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Abstract

While high performance has been obtained
for dependency parsing of high-resource lan-
guages, performance for low-resource lan-
guages lags behind. In this paper we focus
on the parsing of the low-resource language
Frisian. We use a sample of code-switched,
spontaneously spoken data, which proves to
be a challenging setup. We propose to train
a parser specifically tailored towards the target
domain, by selecting instances from multiple
treebanks. Specifically, we use Latent Dirich-
let Allocation (LDA), with word and charac-
ter N-gram features. The best single source
treebank (NL ALPINO) resulted in an LAS of
54.7 whereas our data selection outperformed
the single best transfer treebank and led to
55.6 LAS on the test data. Additional exper-
iments consisted of removing diacritics from
our Frisian data, creating more similar training
data by cropping sentences and running our
best model using XLM-R. These experiments
did not lead to a better performance.

1 Introduction

As parsers are improving (with currently scores
higher than 96 (Mrini et al., 2020)), parsing scores
for low-resource languages lag behind. In recent
years there has been an increase in interest in ways
to parse and annotate these languages. This pa-
per will focus on parsing the low-resource lan-
guage Frisian (Germanic language spoken in the
north-western part of the Netherlands, approxi-
mately 612.000 speakers1). We will use sponta-
neous speech data containing code-switches from
the FAME! corpus created by Yilmaz et al. (2016).
We annotate a small portion of this data with UPOS
tags and Universal Dependencies (Zeman et al.,
2020) for evaluation purposes. An example of such
an utterance can be seen in Figure 1.

1https://fy.wikipedia.org/wiki/Fryske talen

Utterance: en wy binne grensverleggend
UPOS: CCONJ PRON AUX ADJ

Lang. labels: FY FY FY NL
English: and we are groundbreaking

cop

nsubj

cc

root

Figure 1: Example of annotated utterance.

Because it is unclear which (parts of) datasets are
likely to be good candidates for training a parser for
spoken Frisian, we propose to use instance-based
selection from a variety of sources. This leads to
our main research question: Can automatic data
selection on the instance level outperform selec-
tion on the treebank level for training a parser for
a new target domain/language? After finding our
best model, we will try to improve our results by
removing diacritics in our Frisian data and by mak-
ing our train data more similar to spoken Frisian.
All data and code are available on GitHub2.

2 Related Work

Previous work on dependency parsing for spoken
data created English annotations for conversational
agents (Davidson et al., 2019) and Slovenian data
(Dobrovoljc and Martinc, 2018). Partanen et al.
(2018) create a treebank for spoken Komi-Zyrian
with code-switching to Russian. Contemporary to
our treebank, Çetinoğlu and Çöltekin (2019) cre-
ated a treebank for spoken code-switched Turkish-
German. They adapt the guidelines to deal with the
spoken and code-switch nature of the data. Seddah
et al. (2020) create a treebank for an Arabic dialect
that contains a high amount of code-switching.

2https://github.com/Anouck96/ParsingFrisian
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Meechan-Maddon and Nivre (2019) and Blod-
gett et al. (2018) show that annotating a small
amount of target language and target domain data
outperforms a cross-lingual setup, but we focus on
a pure zero-shot scenario instead. Previous work
on zero-shot parsing has mainly focused on anno-
tation projection using parallel data (Barry et al.,
2019) and selecting transfer treebanks (Meechan-
Maddon and Nivre, 2019). Previous work explor-
ing more fine-grained selection methods are either
focusing only on 3 domains (and multiple topics
within the news) and 3 corpora (Plank and Van No-
ord, 2011), or focus on parser selection during test
time (Litschko et al., 2020).

