.3.1 Official results of the multi-answer
extractive summarization

Table 2 shows the shared task official results of top-
5 competitors. ROUGE-2 F1 is used as the main
metric to rank the participating teams. We also
show several other evaluation metrics for detailed

Table 3: The comparative results of single-document
summarization models.

Model ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1

Lead-3 0.23 0.11 0.08
3-random
sentences

0.20 0.08 0.06

3-best ROUGE 0.16 0.08 0.06
BiLSTM 0.22 0.10 0.08
Pointer-
generator

0.21 0.09 0.07

BART 0.24 0.10 0.07
BART +
Query-based

0.29 0.15 0.12

PtN model w/o
post-processing

0.26 0.22 0.24

PtN model 0.30 0.22 0.25
All results are reported on the training data set.

The highest results in each column are highlighted in bold.

results: ROUGE-1 F1, ROUGE-L F1, HOMLS
F1 and BERT-based F1. We are the runner-up
in the leader board, with ROUGE-2 F1 at 0.504
(0.004 less than the rank No.1 team). However, our
ROUGE-1 F1 and ROUGE-L F1 are the highest
of all participating teams.

4.3.2 Result of the single-answer extractive
summarization

Table 3 shows the performances of our model and
comparative models at the single-answer level. Be-
cause the results of the comparative models are
reported in the training dataset, all results are re-
ported on the training dataset. To ensure the com-
parisons are fair, we report both model results with
and without the post-processing phase. The results
show that our model outperforms all comparative
models. To ensure the comparisons are fair, we
report both model results with and without the post-
processing phase. The results show that our model
outperforms all comparative models.
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4.4 Contribution of model components

We study the contribution of each model compo-
nent to the system performance by ablating each
of them in turn from the model and afterward eval-
uating the model on the validation set. Validation
data are used for evaluation because we use valida-
tion data to optimize the model’s hyperparameters.
We compare these experimental results with the
full system results and then illustrate the changes
of ROUGE-2 F1 in Figure 2. The changes of
ROUGE-2 F1 show that all model components
help the system to boost its performance (in terms
of the increments in ROUGE-2 F1).The contri-
bution, however, varies among components, TF-
IDF and MMR have the biggest contribution while
Lexrank/Textrank brings the smallest contribution.
The prosper-thy-neighbour strategy also demon-
strates its effectiveness to improve the ROUGE-2
F1. Centre-boosting seems to be the most suitable
strategy for this task since the results increase dra-
matically if we replace it with cluster-boosting or
relative-boosting.

Frequency-based 
scoring

Graph-based 
scoring

Question-driven
scoring

Prosper-thy-neighbor
strategy

Post-
processing

MMR

Relative-boosting
Centre-boosting

Cluster-boosting
Centre-boosting

0 0.2 0.4 0.6 0.8 1 1.2 1.4
ROUGE-2 F1 reduction (%)

Figure 2: Ablation test results on validation data set for
various components and Prosper-thy-neighbour strate-
gies. Cluster-boosting and relative-boosting: Replace
centre-boosting by another strategy.

We also investigate the change of results at differ-
ent compression ratios. Figure 3 shows the change
of ROUGE-2 P , R and F1 on the validation set
when taking 2-20 sentences to the summary (ex-
cluding the post-processing step). We observed that
P and F have trade-off results while increasing the
number of sentences. F1 got the best results at
15 sentences, due to the balance between P and
F . Therefore, we choose this configuration for our
official runs on the test set.

2           4            6            8           10           13         15          17        20

Figure 3: System performance with different com-
pressed ratios.

4.5 Errors analysis

To further evaluate the performance of the proposed
system, we have analyzed the results of the best
model on the validation set. Table 4 provides some
examples of the model problems and their effects.

Firstly, because of using a fixed statistical-based
maximum number of output sentences, we ran into
problems with too long or too short documents.
Question #56 is an example of the redundancy in
the output summary that there are only 5 important
sentences but our model keeps fixed 13 sentences.
On the contrary, in Question #91, the answer to
‘How can I stop being allergic to caffeine?’ are
summarized in 23 sentences. However, many rel-
evant sentences have been filtered out to ensure a
fixed size of the output.

