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Abstract 

The amount of biomedical literature has 

vastly increased over the past few decades. 

As a result, the sheer quantity of accessible 

information is overwhelming, and 

complicates manual information retrieval. 

Automated methods seek to speed up 

information retrieval from biomedical 

literature. However, such automated 

methods are still too time-intensive to 

survey all existing biomedical literature. 

We present a methodology for 

automatically generating literature queries 

that select relevant papers based on 

biological data. By using differentially 

expressed genes to inform our literature 

searches, we focus information extraction 

on mechanistic signaling details that are 

crucial for the disease or context of interest. 

1 Introduction 

The number of peer-reviewed publications in 

molecular biology, biotechnology, and biomedical 

research increases exponentially every year. There 

is a considerable number of published papers on 

any one mainstream biomedical research topic, 

potentially hundreds of thousands of relevant 

articles. For many areas of study, simply reading 

every paper is unrealistic, or even physically 

impossible. When studying biological systems, 

such as intracellular signaling networks, this 

problem is apparent – accurate representation of all 

relevant signaling events requires extensive, expert 

knowledge acquired over many years of study. By 

using natural language processing, machine 

readers are capable of extracting interactions from 

hundreds or thousands of papers in a matter of 

hours, achieving a substantial speedup over manual 

information extraction (Björne & Salakoski, 2011). 

For this reason, automated methods for information 

extraction, such as machine reading, are used to 

retrieve information about intracellular signaling 

networks, and this information can then be used for 

model assembly or extension. While automated 

methods accelerate model assembly, the time 

required for processing all selected papers still 

depends on the number and the type of papers 

chosen for machine reading (Holtzapple, Telmer, & 

Miskov-Zivanov, 2020). 

To retrieve relevant papers for machine reading, 

a common method is to query databases that 

contain biomedical literature. One repository for 

biomedical literature, MEDLINE, contains over 27 

million papers (Fiorini, Lipman, & Lu, 2017), and 

a common method for retrieving papers from 

MEDLINE is through its associated search engine, 

PubMed. Querying MEDLINE through PubMed is 

particularly useful for identifying papers on a 

specific context such as disease or cell type. It is 

also used for identification of individual proteins, 

signaling pathways, and general cell processes in 

one specific context. One example of a PubMed 

query that targets a single pathway in a specific 

context is ‘"Hippo pathway" AND "stem cells"’. 

This query returns 272 papers, many of which 

describe Hippo pathway signaling trends in 

cancerous stem cells, as well as non-cancerous 

stem cells. These papers contain a wealth of 

information about the mechanistic causes of 

stemness. However, retrieval of these papers 

requires a priori knowledge that the Hippo pathway 

is important in stem cell maintenance and renewal. 

Additionally, these papers describe one small facet 

of stem cell signaling, and do not contain all the 

information needed to understand the system. To 

widen our perspective, we could retrieve all papers 

in MEDLINE that concern stem cells by querying 

PubMed with "stem cells". Here, we encounter two 

obstacles – this query returns over 271,000 papers, 

many of which describe morphological or 

anatomical details, and not signaling pathways. 

Context-aware query design combines knowledge and data for efficient 

reading and reasoning 
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Our dilemma is that retrieval of relevant, crucial 

papers requires prior knowledge of which 

pathways are important.  

There is a demand for improvement in methods 

for patient-specific paper retrieval, as evidenced by 

the TREC precision medicine track (Roberts et al., 

2017). State-of-the-art methods for paper retrieval 

rely on term lists generated by experts or users, or 

automated information retrieval of similar papers 

(Sesagiri Raamkumar, Foo, & Pang, 2017; Wesley-

Smith & West, 2016). These methods have several 

disadvantages. First, paper retrieval may depend on 

the cooperation of one or more experts in the field. 