3 Data & Annotations

3.1 Data

The creators of the FAME! corpus (Yilmaz et al.,
2016) had already transcribed and segmented the
data and annotated the code-switches. We copied
their word-level language labels to our miscella-
neous column. The data consists of broadcasts
from Omrop Fryslân (Frisian radio broadcaster)
and mainly contains spontaneous interviews. The
manually annotated radio broadcasts contain ap-
proximately 18.5 hours of speech and contains
3837 word- and sentence-level code-switches (Yil-
maz et al., 2016). The majority of these switches
are from Frisian speakers who switch to Dutch,
because as Yilmaz et al. (2016) also mention it
is not common for Dutch speakers to switch to
Frisian. 67.8% of the words are Frisian and 26.1%
are Dutch. The remainder of the words are anno-
tated as being Frisian-Dutch, are hesitations (like
“eh”) or are of a different language. From this cor-
pus we randomly selected and annotated 400 utter-
ances. Each utterance contains at least one switch
from Frisian to Dutch or the other way around. In
our selection there are 144 different speakers, 135
of them Frisian speakers (the other 9 Dutch). Most
of the speakers only occur one, two or three times.
In the corpus 3,067 tokens are Frisian, 625 Dutch
and 37 are other languages or annotated as Frisian-
Dutch. The distributions over the languages for
POS tags can be found in Appendix A.

3.2 Annotations

As a starting point, 150 utterances where annotated
by two annotators (the authors of the paper, who
have backgrounds in NLP, parsing and linguistics),
in three batches of 50 utterances. After each batch,

POS UAS LAS

Round 1 69.5 72.3 60.9
Round 2 87.1 76.1 64.6
Round 3 89.7 80.1 71.4

Table 1: POS, UAS and LAS scores between the two
annotators.

disagreements where discussed and resolved. Af-
terwards, 250 more utterances where annotated by
one of the annotators and checked by the other. Ta-
ble 1 shows the inter-annotator agreement between
the three initial batches of annotation. We report
accuracy over Universal Part-of-speech tags, Unla-
belled Attachment Score (UAS) and Labelled At-
tachment Score (LAS) (Zeman et al., 2018). Most
of our disagreements were due to difficulties with
non-standard constructions, sentence segmentation,
ambiguities of utterances and the fact that the guide-
lines had to be applied consistently, and in some
cases had to be adapted. Adaptations to the guide-
lines can be found in Appendix B. For a more de-
tailed discussion regarding the annotations we refer
to Braggaar and van der Goot (2021).

3.3 Analysis of disagreements

To find trends in the disagreements, we calculated
confusions over all labels (POS tags and Universal
Dependency relations). The most occurring con-
fusion for the POS tags that is solved in the third
round is between ADV-AUX. This is due to short-
cuts in the annotation tool ConlluEditor (Heinecke,
2019). Another confusion that is mostly solved in
the third round is the confusion between AUX and
VERB. For the Universal Dependency relations,
the most common disagreements included amod-
advmod confusions and differences in selecting the
root.

4 Experiments

4.1 Data selection

First, we selected 24 treebanks of languages close
to Frisian, which contained code-switching or con-
sisted of transcribed speech. The languages in-
cluded are Dutch, English, German, French, Naija,
Afrikaans, Danish and Hindi-English3. As a base-
line, 24 parsers were trained, each on a single
treebank. The eight best scoring treebanks (based
on LAS score) were used for further experiments.

3The names of all treebanks can be found in Appendix C
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The eight best scoring treebanks were: Dutch
Alpino (Van der Beek et al., 2002), Dutch LassyS-
mall (Van Noord et al., 2013), German GSD, Ger-
man PUD, English GUM (Zeldes, 2017), English
EWT(Silveira et al., 2014), English ParTUT (San-
guinetti and Bosco, 2015) and the Tweebank by
Liu et al. (2018). We chose to use these eight be-
cause we observed a drop in performance beyond
the lowest scoring treebank in this selection.

4.2 Latent Dirichlet Allocation

For the data selection, we use Latent Dirichlet Allo-
cation (LDA) with character 1-5 grams and word 1-
2 grams as features. We choose LDA, because it is
unsupervised, efficient and returns the probability
of instances belonging to each clusters. Tradition-
ally LDA is commonly used for topic classification,
but when given data from multiple languages, we
hypothesize that it will cluster based on language
similarity instead. In LDA, one has to define the
number of classes; we started with eight topics (be-
cause we used eight treebanks) and multiplied the
number by two for the successive runs (8, 16, 32,
64 and 128).

