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Abstract 

With the growing availability of full-text articles, 
integrating abstracts and full texts of documents into a 
unified representation is essential for comprehensive 
search of scientific literature. However, previous studies 
have shown that naïvely merging abstracts with full 
texts of articles does not consistently yield better 
performance. Balancing the contribution of query terms 
appearing in the abstract and in sections of different 
importance in full text articles remains a challenge both 
with traditional bag-of-words IR approaches and for 
neural retrieval methods. 
In this work we establish the connection between the 
BM25 score of a query term appearing in a section of a 
full text document and the probability of that document 
being clicked or identified as relevant. Probability is 
computed using Pool Adjacent Violators (PAV), an 
isotonic regression algorithm, providing a maximum 
likelihood estimate based on the observed data. Using 
this probabilistic transformation of BM25 scores we 
show an improved performance on the PubMed Click 
dataset developed and presented in this study, as well as 
on the 2007 TREC Genomics collection. 

1 Introduction 

PubMed (https://pubmed.gov) is a search engine 
providing access to a collection of more than 30 
million biomedical abstracts. Of these, about 5 
million have full text available in PubMed Central 
(PMC; https://www.ncbi.nlm.nih.gov/pmc). 
Millions of users search PubMed and PMC daily  
(Fiorini, Canese, et al., 2018). However, it is not 
currently possible for a user to simultaneously 
query the contents of both databases with a single 
integrated search.  

With the growing availability of full-text 
articles, integrating these two rich resources to 
allow a unified retrieval becomes an essential goal, 
which has potential for improving information 
retrieval and the user search experience (Fiorini, 
Leaman, Lipman, & Lu, 2018). An obvious benefit 
is improving the handling of queries that produce 
limited or no retrieval in PubMed. In many 

instances, incorporating full text information can 
yield useful retrieval results. For example, the 
query cd40 fmf retrieves no articles in PubMed, but 
finds 60 articles in PMC discussing protein cd40 
and a computational technique of flow 
microfluorometry (FMF).  

A number of studies have pointed out the 
benefits of full text for a range of text mining tasks 
(Cejuela et al., 2014; Cohen, Johnson, Verspoor, 
Roeder, & Hunter, 2010; J. Kim, Kim, Han, & 
Rebholz-Schuhmann, 2015; Westergaard, 
Stærfeldt, Tønsberg, Jensen , & Brunak, 2018) and 
demonstrated improved performance on named 
entity recognition, relation extraction, and other 
natural language processing tasks (Wei, Allot, 
Leaman, & Lu, 2019). For information retrieval, 
however, combining the full text of some papers 
with only the abstracts of others is not a trivial 
endeavor. Naïvely merging the body text of articles 
with abstract data, naturally increases the recall, 
but at a cost in precision, generally degrading the 
overall quality of the combined search (W. Kim, 
Yeganova, Comeau, Wilbur, & Lu, 2018; Jimmy 
Lin, 2009). This can be explained by several 
complexities associated with full texts, such as 
multiple subtopics often being discussed in a full-
length article or information being mentioned in 
the form of conjecture or a proposal for future 
work. In addition, not every record matching the 
query is focused on the query subject, as query 
words may be mentioned in passing, which is more 
common in full text. Another challenge in 
incorporating full text in retrieval is merging 
sources of information with different 
characteristics: the abstract, generally a concise 
summary on the topic of the study, versus a lengthy 
detailed description provided in full text. To 
address that, recent studies have attempted to use 
full text in a more targeted way — by performing 
paragraph-level retrieval (Hersh, Cohen, Ruslen, & 
Roberts, 2007; Jimmy Lin, 2009), passage-level 
retrieval (Sarrouti & El Alaoui, 2017) or sentence-
level retrieval (Allot et al., 2019; Blanco & 
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Zaragoza, 2010). LitSense (Allot et al., 2019), for 
example, searches over a half-billion sentences 
from the combined text of 30+ million PubMed 
records and ∼3 million open access full-text 
articles in PMC.  