Even for automated techniques that locate papers 

through related citations, or sematic analysis, some 

level of prior knowledge is needed. Also, even for 

experts that are up to date on canonical signaling 

pathways in a context of interest, novel pathways 

or signaling events cannot be easily targeted in a 

literature query. For efficient, thorough, context-

aware exploration of cellular signaling, improved 

methods for literature retrieval are needed.  

We present here a methodology for automated 

query design that does not rely on manual steps of 

the domain expert. To address the potential role of 

differentially expressed genes (DEGs) in disease 

mechanisms, we infer queries from biological data. 

Under- or over-expressed genes in the disease state 

are often the ones that play a role in disease 

progression (Armstrong et al., 2002). Identifying 

these contextual DEGs and using them as query 

terms focuses literature reading on genes and 

proteins that have altered signaling trends, and 

therefore, it facilitates further exploration of 

intracellular signaling networks that are potentially 

affected in disease. Our method utilizes gene 

expression data to find possible genes of interest 

based on their relative expression changes in 

response to disease, infection, etc. These genes of 

interest are used in the query to narrow down all 

possible PubMed hits to relevant signaling papers 

only. Furthermore, we also take into consideration 

how well-known each gene is, to choose the 

optimal number of gene terms in a query. Our 

results show that automated query design using 

these methods returns relevant signaling papers, 

and interactions extracted from these papers are 

informative and useful when reasoning about the 

queried context. This addresses a well-established 

problem in precision medicine – altered signaling 

pathways are often unique to one patient or 

environment and are difficult to study manually. 

Our methodology can be used in conjunction with 

any state-of-the-art model assembly techniques to 

aid in understanding affected signaling 

mechanisms in patient or cell line-specific systems. 

This methodology will provide an automated 

framework to retrieve research papers and 

streamline the process of model assembly. Our 

proposed automated query design methodology is 

outlined in Figure 1.  

2 Query Design Method 

In the following sub-sections, we describe our 

method to identify DEGs in the context of a 

disease, cell line, tissue type, or other condition 

(e.g., drug treatments), and for using them to form 

query terms when searching literature. 

2.1 Identification of differentially expressed 

genes  

As shown in Figure 1, the first step in our query 

design method is to define a context for literature 

search. Our approach allows a user to automatically 

design queries for many different contexts, 

including any biological condition that can be 

observed long enough to generate gene expression 

Figure 1. The automated query design methodology for information retrieval in biomedical research. 
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data. The user selects a data source and a relevant 

dataset from that source. While any kind of gene 

expression data can be used (microarray, RNA-seq, 

or single cell RNA-seq), public databases for 

expression data most frequently include RNA-seq 

data. Public databases for RNA-seq data include 

the Cancer Genome Atlas (TCGA) (Weinstein et 

al., 2013), Gene Expression Omnibus (Clough & 

Barrett, 2016), and the Expression Atlas 

(Papatheodorou et al., 2018), all of which contain 

sufficient expression data to be used in our 

proposed query generation method. 

Once the dataset file is selected and input by the 

user, our proposed query design method identifies 

genes that are differentially expressed in the 

context of interest (e.g., disease state, cell line, 

etc.), compared to the control. The RNA-seq 

technique provides insight into the transcriptional 

activity of a cell population and reveals the number 

of gene transcripts present at a single point in time. 

For any gene X, we compute its differential 

expression as the fold change between the amount 

of its transcript (𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 ) in two scenarios, 

control ( 𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙  ) and disease state 

(𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑑𝑖𝑠𝑒𝑎𝑠𝑒  ), a common method for measuring 

changes in gene expression (Huang, Zhang, Shen, 

Wong, & Xie, 2015). Since in this work we are 

interested in the magnitude of the change from the 

control, and not the direction of the change (i.e., 

increase or decrease), we use the absolute value of 

the change:  

𝑑𝑋 = |
𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

𝑑𝑖𝑠𝑒𝑎𝑠𝑒  

𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 | (1) 