Although we have combined many different
ranking methods for tokens and sentences, some
final scores did not meet our expectation. The
frequency-based scores (TF-IDF) are failed in
Question 82, in which the token ‘Hirschsprung’
is over-weighted due to repeated occurrence. In
addition, the popular keywords like ‘treatment’,

‘medicine’ have too low weight. As a result, in
Question #19 about ’the cure for pulsatile tinni-
tus’, all of the sentences related to treatment and
medicine were filtered out.

Some other issues related to the driven question
are illustrated in Question #22 and Question #36.
In the first example, the question analyzer failed
to extract the keyword ‘safe’. For this reason, the
summary phase went in the wrong direction – the
content is only related to ‘defibrillator’. In the
second one, the proposed model did not focus on
the driven question so that the summary does not
contain the desired information.

Besides the problems related to the model com-
ponents, we also noticed some problems related to
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Table 4: Examples of some errors in validation set.

# Question Problems Effect
56 How can we improve fertility in Klinefel-

ter syndrome karyotype 47 XXY?
Fixed number of out-
put sentences

Redundant output sentences
(low precision)

91 How can I stop being allergic to caffeine? Fixed number of out-
put sentences

Missing output sentences (low
recall)

82 Where can i find information for adults
with Hirschsprung’s disease?

Imperfect ranking
scores

Ranking of irrelevant sentences
are too high (low precision)

19 Is there a cure for pulsatile tinnitus? Imperfect ranking
scores

Ranking of important sentences
are low (low recall)

22 Is it safe to have ultrasound with a defibril-
lator?

Missing keywords
and NER

Summary is on the wrong di-
rection (poor precision and re-
call)

53 Is there a way to improve kidneys in a
person on twice-weekly dialysis?

Not focus on driven-
question

Summary is not contain the de-
sired information (poor preci-
sion and recall)

36 Are there herbal medicines for rheumatoid
arthritis?

Problem in chiQA
answers

Not enough information to sum-
marize

78 Can spinal surgery cause hydrocephalus
and blindness in adults?

Problem in neigh-
bour boosting

Adding some irrelevant sen-
tence (decreasing precision)

28 Can you help me find a clinic that special-
izes in treatment for atopic eczema?

Problem in post-
processing

Removal of important sentence
(decreasing recall)

the input data for which Question #36 is an exam-
ple. The question is about ‘herbal medicines for
rheumatoid arthritis’ while the chiQA answers do
not mention this topic. Therefore, our model as
well as other machine learning models do not have
enough linguistic information to summarize these
documents.

Some other errors seem attributable to our
model’s limitations (Example #28 and #78). We
listed here some highlight problems to prioritize fu-
ture researches: (i) The neighbour boosting method
needs to be improved to only increase the weight of
related sentences instead of all neighbouring sen-
tences; (ii) Post-processing rules need to be stricter
to avoid eliminating important sentences.

5 Conclusions

This paper presents a systematic study of our ex-
tractive approach to the MEDIQA 2021 - Task 2:
Multi-answer summarization. We combined and
optimized several scoring criteria such as TF-IDF,
Lexrank, Textrank, query-based, keywords-based
and MMR scores. We also developed a strategy
called Prosper-thy-neighbour to take advantage
of adjacent sentences in the answers. The pro-
posed model has a potential performance, being the
runner-up of the shared task. Our best performance
achieved a ROUGE-2 F1 is 0.504, comparable to

that of the highest-ranked system with 0.507.
Experiments were also carried out to verify the

rationality and impact of model components and
the compressed ratio. The results demonstrated the
contribution and robustness of all techniques and
hyper-parameters. The error analysis was made
to analyze the sources of the errors. The evidence
pointed to some imperfection of the sentence select-
ing strategy, the ranking score combination and the
question analyzer. Our proposed system is exten-
sible in several ways: applying machine learning
model, deeply question-analyzing, sentences clus-
tering, etc. We will release our source code on the
public repository to support the re-producibility of
our work and facilitate other related studies.
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