Towards the overarching goal of improving 
PubMed document retrieval by incorporating the 
full texts of articles in PMC, in this work we lay 
the groundwork by studying strategies for 
integrating full text information with abstract for 
one query token at a time. We choose to use BM25, 
a classical term weighting approach, as a base 
token score. We, however, observe that token 
BM25 scores are not directly comparable between 
the sections of a full text article – the same BM25 
score may have a different significance depending 
on the section. To address variable significance of 
sections, we propose converting BM25 section 
scores into probabilities of a document being 
clicked and using these probabilities to compute 
the overall token score. To summarize, given a 
single token in a query, we 1) define how to 
compute section scores, 2) examine the relative 
importance of different sections in the full text, and 
3) study how to combine section scores from a 
document.  

To examine these questions, we use two 
evaluation datasets. One is a standard TREC 
dataset frequently used for evaluating ad-hoc 
information retrieval. The second is a dataset we 
created based on PubMed user click information. 
The dataset is constructed from PubMed queries 
and clicks under the assumption that a clicked 
document is relevant to a user issuing a query. The 
dataset is used for both training and evaluation.  

Neural retrieval models have been extensively 
studies in recent years in the context of Information 
Retrieval (Guo et al., 2020; Jimmy  Lin et al., 
2021). However, despite significant advances, they 
show no consistent improvement over traditional 
bag of words IR methods (Chen & Hersh, 2020; 
Zhang et al., 2020). BM25 remains in the core of 
most production search systems, including 
Lucene’s search engine and PubMed. In addition, 
many relevance ranking algorithms rely on BM25 
as a preliminary retrieval step, followed by re-
ranking of the top scoring documents (Fiorini, 
Canese, et al., 2018). 

In the next section, we describe the evaluation 
datasets, and lay out a retrieval framework for 
studying the problem at hand. Then, we describe 
our approach of converting the raw BM25 section 

score into the probability of document relevance. 
Such probabilities are comparable across the 
sections of full text documents, including the 
abstract. In section 4 we learn how to combine 
them in a way which accounts for the relative 
importance of sections.  Results are presented in 
section 5, followed by the Discussion and 
Conclusions section. 

2 Evaluation Datasets 

Retrieval methods are generally evaluated based 
on how the retrieval output compares to a gold 
standard. A gold standard is a set of records judged 
for relevance to a query that provides a benchmark 
against which to measure the quality of search 
results. This approach is used at the annual Text 
Retrieval Conference (TREC), run by the National 
Institute of Standards and Technology (NIST)  
(Voorhees, 2001). NIST develops a list of queries, 
called topics, and provides large test collections 
and uniform scoring procedures. The difficulty 
with this approach is that a gold standard is created 
by human experts which makes the evaluation 
expensive, time consuming, and therefore not 
available for large scale experiments involving 
thousands of queries. To compare different 
retrieval approaches without a manually created 
gold standard we describe semi-automatically 
created test data based on indirect human 
judgements that can be utilized in our setting. The 
PubMed User Click dataset is created based on 
retrospective analysis of PubMed queries under the 
assumption that a clicked document is relevant to a 
user issuing a query. In our study we use both, the 
TREC 2007 Genomics and PubMed user click 
datasets.  

TREC 2007 Genomics dataset. The Genomics 
dataset (Hersh et al., 2007) consists of 36 queries, 
called topics, and 162,259 full-text articles from 
Highwire Press (http:// highwire.stanford.edu/). 
160K of these documents were successfully 
mapped to their corresponding PubMed Identifiers 
(PMIDs) and are the basis of our experiments. 
Each document is split into legal spans 
corresponding to paragraphs in the articles, 
amounting to over 12 million legal spans. For each 
of the 36 topics human relevance judgements are 
provided on the paragraph level. Following 
previous studies, a document is labeled positive, if 
it contains at least 1 paragraph judged to be 
relevant to the query.  
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The query topics are presented in the form of 
biological questions, such as:  

What toxicities are associated with etidronate? 
What signs or symptoms are caused by human 
parvovirus infection? 