We determine the 𝑑𝑋 value for all transcripts in 

the selected RNA-seq dataset. Next, we sort the 

transcripts in a descending order of their 𝑑𝑋 values 

(i.e., descending magnitude of change), and select 

a threshold for the 𝑑𝑋 value, to ensure that all genes 

used as query terms are relevant to the dataset 

context. Specifically, we use 2.0 as a threshold, that 

is, we remove from the sorted list those transcripts 

that have 𝑑𝑋 < 2.0. The standard threshold for 𝑑𝑋 

is usually 2.0 or 1.5 (Huang et al., 2015), based on 

what a cell biologist would consider notable or 

likely due to the effect of the disease or altered 

state, and not just noise in gene expression. While 

we use 𝑑𝑋 ≥ 2.0,  the user can adjust this threshold 
to suit the research context (i.e., diseases or cell 

types with more or less DEGs than expected). We 

will refer to the transcripts remaining in the sorted 

list as DEGs. As probable indicators of a disease 

state, these DEGs become candidates for query 

terms. To give an estimate of an expected size of 

the sorted DEG list, previous work on analyzing 

many RNA-seq datasets over a wide range of 

conditions, including disease, tissues, cell types, 

drug treatments, etc., has shown that the median 

number of DEGs (with 𝑑𝑋 ≥ 2.0) per dataset is 92 
(Crow, Lim, Ballouz, Pavlidis, & Gillis, 2019). 

However, as many as 10,000 DEGs per dataset 

were also observed, although rarely. We expect to 

see dozens to hundreds of DEGs (gene transcripts 

with 𝑑𝑋 ≥ 2.0 ), out of the 20,000  genes in an 
RNA-seq dataset. 

2.2 Selection of query terms 

The sorted list of selected context-dependent DEGs 

that is automatically generated as described in 

Section 2.1, and the list of context terms, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 
provided by a user, are inputs to the next step of our 

proposed query generation method.  

Using all DEGs with 𝑑𝑋 > 2.0  to formulate a 
query is still not practical, as there can be tens or 

hundreds of such DEGs (see Section 2.1). Instead, 

we propose a method to further reduce the size of 

the sorted DEG list. We determine the number of 

DEGs to be used as query terms by estimating the 

number of papers that would be retrieved from a 

literature database when using the query formed 

from these terms. For example, in PubMed, the 

“popularity” of genes varies widely: TP53 is a 

well-known oncogene with over 100,000 papers 

found in PubMed, and therefore, any query 

containing “p53” will return more papers than a 

query using a novel gene.  

Thus, to estimate the impact of each DEG, as a 

possible query term, on the number of papers 

retrieved, we propose to utilize the annotation 

information provided by the UniProt database 

(The UniProt Consortium, 2017). This database 

contains information on the gene itself, known 

transcripts, as well as information on the gene 

product, if available. Each gene in the UniProt 

database has an assigned annotation score, which 

is an amalgamation of evidence of the gene and 

gene product’s existence, including cross-

references in other databases, known aliases, 

experimental evidence, and more. We use this 

annotation score as a measure of how established a 

gene is in the literature. For manually annotated 

genes, where the evidence has been reviewed by an 

expert, the score is higher. The annotation score has 
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an integer value in the interval between 1 and 5, 

where score of 5 indicates ample evidence of the 

protein in existing literature and databases, and 

score of 1 indicates little to no available 

information about the protein. For example, the 

TP53 gene in humans (UniProt ID P04637), a well-

known tumor suppressor, has an annotation score 

of 5, while the OATL1 transcript in humans 

(UniProt ID B4DF03), which has not been 

observed at the protein level, has an annotation 

score of 1.  

We propose here to use the annotation score 

together with the 𝑑𝑋  value when deciding which 

DEGs to include as query terms. The combination 

of these two measures allows the design of queries 

for different objectives or tasks, for example, to 

search for literature that contains a few well-known 

(high annotation score) proteins, or many novel or 

unstudied (low annotation score) proteins. 

