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Abstract

Although recent advances in abstractive sum-
marization systems have achieved high scores
on standard natural language metrics like
ROUGE, their lack of factual consistency re-
mains an open challenge for their use in sensi-
tive real-world settings such as clinical prac-
tice. In this work, we propose a novel ap-
proach to improve factual correctness of a
summarization system by re-ranking the can-
didate summaries based on a factual vector of
the summary. We applied this process dur-
ing our participation in MEDIQA 2021 Task
3: Radiology Report Summarization, where
the task is to generate an impression sum-
mary of a radiology report, given findings and
background as inputs. In our system, we
first used a transformer-based encoder-decoder
model to generate top N candidate impres-
sion summaries for a report, then trained an-
other transformer-based model to predict a 14-
observations-vector of the impression based
on the findings and background of the report,
and finally, utilized this vector to re-rank the
candidate summaries. We also employed a
source-specific ensembling technique to ac-
commodate for distinct writing styles from dif-
ferent radiology report sources. Our approach
yielded 2nd place in the challenge.

1 Introduction

The radiology report is a crucial instrument in pa-
tient care and an essential part of every radiological
procedure, serving as the official interpretation of a
radiological study and the primary means of com-
munication between the radiologist and referring
physician. According to the American College of
Radiology, a radiology report should contain cer-
tain components, such as relevant clinical informa-
tion, imaging findings, limitations of the study, and
an impression or conclusion (American College
of Radiology, 2020). Of these, the impression is
the most important component of the radiology re-
port, containing conclusions based on the pertinent

findings and suggestions for additional diagnostic
studies if warranted (Wallis and McCoubrie, 2011).
Previous studies have shown that oftentimes it is
the only part of the report that is read; one previ-
ous study found that 43% of referring physicians
only read the impression if the report was longer
than one page (Clinger et al., 1988), while another
study found that 23.1% of clinicians agreed with
the statement “I usually only read the conclusion
of a radiology report” (Bosmans et al., 2011).

In an effort to support radiologists in writing
impressions in radiology reports, Zhang et al.
(2018) introduced the task of automatic genera-
tion of radiology impression statements by sum-
marizing textual findings written by radiologists.
MEDIQA 2021 (Asma Ben Abacha, 2021), as part
of NAACL-BioNLP 2021 workshop, aims to fur-
ther research efforts in summarization in the med-
ical domain. Task 3 of the challenge, Radiology
Report Summarization (RRS), focuses specifically
on radiology impression generation. The basic task
setup is as follows: given the findings and back-
ground sections of a radiology report, predict the
impression or summary.

In this paper, we detail our participation in
MEDIQA 2021 RRS challenge. We developed
an approach that utilizes a structured label vector
of the impression as our proxy for facts for the im-
pression (predicted using findings and background
of the report), to re-rank the generated abstractive
summaries from a trained encoder-decoder model.
We further employed a source-specific ensembling
technique utilizing models fine-tuned to each radi-
ology report source to accommodate for distinct
language patterns in each source. Our system per-
formed well in the challenge, placing us 2nd on the
leaderboard.

2 Related Work

Abstractive Summarization Systems. Abstrac-
tive text summarization has been intensively stud-
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ied in recent literature. Rush et al. (2015) in-
troduces an attention-based sequence-to-sequence
(seq2seq) model for abstractive sentence summa-
rization. Recent models (e.g. Lewis et al. (2019);
Zhang et al. (2020)) employ techniques like de-
noising or Gap Sentence Generation task for pre-
training, to help generation tasks including summa-
rization. However, there are a few domain-specific
versions of these state-of-the-art models. Other
works like Liu and Lapata (2019); Rothe et al.
(2020) have demonstrated the effectiveness of ini-
tializing encoder-decoder models from pre-trained
encoder-only models, such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019), for seq2seq
tasks providing competitive results in summariza-
tion tasks. Our works builds on these findings and
utilizes a pre-existing domain-specific pretrained
transformer model in an encoder-decoder setting
for our summarization task.