4.3 Experimental setup

We use the full training data from all eight tree-
banks. For the treebanks without train, we use the
test data, as we do not perform any experiments on
the source data. For the LDA target data, we sam-
pled sentences from the train split of the FAME!
(Yilmaz et al., 2016) corpus. Note that we did not
use the samples that are in our annotated data set.
After the clustering, we select similar sentences
based on the euclidean distance to the mean of the
Frisian input. We ran experiments with 8, 16, 32,
64 and 128 LDA components. From the results
we selected 1000, 2000 and 4000 sentences for
training to see if the number of sentences in train-
ing was also influential. We did a total of 75 runs
(8, 16, 32, 64, 128 components with each 1000,
2000 and 4000 sentences, 5 seeds). Training was
done using a deep biaffine parser as implemented
by MaChAmp 0.2 (van der Goot et al., 2020) with
default parameters and mBERT embeddings (De-
vlin et al., 2019). Five random seeds were used for
training.

5 Results

Overall, our best model consisted of 128 compo-
nents and used 2000 sentences. Table 2 shows

Components 8 16 32 64 128

POS 81.2 80.4 81.0 79.4 79.4
UAS 72.7 71.4 70.8 72.6 73.8
LAS 55.2 55.1 54.8 55.5 57.1

Table 2: POS, UAS and LAS scores on dev data for
2000 sentences, mean over 5 random seeds. Highest
scores are marked in bold.

Sentences 1000 2000 4000

POS 78.5 79.4 79.8
UAS 71.5 73.8 73.3
LAS 54.6 57.1 56.0

Table 3: POS, UAS and LAS scores on dev data for
128 components, mean over 5 random seeds. Highest
scores are marked in bold.

the effect of changing the number of components
when using 2000 sentences for training. While 128
components is the best for LAS and UAS, 8 compo-
nents gave the best result for POS. When using the
best performing number of components (128) and
varying the amount of training data (Table 3), we
can also see that the best model only needs 2000
sentences while using more sentences seemed to
improve only the POS score.

Table 4 shows the results of our best model (128
components, 2000 sentences) compared to the best
single treebank parser (NL ALPINO) and training
on the eight treebanks simultaneously. The scores
for test are for LAS and UAS slightly lower than
in the development phase. Surprisingly the POS
scores are a bit higher. Our model outperforms
the baselines on the test scores for LAS and UAS
(but not for POS). We tested significance with ran-
dom Bootstrapping as done by Udapi (Popel et al.,
2017) compared to both baselines. Unfortunately,
none of the results have proven to be significant at
an alpha of 0.05.

NL ALPINO Eight Best model

Dev Test Dev Test Dev Test

POS 79.9 81.1 80.3 80.3 79.4 80.2
UAS 72.5 69.7 70.9 69.2 73.8 70.2
LAS 55.3 54.7 54.3 53.2 57.1 55.6

Table 4: POS, UAS and LAS scores baselines versus
best model (128 components/2000 sentences). Dev
over five random seeds, test over the best random seed
of dev.
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NL ALPINO 1514 NL LASSYSMALL 447
DE GSD 14 EN EWT 14
EN GUM 5 EN TWEEBANK 4
EN PUD 2

Table 5: Sources of training data instances.

NL ALPINO Best Model

INTJ-ADV 45 INTJ-ADV 48
ADV-ADJ 20 INTJ-PRON 20
DET-ADP 19 ADV-ADJ 17
AUX-VERB 14 DET-ADP 16
PRON-ADV 12 AUX-VERB 14

Table 6: Top five confusions on POS. Actual-predicted,
number of confusions.

