
Proceedings of the Second Workshop on Domain Adaptation for NLP, pages 111–121
April 20, 2021. ©2021 Association for Computational Linguistics

111

BERTologiCoMix∗
How does Code-Mixing interact with Multilingual BERT?

Sebastin Santy† Anirudh Srinivasan† Monojit Choudhury

Microsoft Research, India
{t-sesan, t-ansrin, monojitc}@microsoft.com

Abstract

Models such as mBERT and XLMR have
shown success in solving Code-Mixed NLP
tasks even though they were not exposed to
such text during pretraining. Code-Mixed
NLP models have relied on using synthetically
generated data along with naturally occurring
data to improve their performance. Finetun-
ing1 mBERT on such data improves it’s code-
mixed performance, but the benefits of using
the different types of Code-Mixed data aren’t
clear. In this paper, we study the impact of fine-
tuning with different types of code-mixed data
and outline the changes that occur to the model
during such finetuning. Our findings suggest
that using naturally occurring code-mixed data
brings in the best performance improvement
after finetuning and that finetuning with any
type of code-mixed text improves the respon-
sivity of it’s attention heads to code-mixed text
inputs.

1 Introduction

Massive multilingual models such as mBERT (De-
vlin et al., 2019) and XLMR (Conneau et al., 2020)
have recently become very popular as they cover
over 100 languages and are capable of zero-shot
transfer of performance in downstream tasks across
languages. As these models serve as good multi-
lingual representations of sentences (Pires et al.,
2019), there have been attempts at using these rep-
resentations for encoding code-mixed sentences
(Srinivasan, 2020; Aguilar et al., 2020; Khanuja
et al., 2020). Code-Mixing (CM) is the mixing of
words belonging two or more languages within a

∗ The word BERTologiCoMix is a portmanteau of
BERTology and Code-Mixing, and is inspired from the ti-
tle of the graphic novel: Logicomix: An Epic Search for Truth
by Apostolos Doxiadis and Christos Papadimitriou (2009).

† The authors contributed equally to the work.
1In this paper, unless specifically stated, finetuning refers

to MLM finetuning/continued pretraining and not downstream
task finetuning

(a) Vanilla mBERT (without
fine-tuning)

(b) mBERT fine-tuned on
En-Hi CM

Figure 1: t-SNE representations of En-Es CM sentences on
the respective models. Each color represents CM sentences
with the same meaning but with different amounts of mixing
generated based on the g-CM method in Sec 3.1. The tight
clusters in (b) shows that CM sentence representations align
better in mBERT fine-tuned on any CM data regardless of the
language of mixing.

single sentence and is a commonly observed phe-
nomenon in societies with multiple spoken lan-
guages. These multilingual models have shown
promise for solving CM tasks having surpassed the
previously achieved performances (Khanuja et al.,
2020; Aguilar et al., 2020). This is an impressive
feat considering that these models have never been
exposed to any form of code-mixing during their
pre-training stage.

Traditionally, CM has been a spoken phe-
nomenon though it is slowly penetrating into writ-
ten form of communication (Tay, 1989). However,
they mostly occur in an informal setting and hence
such CM data is not publicly available in large
quantities. Such scarcity of data would mean that
building independent CM models can be unfeasible.
With the onset of pre-trained multilingual models,
further training with CM data can help in adapting
these models for CM processing. However, even
for further training, there is a requirement for a sig-
nificant amount of data albeit lesser than starting
from scratch. The amount of data available even for
their monolingual counterparts is very less (Joshi
et al., 2020) let alone the amount of real-world CM
data. This can prove to be a bottleneck. Rightly so,



112

there have been previous works exploring synthesis
of CM data for the purpose of data augmentation
(Bhat et al., 2016; Pratapa et al., 2018a). Synthesis
of CM mostly rely on certain linguistic theories
(Poplack, 2000) to construct grammatically plausi-
ble sentences. These works have shown that using
the synthetic and real CM data in a curriculum
setting while fine-tuning can help with achieving
better performances on the downstream CM tasks.
Though this is analogous to adapting models to
new domains, CM differs in that the adaptation is
not purely at vocabulary or style level but rather
at a grammatical level. Although it is known such
adaptation techniques can bring an improvement,
it is not well understood how exactly fine-tuning
helps in the CM domain.

Through this paper, we seek to answer these
lingering questions which exist in area of CM pro-
cessing. We first study the impact of finetuning
multilingual models with different forms of CM
data on downstream task performance. For this pur-
pose, we rely on three forms of CM varying in their
complexity of mixing, naturalness and obtainabil-
ity - (i) randomly ordered code-mixing (l-CM), (ii)
grammatically appropriate code-mixing (g-CM)
both of which are synthetically generated and (iii)
real-world code-mixing (r-CM). We perform this
comparative analysis in a controlled setting where
we finetune models with the same quantity of CM
text belonging to different forms and then evaluate
these finetuned models on 11 downstream tasks.
We find that on average the r-CM performs better
on all tasks, whereas the synthetic forms of CM
(l-CM, g-CM) tend to diminish the performance as
compared to the stock/non-finetuned models. How-
ever, these synthetic forms of data can be used in
conjuction to r-CM in a curriculum setting which
allows to alleviate the data scarcity issue. In order
to understand the difference in the behavior of these
models, we analyze their self-attention heads using
a novel visualization technique and show how fine-
tuning with CM causes the model to respond more
effectively to CM texts. We notice that using r-CM
for finetuning makes the model more robust and the
representations more distributed leading to better
and stable overall performances on the downstream
tasks.