These question-like topic formulations contain 
generic words, that are not representative of the 
specific information need of a user, such as “what”, 
“associated”, etc. We applied a combination of 
frequency-based techniques and manual validation 
to filter these stop words out and used the 
remaining 165 content terms for our analysis.  

PubMed Click Dataset. The dataset is 
constructed from PubMed queries and clicks, 
under the general assumption that a clicked 
document is relevant to a user issuing a query.  

The presence of a query token in the title is 
known to present a strong signal associated with a 
document being clicked (W. Kim et al., 2018; 
Resnick, 1961). Users searching PubMed only see 
the title of the document on the DocSum page and 
not the abstract or the full text. If query tokens do 
not appear in the title, then predictions on the 
abstract or the full text can only be effective to the 
extent they predict something about the title that 
makes the user choose to click. This is a weaker 
signal and would be obscured by query words 
appearing in a title. To remove this bias, we only 
consider documents for which none of the query 
tokens appear in the title. Note that since the 
document is retrieved via PubMed, all query 
tokens must be found in the title, abstract or article 
citation information. We collect only retrieved 
documents for which none of the query tokens 
appear in the title and all of them appear in the 
abstract. 

Clicked documents are assumed to be relevant 
to the user issuing the query, and we label a clicked 
document as a positive instance. We further 
assumed that documents displayed above the 
clicked document were seen by the user and 
rejected. These documents are labeled negative. 
Clicks on the top rank are ignored as a precaution, 
as those clicks might simply represent a user’s urge 
to click on something indiscriminately.  
Documents displayed below the lowest clicked 
document on the document summary page are 
ignored as the user may not have considered them. 

The same query string may be searched multiple 
times within a period of time and subsequently 
may result in different articles displayed and 
different documents clicked. In addition, a query 

within a single search may receive multiple clicks 
on the same page. To account for these user search 
actions, we merge the data for the evaluation 
dataset as follows. Given a unique query string, we 
collect all positive and negative data points 
associated with each click instance, and remove 
from the negative set those documents that also 
appear as positives following the reasoning: if a 
document is thought to be relevant by at least one 
user we consider it relevant for that query string.  

Using this dataset, for each query token we wish 
to compare its score coming from a document’s 
abstract versus the body text. First, to directly 
measure the benefit of full text, for each query in 
the PubMed Click Dataset, we perform this 
comparison on a subset of documents in the dataset 
that have full text available in PMC. Second, for 
each query in the dataset, we perform the 
comparison on all documents available in the 
PubMed Click dataset. This includes documents 
that do and do not have the full text available, as in 
production PubMed. 

We randomly sampled 2 million unique queries 
from the PubMed query log in 2017, which 
retrieved at least one positive document. On 
average there are 6.60 documents collected for 
each query, an average of ~30% of which are 
labeled positive. Of 6.60 documents available for 
each query, only 2.65 documents have full text 
available in PubMed Central (~40%). We 
separated two thirds of queries for training PAV 
functions described in the next section, and one 
third for testing. 634,364 queries along with 
collected labeled documents comprise the test 
portion of the PubMed click dataset. A subset of 
that dataset that includes queries for which all 
retrieved documents have full text available 
constitutes 232,636 queries, and will be referred to 
as Set_FT. 

3 Methods – Using Full Text to score a 
query token 

Here we examine how to optimally use BM25 
scores coming from the abstracts and full text 
paragraphs to improve retrieval performance. We 
first define the score of a token within a full-text 
section, which then we transform into a probability 
of that document being relevant given the score 
and the section. We then learn how to combine 
these section-based token scores into an overall 
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score predicting the probability of a document 
being relevant. 

3.1 Obtaining Full Text 

We obtain full text documents from the PubMed 
Central full text collection in BioC 
(https://www.ncbi.nlm.nih.gov/research/bionlp/A
PIs) (Comeau, Wei, Doğan, & Z., 2019). This 
collection contains about 5 million full text 
manuscripts. BioC allows one to obtain full text 
information by paragraphs. 