Summarization and Factual Correctness in Ra-
diology Reports. Zhang et al. (2018) first stud-
ied the problem of automatic generation of radiol-
ogy impressions by summarizing textual radiology
findings, and showed that an augmented pointer-
generator model achieves high overlap with human
references. They also found that about 30% of the
radiology summaries generated from neural mod-
els contain factual errors. Research scholars also
integrated Radlex ontology into seq2seq models
(MacAvaney et al., 2019) to enhance the clinical
validity of automated impression prediction sys-
tems within the radiology workflows. In their next
work, Zhang et al. (2019b) improved upon the prob-
lem of factual correctness in radiology reports by
optimizing fact scores defined in radiology reports
with reinforcement learning methods. They also
introduced a new metric Factual F1 comparing the
predicted summaries using a descriptor vector of
the gold summary. In our work, we extend the ideas
put forward by Zhang et al. (2019b) by utilizing a
descriptor vector (generated using off-the-shelf sys-
tems like CheXpert (Irvin et al., 2019) or CheXbert
(Smit et al., 2020)) to re-rank the automatically
generated summaries.

3 Task Description and Dataset

The MEDIQA-2021 RRS task is defined as fol-
lows: given a passage of findings represented as a
sequence of tokens x = {x1, x2, . . . , xN}, with N
being the length of the findings, and a passage of
background represented as a sequence of tokens y

Type Source-specific Size Total
SizeMIMIC-CXR Indiana

Training 91,544 0 91,544
Validation 2,000 2,000 4,000
Test ? ? 600

Table 1: Dataset statistics.

= {y1, y2, . . . , yM} with M being the length of
the background, find a sequence of tokens z = {z1,
z2, . . . , zL} that best summarizes the salient and
clinically significant findings in x, with L being an
arbitrary length of the impression or summary1.

Datasets for training and validation of summa-
rization models provided by the MEDIQA orga-
nizers consisted of radiology reports with findings,
background, and impression sections. The train-
ing set consists of 91,544 radiology reports from
the MIMIC-CXR database (Johnson et al., 2019),
while the validation set consists of an additional
4,000 radiology reports - 2,000 from MIMIC-CXR
and 2,000 from the Indiana Network for Patient
Care (Indiana) (Demner-Fushman et al., 2016). As
part of the shared task rules, the rest of the pub-
licly available MIMIC-CXR and Indiana radiology
reports were not allowed for use in training or val-
idation. However, the organizers allowed the use
of validation data for training. At the conclusion
of the shared task, to evaluate participant systems,
a test set of 600 radiology reports containing only
findings and background sections were released
with their sources unknown at the time of the chal-
lenge. Dataset statistics are presented in the Table
1.

4 System Description

Our system is a three-step process in which we
(1) utilize pre-trained transformer-based language
models in an encoder-decoder setting to get our
base summarization models, (2) improve the fac-
tual correctness of our base models’ predictions
by incorporating a re-ranking methodology, and
(3) utilize a source-specific ensembling technique
which identifies the source of a radiology report,
and chooses the prediction of the best performing
source-specific model accordingly. We detail the
above three steps in the following sections.

1Throughout this paper we use terms “impression” and
“summary” interchangeably.
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4.1 Base Models

Previous work by Liu and Lapata (2019); Rothe
et al. (2020) have demonstrated the effectiveness
of initializing encoder-decoder models from pre-
trained encoder-only models, such as BERT and
RoBERTa, for seq2seq tasks. Inspired by this work,
we experimented with pre-trained transformer mod-
els used as both encoder and decoder with param-
eters shared between encoder and decoder. Using
this setup, we experimented with RoBERTa-large,
which showed promising results in Rothe et al.
(2020), and BioMed-RoBERTa-base, a domain-
specific version of RoBERTa that is publicly avail-
able2 from AllenNLP (Gururangan et al., 2020),
and fine-tuned both models using the training set
of 91,544 MIMIC-CXR reports. Of the two mod-
els, BioMed-RoBERTa-base achieved better results
and was therefore used as our initial model for
subsequent experiments.

Next, we conducted experiments to evaluate the
performance of this initial model on different ra-
diology report sources. As the provided training
and validation data contains two sources, MIMIC-
CXR and Indiana, each with their distinct lan-
guage (more details in Section 4.3) and official
test data could be any source, we further developed
two more base models. Using the initial BioMed-
RoBERTa-base model fine-tuned on MIMIC-CXR
training set, we further fine-tuned the initial model
in two settings: (1) with a subset of reports in the
Indiana validation dataset, and (2) with a subset of
reports in the Indiana and MIMIC-CXR validation
dataset.

Our end result is three base models tuned for 3
source categories:

• BioRoBERTa(M): BioMed-RoBERTa-base
fine-tuned on MIMIC-CXR training data.
This is the base model for MIMIC-CXR
source.