The rest of the paper is organized as follows.
Section 2 surveys prior work done in domain adap-
tation of transformer-based LMs, code-mixing and
interpretability and analysis techniques. Section

3 introduces the different types of code-mixing
and the models that we build with them. Section
4 and 5 respectively presents the task-based and
attention-head based probing experiments along
with the findings. Section 6 concludes the paper
by summarizing the work and laying out future
directions.

2 Related Work

2.1 Domain Adaptation of BERT

Pre-trained Language Models trained on generic
data such as BERT and RoBERTa are often adapted
to the domain where it is required to be used. Do-
main adaptation benefits BERT in two ways (i)
it gives exposure to text in the domain specific
contexts and (ii) adds domain specific terms to
the vocabulary. BERT has been adapted to sev-
eral domains especially once which have its own
complex jargon of communication such as the bio-
medical domain (Lee et al., 2020; Peng et al., 2019;
Alsentzer et al., 2019), scientific texts or publica-
tions (Beltagy et al., 2019), legal domain (Chalkidis
et al., 2020) and financial document processing
(Yang et al., 2020b). Most of these works employ
sophisticated techniques for mining large quantities
of domain specific text from the internet and thus
prefer to train the BERT model from scratch rather
than fine-tuning the available BERT checkpoints.
This is because they don’t have to accommodate
existing vocabulary along with the domain specific
vocabulary which can lead to further fragmentation
(Gu et al., 2020). While most works have looked at
domain adaptation by plainly continuing the train-
ing using MLM objectives, some works have ex-
plored on different techniques to improve down-
stream task performance. Ma et al. (2019) uses cur-
riculum learning and domain-discriminative data
selection for domain adaptation. Adversarial tech-
niques have been used for enforce domain-invariant
learning and thus improve on generalization (Naik
and Rose, 2020; Wang et al., 2019; Zhang et al.,
2020). Ye et al. (2020) explores adapting BERT
across languages. However, domain adaptation
is not always effective and can lead to worse per-
formances. This depends on several factors such
as how different the domains are (Kashyap et al.,
2020) or how much data is available (Zhang et al.,
2020).



113

2.2 Code-Mixing

Traditionally, Code-Mixing has been used in infor-
mal contexts and can be difficult to obtain in large
quantities (Rijhwani et al., 2017). This scarcity of
data has been previously tackled by generation of
synthetic CM data to augment the real CM data.
Bhat et al. (2016); Pratapa et al. (2018a) demon-
strate a technique to generate code-mixed sentences
using parallel sentences and show that using these
synthetic sentences can improve language model
perplexity. A similar method is also proposed by
Samanta et al. (2019) which uses parse trees to
generate synthetic sentences. Yang et al. (2020a)
generates CM sentences by using phrase tables to
align and mix parts of a parallel sentence. Winata
et al. (2019) proposes a technique to generate code-
mixed sentences using pointer generator networks.
The efficacy of synthetic CM data is evident from
these works where they have been used in a curricu-
lum setting for CM language modelling (Pratapa
et al., 2018a), cross-lingual training of multilingual
transformer models (Yang et al., 2020a) as well as
to develop CM embeddings as a better alternative
to standard cross-lingual embeddings for CM tasks
(Pratapa et al., 2018b). In this work, we use gram-
matical theories to generate synthetic CM data from
parallel sentences analogous to the aforementioned
techniques.

2.3 BERT Attention based probing

Given the complex black-box nature of the BERT
model, there have been a large number of works
that propose experiments to probe and understand
the working of different components of the BERT
model. A large portion of these methods have
focused on the attention mechanism of the trans-
former model. Clark et al. (2019); Htut et al. (2019)
find that certain attention heads encode linguistic
dependencies between words of the sentence. Ko-
valeva et al. (2019) report on the patterns in the at-
tention heads of BERT and find that a large number
of heads just attend to the [CLS] or [SEP] tokens
and do not encode any relation between the words
of the sentence. Michel et al. (2019); Prasanna et al.
(2020) also show that many of BERT’s attention
heads are redundant and pruning heads does not
affect downstream task performance. In this paper,
we borrow ideas from these works and propose a
technique for visualizing the attention heads and
how their behaviour changes during finetuning.

3 Models

In this section, we describe the mBERT models,
the modifications we make to them, and the types
of CM data that we use for training.