Full-text articles are typically comprised of 
sections presented in a logical sequence. Sections 
such as Introduction, Materials and Methods, 
Results, and Discussion predominantly appear as 
they represent the logical sequence in scientific 
writing. Frequently, however, sections carrying 
similar types of information are referred to 
differently depending on the journal, the 
requirements of the publishing entity, and author 
writing style. For example, Introduction and 
Background section titles are used 
interchangeably. Results sections can be also 
referred to as Results and Experiments, etc. Using 
BioC provided section type identifiers that are 
based on the labels and regular expressions found 
in (Kafkas et al., 2015). To normalize section titles, 
we concentrate on the following section types: 
Abstract, Abbreviation, Caption, Discussion, Case, 
Keyword, Conclusion, Result, Methods, 
Introduction, Generic Section Title, Supplement, 
and Appendix. In what follows, all the sections 
other than the Abstract text will be referred to as 
body sections or full text sections. 

3.2 Defining the score of a token in a 
section 

Given a token " we can compute a BM25 score  
representing relevance of the token to a paragraph 
of text. The score is a product of the IDF weight 
and a local weighting factor that is zero if  does 
not occur in the paragraph. Using BM25 scoring of 
tokens in paragraphs, our goal is to devise a 
number representing the full text and its 
contribution to an overall document score that 
predicts user clicks based on each token in a query.  

Since there are generally multiple paragraphs 
within each section of a paper, we keep the largest 
BM25 score for a token in a section paragraph and 
call it the BM25 score of the section type (stype)  

in a full text document and denote it  
Keeping the maximum score is plausible because 
it is not affected by the size of the section (Jimmy 
Lin, 2009). Thus, given a token, for any document 
we have potentially thirteen different BM25 scores 
for that token, one from each section type.  

Because of the structure of full text documents, 
the appearance of a token in different sections 
makes different contributions to the relevance of 
the document. The same BM25 score may have a 
different significance depending on the section. 
For example, a high score in the Results section 
would likely be more indicative of importance than 
if it occurred in the Methods section of a paper. To 
address the issue of variable significance of 
sections, we convert these BM25 section scores 
into probabilities of a document being clicked. The 
Pool Adjacent Violators (PAV) Algorithm (Ayer, 
Brunk, Ewing, Reid, & Silverman, 1954; Hardle, 
1991; Wilbur, Yeganova, & Kim, 2005) is ideal for 
this purpose. 

3.3 Training a PAV Function 

Given a set of labeled data points along with their 
scores with the property that the higher the score 
the more likely a point is in the positive class, PAV 
is a simple and efficient algorithm that derives 
from such data a monotonically non-decreasing 
estimate of the probability that a point is in the 
positive class. Among non-decreasing functions 
that estimate the probability of a point being 
positive as a function of score, the PAV function 
assigns the highest likelihood to the actual 
observed class of the data points. Using training 
data, we apply PAV to the BM25 scores coming 
from each section type and obtain a function, 
, that predicts the probability of relevance. By 
nature of the monotonically non-decreasing 
estimate, the probabilities satisfy: 

  

All scores from single tokens from queries 
appearing in training documents are distinct data 
points included for learning these PAV-derived 
probabilities. The stepwise linear PAV function for 
each of the thirteen document sections are 
presented in Figure 1. Results are presented in four 
blocks, each block comparing three body section 
PAV probability functions to the abstract 
probability function. The figures show that there is 

ts

t

.stype
ts

stypep

( ) ( ).i j i j

stype stype stype stype
t t stype t stype ts s p s p s£ Þ £



251
 
 

 

a difference between the sections in their relative 
importance. Given two sections, a higher BM25 
token score from one section does not necessarily 
translate to a higher probability of relevance 
compared to the other section. If one section is 
more important for retrieval than the other, the 
same BM25 score in each section will lead to a 
higher probability in a more important section. 
Abrupt jumps may be due to sparseness of data 
This will have implications for retrieval. 

The PAV-based probabilistic transformation 
allows one to directly compare the value of section 
scores to each other. A clear conclusion here is that 
the raw BM25 scores do not well reflect the 
relative importance of different body sections, as 
expected. 