A closer look at the data selection of our model
(Table 5) shows that the training set consists of
mainly Dutch data. Only few sentences are selected
that are not in the Dutch treebanks. This comes as
no surprise, as we have seen that in the total corpus
26.1% of the words are Dutch, and the Frisian lan-
guage is related to Dutch. This also agrees with the
fact that the Dutch treebanks perform best in single
treebank training.

6 Error Analysis

We perform an error analysis of our best model and
the baseline (NL ALPINO) on the development data.
Table 6 shows the top five confusions on POS tags.
The baseline is often unable to correctly predict
interjections and our model does not seem to solve
this confusion. Some of the difficulties that we
have come across during annotation also arise here
(e.g. ADV-ADJ and AUX-VERB).

The confusions on dependency labels are similar
for both models (Table 7). Our model is slightly
better on discourse-parataxis, but other than that it
shows no big improvements. This is not surprising
as our data consists mainly out of Alpino sentences.

NL ALPINO Best Model

discourse-parataxis 39 discourse-parataxis 31
cc-mark 20 cc-mark 20
det-case 16 discourse-advmod 16
discourse-advmod 13 det-case 13
root-parataxis 12 advmod-amod 10

Table 7: Top five confusions on dependency labels.
Actual-predicted, number of confusions.

The most occurring confusion (discourse-parataxis)
was also a cause of disagreement in the annotation
process.

7 What did not work?

In an attempt to obtain better results we have tried
three different approaches to improve our best
model. Muller et al. (2020) have shown that translit-
eration to a script of a related high source language
on which the language model is trained leads to
better results. Even though Frisian is not in a differ-
ent script as the training data, it does contain a high
amount of diacritics, which results in both many
unseen wordpieces during testing, as well as dif-
ferences in tokenization4. We attempt to overcome
this mismatch by removing the diacritics from the
characters in our Frisian data. In our development
set, which consists of 150 utterances, there are 44
utterances with at least one diacritic and there are
a total of 53 tokens with diacritics.

The second approach tries to make our training
data more similar to our Frisian spoken data. A sim-
ilar approach is taken by Blodgett et al. (2018), they
create synthetic data following Internet-specific
conventions and syntactic features of African-
American English. This synthetic data proved to be
helpful for performance.Vania et al. (2019) also try
similar methods of data augmentation and found
that when no source treebank is available, data aug-
mentation can be very helpful. In our case, the
utterances are not always “full sentences”. An ex-
ample from our development set is “dêr kinnen
we in hele hoop oer sizze mar” (“we can say a
lot about that but”). Normally the sentence would
continue after “mar” (but) and “mar” would con-
nect to this next part, but in this case the utterance
stops at this point. We chose to connect this “mar”
with an orphan relation to the root. These kind of
“non-standard” constructions occur relatively often
in our target data compared to the non-spoken tree-
banks in our training data. We tried to make our
training data more similar by cropping sentences
and adding an orphan relation. We did this for
approximately the same percentage of utterances
that have this construction in our development data
(approximately 9 %).

As a final experiment we replaced mBERT with
XLM-R. The results of all three experiments can

4We saw empirically that the mBERT tokenizer was split-
ting words containing diacritics more, presumably because
diacritics were underrepresented during training of the tok-
enizer.
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Diacritics Orphans XLM-R Best

POS 78.2 78.5 81.2 79.4
UAS 72.7 74.4 73.6 73.8
LAS 55.8 56.5 57.0 57.1

Table 8: POS, UAS and LAS scores for the additional
experiments on dev set (128 components, 2000 sen-
tences).

be found in Table 8. As can be seen, our diacritics
and orphan experiments do not increase our scores.
Only the UAS increases slightly when cropping
some sentences, but unfortunately the LAS drops
in both cases. The results with XLM-R are highly
similar to the mBERT scores. Only the POS scores
increase slightly but the difference in scores for
UAS and LAS is very small.