• BioRoBERTa(M+I): BioRoBERTa(M) further
fine-tuned on Indiana validation data. This is
our base model for Indiana source.

• BioRoBERTa(M+M+I): BioRoBERTa(M) fur-
ther fine-tuned on both MIMIC-CXR and In-
diana validation data. This is our base model
for unknown sources.

2https://huggingface.co/allenai/
biomed_roberta_base

4.2 Fact-Aware Re-ranking (FAR)

Previous works in extracting structured labels from
free-text radiology reports have identified 14 obser-
vations based on clinical relevance and the preva-
lence in the reports, and have developed automated
systems to predict a 14-observations-vector for an
impression summary of a radiology report (Irvin
et al., 2019; Smit et al., 2020). The 14 observations
are: “Atelectasis”, “Cardiomegaly”, “Consolida-
tion”, “Edema”, “Enlarged Cardiomediastinum”,
“Fracture”, “Lung Opacity”, “Lung Lesion”, “No
Finding”, “Pneumonia”, “Pneumothorax”, “Pleural
Effusion”, “Pleural Other”, and “Support Devices”.
“Pneumonia”, despite being a clinical diagnosis,
was included as a label in order to represent the im-
ages that suggested primary infection as the diagno-
sis. The 13 observations (excluding “No Finding”)
take on one of the following classes: blank, posi-
tive, negative, and uncertain. The 14th observation,
“No Finding”, is intended to capture the absence of
all pathologies, and takes on only one of the two
following classes: blank or positive.

Utilizing this 14-observations-vector we devel-
oped an approach to improve the factual correct-
ness of our base models by incorporated a factual
re-ranking component that re-ranks our N highest
scoring summaries predicted from a base model.
We achieve this in the following steps, we (1) first
fine-tune a transformer-based language model to
predict the 14-observation-vector of the impres-
sion given the finding and background of a radiol-
ogy report, (2) obtain top N highest scoring candi-
date summaries predicted from our base encoder-
decoder model (3) use CheXbert to obtain the 14-
observation-vector for each of the N candidate sum-
maries, and (4) use a similarity function between
predicted 14-observation-vector for impression (ob-
tained in step 1) and each vector for N candidate
summaries obtained in step 3 to re-rank these sum-
maries. Finally, we use the highest similarity scor-
ing candidate summary as our impression summary.
We detail our impression 14-observation-vector pre-
diction and our similarity function in the following
sections.

We apply our FAR methodology on
the three base models introduced in sec-
tion 4.1 to get our three source-specific
models, and denote the new models as
BioRoBERTa(M),FAR, BioRoBERTa(M+I),FAR,
and BioRoBERTa(M+M+I),FAR, respectively.

https://huggingface.co/allenai/biomed_roberta_base
https://huggingface.co/allenai/biomed_roberta_base
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Source Finding Background Impression

MIMIC-
CXR

There is hyperexpansion of both lungs with se-
vere underlying emphysema. Minimal blunt-
ing of the right costophrenic angle may reflect
underlying atelectasis. No pleural effusion or
pneumothorax identified. The size the cardio-
mediastinal silhouette is within normal limits.

INDICATION: ___ year old woman
with COPD exacerbation // evaluate lung
sizes, look for PNA TECHNIQUE: AP
portable chest radiograph COMPARI-
SON: No prior radiographs available.
Comparison is made to the CT torso
from ___

No radiographic evi-
dence of acute car-
diopulmonary disease.
Hyperexpanded lungs
with severe underlying
emphysema.

Indiana Heart size and mediastinal contours appear
within normal limits. Hyperinflated lungs
with flattening of diaphragms, compatible
with emphysema. No focal consolidation,
pleural effusion or pneumothorax. No acute
bony abnormality.

Indication: Short of breath. Comparison:
None.

1. Emphysema. 2. No
acute cardiopulmonary
abnormality.

Table 2: Example depicting the difference in language between MIMIC-CXR and Indiana reports for findings,
background and impression sections.

4.2.1 Impression 14-Observations-Vector
Prediction

We utilize the 14-observation-vector representation
of the impression section of a radiology report pre-
dicted by CheXbert as our ground truth label in a
prediction task given the finding and background
section of the report as inputs. In this process, for
each given radiology report that has findings, back-
ground and impression section, we (1) first utilize
CheXbert to obtain 14-observations-vector repre-
sentation of the impression section, (2) convert the
multiple values of each of the 14 observations to
be binary (i.e. presence or absence of the obser-
vation)3, (3) train a transformer-based language
model using finding and background (concate-
nated) as input to predict 14-observations-vector of
the impression section.