3.4 Combining Scores from Different 
Sections of the Body Text 

Now we examine how to combine these 
probability scores coming from different sections 
into a single document score that predicts the 
document being relevant. Let us denote the 
probability of relevance given BM25 section 
scores as #(%&'|)*25	section	scores). Then, the 
log odds ratio, defined as 

log $
%('()|+,25	section	scores)
%(¬'()|+,25	section	scores)

9																														(1)	

is monotonically related to the probability of 
relevance. We apply Bayes’ Theorem. 

log $
%('()|+,25	section	scores)
%(¬'()|+,25	section	scores)

9																																	(2)

= log $
%(+,25	section	scores|'())%('())

%(+,25	section	scores|¬'())%(¬'())
9					

The naïve Bayes’ assumption will allow us to 
factor the right side of (2) as 

log $
%(+,25 section	scores|'())%('())

%(+,25 secttion	scores|¬'())%(¬rel)9
											(3)

= log =
> %(?!"#$%|'())!"#$%
> %(?!"#$%|¬'())!"#$%

@ +	

log B
%('())
%(¬'())

C .

 

The second term on the right in equation 3 is a 
constant and can be disregarded, as it will not affect 
the ranking. The first term on the right side of 
equation 3 can be rewritten as: 

log =
> %(?!"#$%|'())!"#$%
> %(?!"#$%|¬'())!"#$%

@																																									(4)

=F log $
%('()|?!"#$%)

1 − %('()|?!"#$%)
%('())

1 − %('())
H 9

!"#$%
. 

The right side of equation 4 is monotonically 
related to the left side of equation 2, and 
consequently should rank documents in the order 
of their probability of being relevant. This is the 
ideal ranking according to the probability ranking 
principle (Robertson, Walker, Jones, Hancock-
Beaulieu, & Gatford, 1994). Here !(#$%|'!"#$%) =
!!"#$%('!"#$%)  is the PAV determined probability 
estimate for the section type, while !(#$%) is the 
fraction of positive documents in the training set. 
Based on these results we define the log odds score 
of a token in a section as  
log&''!!"#$%(") = log B

$!"#$%*!"
!"#$%+

,-$!"#$%*!"
!"#$%+

$&'()*+
,-$&'()*+

H C.								(5)   

where %./0'&1 = !(#$%). Such scores for tokens can 
be added if the naive assumption of independence 
of the BM25 scores on which they are based is 
reasonably accurate. 

Now we test different ways of combining scores 
of a token from different sections to derive a full-
text score for the token. In (Jimmy Lin, 2009), the 
author found that computing the article score as the 
maximum score over all spans is superior to 
computing the score for an article as sum of scores 
over all spans. Spans in that work were paragraphs 
of full text documents from the TREC genomics 
collection, which consists of 36 topics (query 
questions) and manually annotated spans 
representing 2,477 full-text articles. In contrast, 
(Hearst & Plaunt, 1993) found that using the sum 
of scores over all spans in scoring a document 
produces a superior ranking when evaluated on a 
data set of 43 queries and 274 full text documents. 
Spans in (Hearst & Plaunt, 1993) are computed 
segments correlating with subtopics of a full text 
paper and are different from paragraphs.  

Taking these references into consideration, we 
study and compare the Sum and Max scoring 
strategies using BM25 raw scores and log odds of 
BM25 scores. BM25 on Abstracts is also computed 
as it is used in the PubMed search system. 
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Fig 1. In these four graphs 12 PAV functions for 12 different body sections are compared to the abstract PAV function. 
X-axis represents the BM25 score across all four graphs, Y axis represents the Probability of a click based on the 
section term score. 
 