Furthermore, by incorporating the UniProt 

annotation score to choose terms, we can 

automatically design queries that will lead to a 

selection of a manageable number of papers. In 

other words, the optimal number of papers would 

be the one large enough to provide adequate 

information on the system and small enough to still 

be processed in a feasible amount of time. What 

would be considered the “optimal” number of 

papers depends on both the complexity of the 

context of interest, as well as the allocated 

resources for information extraction. For example, 

a researcher using a machine reader to process 

literature on diabetes will require many more 

papers than someone who wants to read papers 

manually. Additionally, the number of papers 

found in a literature database as a result of the 

query will be different for each user depending on 

the input dataset, annotation score, and the addition 

of new publications in the literature database, and 

so this method allows to tailor the query design 

process to the user’s research goals. We will refer 

to the DEGs that are selected to be used in a query 

as query term DEGs.  

Different research tasks, paper contexts, and 

datasets will require a different number of papers 

to be read. Therefore, our method allows the user 

to provide an additional input, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, which 
will influence the number of papers selected for 

reading. The 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  input can be either 
categorical, or a discrete number greater than 0, and 

is used in our method to determine the cut-off 

parameter, 𝐶. The cut-off 𝐶 value is in turn used to 

select those DEGs that will be included in the 

query. Specifically, we traverse the sorted DEG list, 

starting with the DEG that has the largest 𝑑𝑋 value, 

and we keep adding DEGs to the query term list, as 

long as the sum of their annotation scores is smaller 

than or equal to the cut-off value 𝐶.  
We use three categories to indicate the level of 

automated reading needed to comprehend all 

information in the paper set. The first category, 

“human-readable”, results in a selection of a small 

number of papers, suitable for a human to read in a 

short time (e.g., hours). The second category, 

“automation suggested”, leads to a medium 

number of selected papers that is possible for a 

human to read (e.g., days), but more practical if 

processed by machine reading. The third category, 

“automation required”, results in a large number of 

selected papers, only practical for machine reading. 

Allowing for two different ways to enter the 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  input, provides additional flexibility. 
If the user knows exactly which value they want to 

use for the cut-off parameter, they can directly enter 

it. However, in the research process, the users may 

sometimes be interested in exploring a smaller 

subset of relevant papers, or doing a more 

comprehensive exploration of the topic, and the 

three categories listed above are useful in such 

cases. The values of the parameter 𝐶  that 
correspond to the three categories, and that we used 

to obtain results and demonstrate our approach, are 

listed in Table 1.  

We note here that, while these values are set 

internally in the code, they could be easily changed 

to better suit different domains or research goals. 

For example, for a “human-readable” reading 

output, we set 𝐶=15, and following our method for 
selecting query term DEGs given the cut-off value 

𝐶, this could result in as few as 3 query term DEGs 
(all with annotation score 5) or as many as 15 query 

term DEGs (all with annotation score 1).  

Table 1. User-input categories, the corresponding cut-

off parameter 𝐶 for the annotation score sum, as well 

as the expected maximum and minimum number of 

query term DEGs. (These values do not account for 

DEGs with no entry in the UniProt database.) 
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To this end, it is worth noting that not all DEGs 

are always found in UniProt, and therefore, the 

DEGs without a corresponding UniProt entry are 

assumed to have annotation score value of 0. As 

this is possible even for DEGs with large 𝑑𝑋 value, 

this could lead, in rare cases, to the actual number 

of query term DEGs exceeding the cut-off value 𝐶 
(e.g., this would be 15, for our example above). 

While, in theory, the number of DEGs with 𝑑𝑋 ≥
2.0 and annotations score of 0 could potentially be 
very large, we have not encountered such cases. 

Moreover, our experiments have shown that 

allowing for DEGs with annotation score 0 to be 

added to the query term list does not significantly 

increase the number of selected papers, while at the 

same time can lead to the retrieval of papers with 

very novel disease mechanisms. In Table 1, we 

provide the 𝐶 values that we use for the three user-
input categories, and the corresponding typical 

minimum and maximum number of query term 

DEGs.  As a guidance, we list in Table 1 the typical 

minimum and maximum numbers that are easily 

determined from 𝐶  values, and which consider 
only those genes with an annotation score greater 

than 0.  