4.2.2 Similarity Function

Among the 14 observations categories predicted in
CheXbert, “No Finding” is intended to capture ab-
sence of all pathologies, i.e. if “No Finding” is pos-
itive then all other observations must be negative.
Therefore, we constructed our similarity function
in cases where (1) “No Finding” is not matched, we
assign a similarity score of 0, (2) “No Finding” is a
match, the similarity score is the cosine similarity
between the rest of the vector representing the 13
other observations.

3CheXbert outputs for 13 observations one of the following
classes: blank, positive, negative, and uncertain. For the 14th
observation corresponding to No Finding, the labeler only
outputs one of the two following classes: blank or positive.
We convert uncertain to positive and blank to negative to get
binary positive and negative output for all 14 observations.

4.3 Source-specific Ensemble

We observed in the provided training and valida-
tion data that MIMIC-CXR and Indiana reports
use distinctly different language when expressing
findings, background, and impression, even when
the conveyed content is very similar. As shown
in Table 2, although both the MIMIC-CXR report
and Indiana report convey the same two key find-
ings in their impression, “emphysema” and “no
acute cardiopulmonary disease”, the MIMIC-CXR
report describes these findings with more detail in
prose form, while the Indiana report lists the find-
ings more concisely using a numbered list form.
This variation in language between different health-
care organizations is common in the clinical NLP
domain, resulting in a need to adapt algorithms
depending on the applicable dataset (Carrell et al.,
2017).

To address this, we trained a BERT-based source-
specific classifier which predicts the source given
the findings and background as input. We trained
this model using a subset MIMIC-CXR and Indiana
reports. However, during prediction or evaluation
phase, we chose a higher threshold of 0.7 for pre-
dicting a source i.e. if an input is predicted to be
Indiana or MIMIC-CXR with a probability of 0.7
or higher, we predict it to be Indiana or MIMIC-
CXR respectively, otherwise it is marked to be of an
unknown source. Based on the predicted source of
a test sample (MIMIC-CXR, Indiana or unknown),
the source-specific models’ output is chosen as the
prediction for that sample.

4.4 Evaluation Metrics

We use two sets of metrics to evaluate model per-
formance at the corpus level, ROUGE and Factual
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Model MIMIC200 Indiana200 Combined400

R-1 R-2 R-L F-F1 R-1 R-2 R-L F-F1 R-1 R-2 R-L F-F1

RoBERTa-large(M) 0.634 0.509 0.602 0.768 0.425 0.259 0.415 0.634 0.533 0.390 0.516 0.725
BioRoBERTa(M) 0.642 0.513 0.617 0.770 0.449 0.273 0.437 0.638 0.541 0.391 0.520 0.729
BioRoBERTa(M),FAR 0.647 0.524 0.623 0.781 0.455 0.276 0.442 0.665 0.546 0.394 0.523 0.734
BioRoBERTa(M+I) 0.499 0.356 0.472 0.694 0.691 0.605 0.677 0.678 0.594 0.480 0.574 0.709
BioRoBERTa(M+I),FAR 0.507 0.362 0.481 0.717 0.701 0.626 0.685 0.685 0.596 0.480 0.577 0.716
BioRoBERTa(M+M+I) 0.585 0.463 0.563 0.712 0.685 0.597 0.671 0.660 0.642 0.539 0.623 0.719
BioRoBERTa(M+M+I),FAR 0.592 0.469 0.570 0.719 0.687 0.601 0.676 0.667 0.647 0.544 0.629 0.726
Ensemble 0.632 0.519 0.611 0.768 0.692 0.604 0.672 0.679 0.670 0.568 0.650 0.741

Table 3: Results of our base model, factually correct re-ranking and source-specific ensembling experiments on
our internal test data of 200 MIMIC-CXR and 200 Indiana radiology reports. Combined presents results for each
model when both the sources (400 reports) are considered together. R-1, R-2, R-L and F-F1 represent ROUGE-1,
ROUGE-2, ROUGE-L and Factual F1 scores respectively.

F1. The organizers used ROUGE and CheXbert F1

metrics for evaluation. ROUGE-2 F1 metric was
used for the task leaderboard.