Sum LogOdds: The score of token t in document 
d is computed as the sum of log odds scores, as 
defined in (5), coming from sections within the full 
text document: 

'+,&'(_*+,-..!(-, /)
=0 log	 _,--'!"#$%(/)

!"#$%∈.
																				(6) 

Max LogOdds: The score of token t in document 
is computed as the maximum log odds score 
coming from sections within the full text 
document: 

'+,012_*+,-..!(-, /)																																		(7) 
= max	{log	 _,--'!"#$%(/)|'/<!$ ∈ -}										 

Abstract BM25: The score of token t in document 
d is computed as the raw BM25 token score of the 
abstract 

 '+,3045_67!(-, /) = 8!"#$																										(8)  
 
Sum BM25: The score of token t in document d 
is computed as the sum of BM25 section token 
scores within the full text document 

	'+,&'(_3045(-, /) =
																																		0 8!$!%&'					!"#$%∈.

         (9) 

Max BM25: The score of token t in document d is 
computed as the highest BM25 section token score 
within the full text document 
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'+,012_3045(-, /) 									
= @AB!"#$%∈.C'"!"#$%D																										(10) 

After trying scoring based directly on log odds 
using formulas (6) and (7), it was evident that we 
are dealing with two kinds of documents, which 
behave differently. Those documents that contain 
the search token only in the abstract receive a 
single score from the abstract, and Sum and Max 
really don’t play a role. But for those documents 
having the term in multiple sections, Sum and Max 
do play a role, and the log odds scores are higher. 
In order to balance the scores for best results, we 
found it necessary to create PAV curves for Sum 
and Max scores just on documents with multiple 
sections providing scores. We simply use the 
probabilities based on a PAV curve for each type of 
document to rank the different types in the same 
ranking for retrieval. In what follows, we will 
continue to use the term LogOdds to refer to this 
scoring. 

4 Results  

Proposed methods are tested on the PubMed Click 
Dataset and on the TREC Genomics collection 
(Hersh et al., 2007). 

4.1 The PubMed Click Dataset 

To directly measure the benefit of full text, for each 
query in the PubMed Click Dataset we first 
compare the proposed scoring techniques on 
Set_FT. Set_FT is a subset of the PubMed Click 
dataset that includes queries for which all labeled 
documents in the evaluation dataset have full text 
available. Second, we extend this analysis to the 
whole test portion of the PubMed Click dataset. It 
contains queries and labeled documents, which 
may or may not have full text available. For each 
query token, we score its corresponding retrieved 
documents in the evaluation dataset and compute 
the average Precision using labels in the evaluation 
dataset. These are averaged over all tokens in a 
query, and then average over all queries producing 
the MAP results presented in Figure 2. 

Figure 2 demonstrates our findings computed on 
the complete set of tokens available in the two test 
sets. We observe that the LogOdds probabilistic 
scoring approach significantly outperforms the 
BM25 scoring for both Sum and Max variants for 
the PubMed click data and Set_FT. A bigger 
difference is observed on Set_FT, where full text is 

available for every participating document. 
Additionally, we observe that LogOdds Sum 
computed on article full text outperforms the 
abstract score and the difference although small is 
statistically significant.  

We conducted pairwise statistical tests for all 
methods to verify if the differences in performance 
for each pair of tests is significant. We used the 
“Percentile bootstrap” test at the 5% significance 
level which works well for our study because the 
distribution is symmetric around the MAP value 
(https://en.wikipedia.org/wiki/Bootstrapping). 
Differences between all pairs of methods are 
statistically significant, except for the Max 
LogOdds and the Abs BM25 for the Set_FT subset 
of PubMed Click Dataset. 

Based on these results we believe that log odds 
scoring is a useful approach for retrieval 
incorporating body text. The intuition behind it is 
that BM25 scores have a different meaning 
depending on the sections from which they are 
derived as illustrated in Fig 1. For a single query 
token, results in Figure 2 also suggest that the Sum 
scoring approach provides a better estimate of 
token importance than the Max scoring approach 
when using the log odds scoring for the Click 
dataset. If sections within a full text document were 
truly independent from each other, Sum LogOdds 
would be the ideal method to score a single query 
token over the multiple sections in a document. 
 