Once the list of the query term DEGs is 

determined, their official gene names (e.g., TP53, 

BRCA1, EGFR) are combined with a logical OR, 
thus allowing any paper that includes at least one 

of the query term DEGs to be selected. It is 

important to note that the official gene name (or 

another standardized identifier) is already supplied 

by gene expression datasets, and so we avoid the 

challenge of using named-entity normalization to 

automatically standardize the names of DEG query 

terms. We chose to use a logical OR to retrieve the 
maximum number of relevant papers for each 

query, since a logical AND would make the query 
more specific, and so restrict the number of papers. 

Other combinations of logical AND and OR 
between the terms in the query are possible and 

could be informed by the user or inferred if relevant 

information is available. This is beyond the scope 

of the work presented here and is one of the next 

steps that we plan to explore in the future.  

Furthermore, since we are interested in creating 

queries that focus on a particular context, our 

automated tool adds Context to this logical 

expression as a necessary condition, that is, it 

combines it with the other terms using a logical 

AND:  

(𝑔𝑒𝑛𝑒1 𝐎𝐑 𝑔𝑒𝑛𝑒2 𝐎𝐑 … 𝑔𝑒𝑛𝑒𝑁) 𝐀𝐍𝐃 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 
(2) 

where each 𝑔𝑒𝑛𝑒𝑖  (i=1,..,N) is the official gene 

name of one of the N query term DEGs. By 

including only papers that mention the context of 

interest, we can extract relevant interactions. It is 

important to note that one context may have 

multiple aliases (e.g., “coronavirus”, “COVID-19”, 

and “SARS-CoV-2” are all referring to the same 

disease). The user can increase the scope of the 

retrieved papers by combining all possible context 

aliases with a logical OR.  

2.3 Using queries in disease explanation  

We discuss in this section the use of automatically 

generated targeted queries in information 

extraction conducted by machine readers, followed 

by automated reasoning about affected signaling 

networks and biological processes. For each query, 

we retrieve all machine reading statements in the 

INDRA database (Gyori et al., 2017) that are 

associated with at least one paper in our reading set. 

The INDRA database is a system that incorporates 

natural language processing tools and standardized 

databases to collect biomedical signaling events. 

INDRA relies on several different machine readers 

to process papers and supply information on 

signaling events. The interactions output by readers 

are directed, and therefore, they can be used in the 

process of assembly or extension of dynamic 

models, in order to explain mechanisms and timing 

of the disease. Although the query term DEGs that 

were selected following our method described in 

Sections 2.1 and 2.2 are likely to participate in 

these interactions, it is important to note that the 

interactions output by readers will include many 

other relevant genes and proteins. Thus, these 

extracted interactions are expected to provide the 

information on intracellular signaling networks 

that is potentially critical for the context originally 

selected by the user and included as a term in the 

generated query (equation 2).  

To evaluate the relevance of extracted 

interactions, we assess what types of biological 

processes and signaling pathways these 

interactions are involved in. We use PANTHER 

(Mi, Muruganujan, Ebert, Huang, & Thomas, 

2018) to calculate enriched Gene Ontology (GO) 

terms (Ashburner et al., 2000) in the protein-

protein interactions within our interaction sets for 

each query. In the GO database, genes and proteins 

are annotated with known cellular functions. Each 
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GO term has a list of proteins involved in the 

biological process, and PANTHER calculates 

representation of all known GO terms for each 

interaction set. For GO terms that have a greater 

number of genes found in the interaction set than 

would be expected by chance, we consider this GO 

term statistically enriched. To assess whether 

enriched GO terms are similar, we use NaviGo to 

calculate the Resnik similarity score between all 

GO terms (described in (Wei, Khan, Ding, Yerneni, 

& Kihara, 2017)). By determining highly enriched 

GO terms, we can draw conclusions about what 

signaling pathways and biological processes are 

represented in our paper sets for each query. 