ROUGE We use the standard ROUGE scores
(Lin, 2004), and report the F1 scores for ROUGE-
1, ROUGE-2 and ROUGE-L, which compare the
word-level unigram, bigram and longest common
sequence overlap with the reference summary, re-
spectively.

Factual F1 For factual correctness evaluation,
we use a Factual F1 score as proposed by Zhang
et al. (2019b). The Factual F1 scores are calculated
by 1) running the CheXbert labeler on both the
reference and generated summaries to obtain the
binary presence values of a collection of disease
variables 2) calculating the F1 score for each of the
variables over the entire test set, using reference val-
ues as oracle; and 3) obtaining the macro-averaged
F1score over all variables. Following the process
in Zhang et al. (2019b), we exclude some variables
due to their small sample sizes (with less than 5%
positive ratio in the entire dataset). We included
only Cardiomegaly, Lung Opacity, Lung Lesion,
Pneumonia, Atelectasis, Pleural Effusion and No
Finding in our calculation of Factual F1 scores.

CheXbert F1 The organizers used CheXbert F1

score to calculate the factual correctness, which
follows the same process as Factual F1. However,
in their calculation they considered a different set
of observations which were found prominent in
the official test data: Cardiomegaly, Lung Opacity,
Edema, Pneumonia, Atelectasis, Pleural Effusion
and No Finding.

5 Experiments & Results

5.1 Data
As noted in section 3, training and validation
datasets provided in MEDIQA 2021 can be com-
bined and re-split. We set aside 200 radiology
reports each, randomly chosen from MIMIC-CXR
validation dataset and Indiana validation dataset,
to form our combined internal test dataset. The
remaining 1,800 reports each from MIMIC-CXR
validation data and Indiana validation data, along
with 91,544 of MIMIC-CXR training data are uti-
lized for training.

For the clarity of reading, from here onward,
we will refer to the original MIMIC-CXR dataset
with 91,544 reports as MIMICtrain. The 200 re-
ports randomly selected each from the original
MIMIC-CXR and Indiana validation sets will be
denoted as MIMIC200 and Indiana200, respectively.
Together, these 2 new sets formed our internal test
set Combined400. The remaining reports from the
original MIMIC-CXR and Indiana validation sets
will be denoted as MIMIC1800 and Indiana1800, re-
spectively. We present results on this internal test
data under 3 settings (1) results on MIMIC200, (2)
results on Indiana200, and (3) results on the com-
bined internal test dataset, Combined400. Most of
the following results (Tables 3, 4 & 5) are presented
on the internal test dataset. The official results pre-
sented in Table 6 are on the official external test
data of 600 radiology reports.

5.2 Base Models
We conducted four experiments to get our three
base models specific to MIMIC-CXR, Indiana
and unknown sources. We utilized MIMICtrain
to train our first two models, RoBERTa-large(M)
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and BioRoBERTa(M). We used Indiana1800 for the
model BioRoBERTa(M+I), and used Indiana1800 and
MIMIC1800 for the model BioRoBERTa(M+M+I). In
each setting we split the available dataset into 90/10
for training and validation splits. We evaluated all
our models on the internal test set of 400 radiology
reports. Each of our models uses a seq2seq archi-
tecture with encoder and decoder both composed of
Transformer layers. For both encoder and decoder,
we inherited the RoBERTa Transformer layer im-
plementations. We also added an encoder-decoder
attention mechanism. All models were fine-tuned
on the target task using Adam optimizer with a
learning rate of 0.05. We used Huggingface’s trans-
formers library4 (Wolf et al., 2019) for executing
our experiments. In our encoder-decoder setup, our
input was capped at 128, output summary at 40,
beam size was 10, our length penalty was set as
0.8. Finally, in our summary generation, trigram
and higher length phrases were not repeated.

Table 3 presents results of the 4 experiments.
Between the 2 models that were trained us-
ing only MIMICtrain, BioRoBERTa(M) consis-
tently outperform RoBERTa-large(M) in this task,
likely due to BioRoBERTa(M) utilizing a do-
main adapted version of RoBERTa. Among
the 3 BioMed-RoBERTa-base based models,
BioRoBERTa(M) performs better for MIMIC200,
and BioRoBERTa(M+I) provides better performance
for Indiana200. BioRoBERTa(M+M+I) fine-tuned on
both MIMIC-CXR and Indiana provides better per-
formance on the Combined400 but performs poorly
when we consider each source separately.