Figure 2. Average Precision for all query tokens is computed, 
averaged for each query and then over all queries for the 
PubMed Click dataset and its subset Set_FT. For both datasets, 
LogOdds Sum and LogOdds Max scoring methods 
demonstrate a significantly improved performance compared 
to Sum and Max on raw BM25 scores.  
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Sum LogOdds
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4.2 The TREC Genomics Dataset 

We apply the proposed methods to each query 
token in the TREC dataset. We score the retrieved 
documents in the evaluation dataset and compute 
the Average Precision using gold standard labels. 
These are then averaged over all query tokens, and 
the MAP results are presented in Figure 3. Leave-
one-out training strategy was used for each topic. 

Figure 3 demonstrates our findings computed on 
non-stop word query tokens in the TREC 
Genomics Dataset. We observe that the Sum 
LogOdds probabilistic scoring significantly 
outperforms Sum BM25 scoring. Similarly, the 
Max LogOdds probabilistic scoring significantly 
outperforms Max BM25 scoring. Similar to the 
PubMed Click Dataset, here we observe that Sum 
LogOdds has a slight advantage over Max 
LogOdds, and both are competitive with the 
abstract BM25 score.   

We conducted Wilcoxon signed rank test 
(https://en.wikipedia.org/wiki/Wilcoxon_signed-
rank_test) at 5% significance level to verify if the 
differences in performance for each pair of tests is 
significant. The differences between Max 
LogOdds and Abs BM25 as well as Sum LogOdds 
and Abs BM25 are not statistically significant. The 
differences between all other pairs of methods are 
statistically significant. 

 

 
 
Figure 3. Mean Average Precision on TREC Genomics Dataset 
is computed on single tokens and averaged for all tokens in the 
experiment. Sum LogOdds and Max LogOdds demonstrate a 
significantly improved performance compared to those on raw 
BM25 scores.  

5 Conclusions and Discussion 

Based on the PubMed Click dataset and the TREC 
genomics dataset, we studied how to integrate full 
text and abstract information for scoring a query 

token. The main contribution of this work is to 
study the benefits of log odds of BM25 compared 
to raw BM25 scores.  Our experimental results on 
both datasets support these important conclusions: 

1. PAV based log odds scoring is a useful 
way to compare the contribution of a token in 
different sections of a document for predicting 
clicks. BM25 scores are not directly comparable 
with each other for making such predictions. The 
same BM25 score is of different value depending 
on the section type in which it is found. 

2. We proposed two methods to compute 
the log odds body score by taking the sum or max 
of scores. In both cases, PAV based LogOdds 
scoring is significantly better than ranking based 
on raw BM25 scores. The difference between Sum 
and Max scoring is small.  

For the PubMed Click dataset, using the Sum 
LogOdds score from the whole document for a 
query token produces better results than using only 
the abstract score. In the TREC genomics dataset, 
the performance of full text LogOdds is 
comparable to abstract only score. This is an 
important contribution and meaningful building 
block towards improving full text retrieval in 
PubMed. Our immediate plan is to extend this 
single token analysis to full queries. 

6 Conclusions and Discussion 

Based on the PubMed Click dataset and the TREC 
genomics dataset, we studied how to integrate full 
text and abstract information for scoring a query 
token. The main contribution of this work is to 
study the benefits of log odds of BM25 compared 
to raw BM25 scores.  Our experimental results on 
both datasets support these important conclusions: 
   1. PAV based log odds scoring is a useful way to 
compare the contribution of a token in different 
sections of a document for predicting clicks. BM25 
scores are not directly comparable with each other 
for making such predictions. The same BM25 
score is of different value depending on the section 
type in which it is found. 
   2. We proposed two methods to compute the log 
odds body score by taking the sum or max of 
scores. In both cases, PAV based LogOdds scoring 
is significantly better than ranking based on raw 
BM25 scores. The difference between Sum and 
Max scoring is small.  
For the PubMed Click dataset, using the Sum 
LogOdds score from the whole document for a 
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query token produces better results than using only 
the abstract score. In the TREC genomics dataset, 
the performance of full text LogOdds is 
comparable to abstract only score. This is an 
important contribution and meaningful building 
block towards improving full text retrieval in 
PubMed. Our immediate plan is to extend this 
single token analysis to full queries. 
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