3 Results  

To demonstrate the usefulness of our automated 

query design methodology, we show results for 

four different contexts. For each context, we 

automatically design two queries, one with an 

expected large number of output papers, and one 

with an expected small number of output papers. 

These results illustrate how DEGs can be used to 

formulate queries that output relevant papers, and 

how the annotation score affects the volume of 

papers. We also show that the papers contain 

interactions that are closely related and are 

involved in the same GO biological processes.  

3.1 Case studies 

Using the Expression Atlas (Papatheodorou et al., 

2018), we selected four publicly available RNA-

seq datasets. These four datasets provide gene 

expression data for both control and disease state in 

SARS-CoV-2 (Blanco-Melo et al., 2020), 

ulcerative colitis (Mo et al., 2018), glioblastoma 

multiforme (Gill et al., 2014), and thyroid 

carcinoma (Costa et al., 2015). All four datasets 

express transcription in transcripts per million 

(TPM) and include the 𝑑𝑋 values computed for the 

disease state with respect to the control state. In the 

following studies, we use the 𝑑𝑋  values that are 

provided with selected datasets. With these case 

studies, we cover three substantial topics in 

biomedical research – autoimmune disorders, 

cancer, and viral infections. These diseases differ in 

the number of expected publications, largely due to 

the awareness of the disease itself. We chose 

several well-studied diseases, as well as several 

relatively unknown diseases as case studies, to 

show the utility of our methodology, regardless of 

the recognition of the system at hand. Using 

differential gene expression data from these 

diseases, we illustrate how biological data can 

provide valuable information for automatically 

designed targeted queries. 

3.2 Selection of queries 

To design a query that retrieves a small reading set, 

as discussed in Section 2.2, we explored the effect 

of the cut-off value 𝐶=15 for the annotation score 
sum, and to design a query that retrieves a large 

reading set, we use the cut-off value 𝐶 =60. The 
queries generated for all four contexts for these two 

cut-off values are listed in Table 2. Notably, the 

same cut-off value 𝐶 for different datasets may 
result in queries with a different number of terms. 

This can be explained by the UniProt annotation 

score of the top (with large 𝑑𝑋 ) DEGs in the 

datasets. Due to differences in experiment 

techniques, environmental conditions, or other 

 

Table 2. Eight automatically formulated queries for four diseases. Each disease has two associated queries, 

which are expected to retrieve different sized reading sets. 
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factors, gene expression datasets from different 

samples and labs will likely show differences in the 

top DEGs. Consider a hypothetical example where 

we formulate queries based on two pancreatic 

cancer datasets (another example, not listed in 

Table 2), A and B, and choose the cut-off 𝐶=10. For 
dataset A, this value is achieved after adding two 

DEG query terms, since the DEGs with highest 𝑑𝑋 

values are P53 and MDM2, which are both very 

well-known proteins with an annotation score of 5. 

For dataset B, the threshold is not passed until five 

DEG query terms are added. The top five most 

differentially expressed genes are small non-

coding RNAs, which are generally poorly studied, 

and each has an annotation score of 2. 

3.3 Paper retrieval 

In our studies, we used PubMed (Fiorini et al., 

2017) as the most up-to-date and comprehensive 

source for biomedical literature. We do not apply 

any filters for article type, year, or journal. 

However, we restrict our results to only those 

papers with valid PMCIDs, to ensure that all papers 

can be processed with state-of-the-art machine 

readers. 

Once we have formulated queries for each 

disease, we can use them to search PubMed. In 

Figure 2a, we show the number of papers retrieved 

as a function of how many of the top DEGs are 

used as query terms. As expected, as the number of 

terms increase, so does the number of retrieved 

papers. However, many query terms, in 

conjunction with the context term, add no 

additional papers to the reading set. This indicates 

that some of these DEGs have not been explored 

much or mentioned in papers in the context of the 

relevant disease, and therefore, they may be a 

fruitful avenue for exploration.  