8 Conclusion

In this paper we explored parsing and annotating
the low-resource language Frisian and we have
shown that selecting more similar training data (by
using LDA) can lead to improvements in scores.
These improvements were not significantly better
compared to our baselines, but it did show that
selecting fewer instances can outperform single
treebank training. Besides slightly higher scores,
using fewer instances sped up the training process.
Additional experiments of removing diacritics and
adjusting the training data to our development set
did not show improvements. Future research can
focus on improving the data selection method (us-
ing a different selection approach will probably
result in different outcomes), weighing the impor-
tance of the selected instances and combining data
selection with orthogonal approaches.
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Ojha, Adédayo. Olúòkun, Mai Omura, Emeka On-
wuegbuzia, Petya Osenova, Robert Östling, Lilja
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tics (ÚFAL), Faculty of Mathematics and Physics,
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A Distribution languages over POS tags

Frisian Dutch Other

ADV 365 89 0
PRON 388 53 1
NUM 58 2 0
NOUN 314 158 11
ADP 396 44 1
DET 337 21 0
VERB 343 50 6
CCONJ 152 7 0
INTJ 181 8 0
ADJ 158 54 3
PROPN 158 133 14
AUX 158 4 1
SCONJ 59 2 0

Table 9: Number of tokens for the combination lan-
guage and POS tag.

B Annotation guidelines

We tried to follow the universal dependency guide-
lines as much as possible. In cases we could not
follow them precisely we discussed and made our
own guidelines:

• To determine if something is an ADJ or ADV
we use a dictionary. If the word is not in
the dictionary we use the frequencies of the
Alpino treebank. For the decision between
advmod and amod, we used amod only for
nominals.

• If “toen/want/tot/dan” are at the beginning of
utterances we tag them as mark and not as
conj. “en” is cconj or cc.

• Orphan always attaches to the root. Orphan is
used in cases where utterances seem to have
a “non-standard” ending. Normally the word
would be attached to the right part of the utter-
ance but this part is missing. Both Figures 2
and 3 show utterances with orphans.

dêr kinne we in hele hoop oer sizze mar
that we can say a lot about but

advmod

aux
nsubj

det
adj

obj
case

root

orphan

Figure 2: Utterance with orphan relation.

• Discourse is always attached to the highest
node without any projectivity. Figure 3 shows
an utterance with a discourse relation.

no ja dat is it interessante wat je dogge en dan
well that is it interesting what you thought and then

discourse

fixed

nsubj

cop

det

root

obj

nsubj

acl

orphan

orphan

Figure 3: Utterance showing both orphan and discourse
relations.
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C List of treebanks

1. Treebanks in UD 2.7:

• English ESL
• Hindi English HIENCS
• English GUM Reddit
• English EWT
• English GUM
• English LinES
• English ParTUT
• English Pronouns
• English PUD
• French FQB
• French ParTUT
• French PUD
• French Sequoia
• French Spoken
• German GSD
• German LIT
• German PUD
• Dutch LassySmall
• Dutch Alpino
• Danish DDT
• Naija NSC
• Afrikaans AfriBooms

2. Treebanks not in UD:

• ConvBank (English)
• Tweebank (English)

D Standard deviations development data

Components 8 16 32 64 128

POS 81.2 80.4 81.0 79.4 79.4
0.41 0.65 0.28 0.60 0.46

UAS 72.7 71.4 70.8 72.6 73.8
0.96 1.0 1.16 0.95 0.49

LAS 55.2 55.1 54.8 55.5 57.1
0.47 0.89 0.76 0.85 0.42

Table 10: POS, UAS and LAS scores (mean over 5
random seeds) and standard deviations on dev data for
2000 sentences. Highest scores are marked in bold.

Sentences 1000 2000 4000

POS 78.5 79.4 79.8
0.26 0.46 0.87

UAS 71.5 73.8 73.3
0.55 0.49 0.96

LAS 54.6 57.1 56.0
1.12 0.42 0.92

Table 11: POS, UAS and LAS scores (mean over 5 ran-
dom seeds) and standard deviation on dev data for 128
components. Highest scores are marked in bold.