5.3 Fact-aware Re-ranking (FAR)

For the prediction of the 14-observations-vector we
combined MIMICtrain, MIMIC1800, and Indiana1800
to form our training and validation splits. Table
4 presents our F1 scores for our impression 14-
observations-vector prediction model evaluated on
the internal test dataset Combined400. We utilized
Smit et al. (2020)’s publicly available implementa-
tion5 to train the domain-specific RoBERTa model
(BioMed-RoBERTa-base) for predicting impres-
sion 14-observations-vector. In this setup, the trans-
former architecture was modified with 14 linear
heads, corresponding to 14 observations. We con-
catenate Findings and background of a radiology

4https://github.com/huggingface/
transformers

5https://github.com/stanfordmlgroup/
CheXbert

Category Macro F1 Micro F1

Atelectasis 0.839 0.915
Cardiomegaly 0.803 0.943
Consolidation 0.809 0.973
Edema 0.930 0.963
Enlarged Cardiom. 0.634 0.990
Fracture 0.783 0.988
Lung Opacity 0.848 0.911
Lung Lesion 0.829 0.982
No Finding 0.881 0.881
Pneumonia 0.898 0.950
Pneumothorax 0.939 0.996
Pleural Effusion 0.899 0.950
Pleural Other 0.640 0.990
Support Devices 0.918 0.969

Average 0.832 0.957

Table 4: Impression observations-vector prediction re-
sults.

Label P R F1

MIMIC200 0.987 0.993 0.989
Indiana200 0.993 0.987 0.990

Table 5: Source-specific classifier results

report to be our input, which is then tokenized and
the input is capped at 128. The hidden state of
the CLS token is fed as input to each of the linear
heads. The model is trained using cross-entropy
loss and Adam optimization with a learning rate
of 2 × 10-5. The cross-entropy losses for each of
14 observations are added to produce the final loss.
During training, the model was periodically evalu-
ated and the best performing model averaged over
14 observations was saved.

For fact-aware re-ranking we utilize the model
trained above to re-rank the top 10 (N=10 was
empirically determined) generated summaries
from our three base models presented in sec-
tion 5.2. Table 3 presents results for our follow-
ing three factually correct re-ranking experiments,
BioRoBERTa(M),FAR, BioRoBERTa(M+I),FAR, and
BioRoBERTa(M+M+I),FAR. As BioRoBERTa(M),FAR
shows best performance for MIMIC-CXR radi-
ology reports (MIMIC200), BioRoBERTa(M+I),FAR
exhibits best performance for Indiana radi-
ology reports (Indiana200) and the combined
BioRoBERTa(M+M+I),FAR shows best performance
for the combined test data (Combined400), these
models are chosen to be our source-specific models
for MIMIC-CXR, Indiana and unknown sources
respectively.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/stanfordmlgroup/CheXbert
https://github.com/stanfordmlgroup/CheXbert
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Model R-1 R-2 R-L CheXbert
F1

Ensemble 0.5252 0.4002 0.5060 0.6823
+post-processing 0.5328 0.4082 0.5134 0.6774

Table 6: Official submission and results.

5.4 Source-specific Ensemble

For training our source-specific classifier we used
a downsampled subset of MIMICtrain of 10,000
radiology reports and Indiana1800 and formed 90/10
training and validation splits. We evaluated the
model on MIMIC200 and Indiana200 and present our
results in Table 5. We again utilized Huggingface
transformers library to conduct our experiments.
In this setup, we used the BERT-base architecture
with a single linear head for our classification of the
source. We concatenate Findings and background
for a radiology report to be our input, which is
then tokenized and input is capped at 512. The
model is trained using cross-entropy loss and Adam
optimization with a learning rate of 2 × 10-5. Our
model was trained for 3 epochs.

Utilizing the above model we identify the source
of a radiology report and apply the source-specific
models. Ensemble results in Table 3 presents our
results after we apply source-specific ensembling
technique to our internal test dataset. Our ensem-
bled results show a slight drop in performance for
individual source MIMIC200 and Indiana200 (due
to classification errors), but show best performance
on the combined dataset (Combined400).

5.5 Official Submissions & Results

Table 6 presents our top 2 official submission
results. Ensemble presents our best performing
source-specific ensemble technique applied to the
official test data. In our another submission (En-
semble + post-processing) we remove certain to-
kens (like “1.”, “2.”, “__”) to clean up our source-
specific ensemble technique output which slightly
improved the rouge scores.