We also show in Figure 2b that, as the number 

of extracted papers in the reading output increases, 

the distribution of article types also changes. We 

examine the composition of the reading set by 

classifying each paper as either a research article, 

review, or other (books, documents, etc.). In large 

reading sets, reviews are slightly more common 

than in small reading sets, which is due to one or 

more query term DEGs having better 

representation in PubMed. Well-studied genes and 

proteins are more likely to be included in reviews 

than novel, relatively unknown genes. Since the 

scope of reviews and research articles differ 

drastically, we expect them to contribute differently 

to the number of extracted interactions. 

3.4 Validation of extracted interactions 

To validate the paper sets retrieved from each 

query, we analyzed the statements from the INDRA 

database (described in Section 2.3). In Figure 3a, 

we show the number of extracted interactions for 

each query. The number of interactions is 

dependent upon the number of papers, as well as 

the representation of the context and DEG query 

terms in PubMed. For each query, we also 

determined the top 10 enriched GO terms, sorted 

using the false discovery rate (FDR) (Benjamini & 

Hochberg, 1995). We show the average Resnik 

similarity score between the top 10 GO terms for 

each of our eight queries, where a higher score 

indicates more similarity between GO terms. 

Finally, in Figure 3b, we show the percent of DEG 

query terms that are present in the list of extracted 

interactions. These results, taken together, show 

that these queries retrieve papers that contain 

relevant signaling events that can be interpreted by 

machine readers, and describe highly related 

biological processes. In general, our method of 

increasing the cut-off value 𝐶  not only retrieves 

 

(a) 

 

(b) 

Figure 2. Number of papers found in PubMed, based 

on how many of the top DEGs were used as query 

terms. (b) Distribution of paper types by query. 
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more papers, but it also increases the number of 

signaling events extracted by readers, without a 

sizeable cost to relevance, as assessed by GO term 

semantic similarity.      

4 Conclusions 

While automated methods for extracting 

interactions from literature have improved the 

speed of information extraction, this process still 

has its pitfalls. Specifically, finding all relevant 

literature for the context at hand can be difficult, 

and brute force methods for selecting papers are too 

slow. By incorporating biological data in our 

queries, we can select relevant literature, and 

control the size of the reading sets.  

Our results show that using DEGs to formulate 

queries allows for targeting literature that could 

help explain differentially regulated pathways in 

disease. One side effect of this method is 

identification of DEGs in disease where there is 

little to no literature presence. In such cases, our 

proposed method could become critical, as it 

automatically identifies the gaps in our collective 

knowledge of certain diseases, and thus, suggests 

important research directions. For DEGs that return 

no additional results when used as a query term, 

this indicates the gene has an undiscovered role in 

the context of interest.  

Future directions include refining the query 

formulation methodology, as well as expanding our 

results. The relative presence of different diseases 

in PubMed affects the size of the reading set, 

independent of the number of gene query terms. By 

incorporating preliminary data on the presence of a 

disease or context in PubMed, we can adjust the 

annotation score. Additionally, since this method 

hinges on a list of affected genes or proteins with 

quantifiable differences from a control state, other 

measures of relative changes in cell function could 

also be used. Data on changes in post-translational 

modification of proteins, changes in epigenetic 

markers such as methylation, open chromatin, or 

histone modifications, or even somatic mutations 

could also be used, especially as such entities and 

events can be output by the state-of-the-art 

machine reading. Testing our methods on different 

datasets would help showcase the usefulness of our 

approach. In the future, we would also like to 

compare our method to a literature corpus 

assembled by an expert. However, since our 

queries are based on cell line-specific gene 

expression datasets, there are no existing corpuses 

for comparison. Future work includes assembling 

said corpuses and comparing to our method 

presented in this work. 
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