6 Discussion

In this section, we present two major findings of
our approach. First, we find that radiology re-
ports from different sources have distinct language,
and fine-tuning a model trained on source A with
a small amount of data from source B provides
significant gains in performance on source B, al-
lowing the model to be transferable. As it can

be seen in Table 3, zero-shot application of our
model BioRoBERTa(M), which is fine-tuned only
on MIMIC-CXR (MIMICtrain), shows lower perfor-
mance on the Indiana dataset. However, on further
fine-tuning BioRoBERTa(M) on a small dataset of
1,800 Indiana reports (Indiana1800) leads to huge
gains in performance on Indiana dataset (model
BioRoBERTa(M+I) on Indiana200).

Second, fact-aware re-ranking methodology im-
proves performance of the models on natural lan-
guage metrics (ROUGE) as well as factual correct-
ness of our predictions, but metrics beyond lexical
overlap are needed. As shown in Table 3, mod-
els using FAR outperform the base models when
measured in ROUGE even through FAR’s objective
is not to optimize ROUGE. Table 7 shows exam-
ples of the most probable predictions from base
model compared with the predictions after FAR,
and the human-generated ground-truth impressions.
ROUGE scores for both predictions compared to
the ground-truth are shown at the end of each ex-
ample. In the first example, FAR chooses a better
ROUGE scoring prediction over the most proba-
ble prediction by the base model. However, in the
second example, FAR doesn’t choose the higher
ROUGE scoring prediction but rather the more
factually correct one. With the current evaluation
metric ROUGE, this would lead to a drop in perfor-
mance. Developing and adopting new metric that
consider both lexical as well as factual correctness
jointly (Mrabet and Demner-Fushman, 2020) is
crucial to steer the research community to develop
systems that ensure factual correctness as well as
readability.

Limitations and Future Work. We acknowl-
edge several limitations to our work. First, we
recognize our dependence on an external struc-
tured label generator. As we use CheXbert labels
as our proxy for ground truth for training our 14-
observations-vector predictor, as well as in our sim-
ilarity function, any errors in CheXbert have a di-
rect impact on our system’s performance. Second,
though FAR methodology has shown significant
gains in performance in Factual F1 and ROUGE
scores, the system is limited by the generated candi-
date summaries. We aim to build on this approach
by incorporating this methodology during training
as a modified version of beam search. Third, all
of our presented results are evaluated using a rel-
atively small set of internal test data, due to the
limitations on data during the challenge. Though
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Base Model’s Prediction Prediction after FAR Human-generated Impression

No acute cardiothoracic process.
R-1: 0

No acute cardiopulmonary pro-
cess. Tiny right pleural effusion.
R-1: 0.6

Tiny right pleural effusion.

No acute cardiopulmonary process.
R-1: 0.6

Normal chest radiograph.
Mild cardiomegaly.
R-1: 0.3

Mild cardiomegaly, new since ___. No
acute cardiopulmonary process.

Table 7: Examples depicting the most probable prediction from base model, re-ranked prediction using our FAR
methodology compared to the ground truth (human-generated impression).

our approach has translated into similar good per-
formance on the official test data, we aim to further
evaluate our approach on an increased test data.
Finally, as ROUGE has been shown to be an im-
perfect metric for radiology report summarization
evaluation (Zhang et al., 2019b), we aim to fur-
ther evaluate our system (1) using other automated
metrics such as BERTScore (Zhang et al., 2019a),
BLEURT (Sellam et al., 2020), and HOLMS (Mra-
bet and Demner-Fushman, 2020), (2) by conduct-
ing qualitative evaluation of our system’s predic-
tions by involving human annotators such as radi-
ologists or subject matter experts.

7 Conclusion

We have presented our system developed during our
participation in MEDIQA 2021 RRS challenge. We
found that radiology reports from different sources
have distinct language and fine-tuning a trained
model with a small amount of data from another
source leads to gains in performance and allows
the models to be transferable. Further, techniques
like fact-aware re-ranking, which utilizes a factual
vector of the summary to re-rank candidate sum-
maries, not only improves factual correctness of the
summary but also improves the performance of the
model on the traditional natural language metrics
like ROUGE. We have also identified limitations of
our work, and discussed promising areas of future
research.
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