3.1 Types of Code-Mixing

For the purpose of this study, we characterize CM
data across two dimensions: linguistic complex-
ity and languages involved. Here, we experiment
with CM for two different language pairs: English-
Spanish (enes) and English-Hindi (enhi). While
Spanish has similar word order and a sizeable
shared vocabulary with English, Hindi has a dif-
ferent word order and no shared vocabulary by
virtue of using a different script. Thus, investigat-
ing through these two diverse pairs is expected to
help us understand the representational variance.

The linguistic complexity of code-mixing can be
categorized into the following three types:

Lexical Code-Mixing (l-CM): The simplest form
of code-mixing is to substitute lexical units within
a monolingual sentence with its counterpart from
the other language. This can be achieved by using
parallel sentences, and aligning the words with an
aligner (Dyer et al., 2013).

Grammatical Code-Mixing (g-CM): There are
grammatical constraints (Joshi, 1982; Poplack,
2000; Belazi et al., 1994) on word-order changes
and lexical substitution during code-mixing that
the l-CM does not take into account. Pratapa et al.
(2018a) propose a technique to generate all gram-
matically valid CM sentences from a pair of parallel
sentences. Here, we use this generated dataset as
our g-CM2.

Parse trees are generated for parallel sentences
(between two languages L1 and L2), and common
nodes between these parse trees are then replaced
based on certain conditions specified by Equiv-
alence Constraint (EC) theory (Poplack, 2000;
Sankoff, 1998), thereby producing a grammatically
sound code-mixing. Fine-tuning with this form of
CM should ideally impart the knowledge of gram-
matical boundaries for CM and would let us know
whether a grammatically correct CM sentence is
required to improve the performance.

Real Code-Mixing (r-CM): While g-CM consid-
ers purely the syntactic structure of CM, real-world

2It is important to note that Pratapa et al. (2018a) uses
GCM to denote “Generated CM” data, and not for “grammati-
cal” as is used here.



114

SENT NER POS LID QA NLI

model enes enhi enes ehi enes enhi enhi enes enhi enhi enhi

m〈〉 67.81±2.5 58.42±1.1 59.50±0.9 75.55±0.6 93.35±0.2 87.49±0.1 63.40±0.5 95.99±0.0 95.80±0.4 71.95±0.8 63.25±1.9

m〈l,�〉 68.07±1.5 58.08±0.8 59.39±1.0 76.53±1.0 93.84±0.1 88.00±0.2 64.09±0.2 96.09±0.1 95.32±0.9 70.53±3.5 62.94±2.7

m〈g,�〉 68.64±1.5 57.90±1.1 59.88±0.7 76.86±0.6 93.74±0.1 87.79±0.2 63.79±0.2 96.06±0.0 95.41±0.8 70.11±1.8 55.19±6.5

m〈r,�〉 68.51±0.7 58.25±0.8 60.46±0.6 76.86±0.5 93.68±0.1 88.00±0.0 63.38±0.0 96.12±0.0 94.60±0.2 73.54±3.9 60.00±5.7

Table 1: Performance of the models for different tasks along with their standard deviations. The trained model
language corresponds to the language the model is tested on, and is denoted by �. r-CM trained models almost
always perform better than models trained on other types of CM data.

Figure 2: Layer-wise F1 scores for LID, POS, NER and SENT respectively across different layers. The dashed
lines represent the enhi versions and solid lines represent the enes versions of different tasks.

code-mixing is influenced by many more factors
such as cultural/social and/or language-specific
norms which comes in the semantic and pragmat-
ics space of language understanding. Though r-
CM is a subset of g-CM, there does not exist any
method which can sample realistic CM from such
synthetic data, hence we rely on real-world CM
datasets. Fine-tuning with this form should let the
model become aware of certain nuances of real-
world code-mixing which are still not completely
known.

3.2 Training Procedure

There are 3 [types]× 2 [language-pairs] = 6 combi-
nations of data which can be obtained based on the
previous specifications. For l-CM and g-CM, we
use the same set of parallel sentences: en-es from
Rijhwani et al. (2017) and en-hi from Kunchukut-
tan et al. (2018). As CM is prominently used in
informal contexts, it is difficult to procure textual
r-CM data. We use twitter data from Rijhwani et al.
(2017) for en-es; for en-hi, we use data from online
forums and Twitter respectively from Chandu et al.
(2018) and Patro et al. (2017). For each of the 6
combinations, we randomly sample 100,000 sen-
tences which is then used to further train mBERT
with the masked language modelling objective. We
use layer-wise scaled learning rate while finetuning

the models. Sun et al. (2019)

Model Notation: Let m〈〉 be the vanilla mBERT,
then m〈p,q〉 are the mBERTs further trained on
〈p, q〉 data, where p ∈ {l, g, r} is the complexity
of mixing and q ∈ {enes, enhi} is the language of
mixing. For example, a model trained on English-
Hindi lexical code-mixed data will be represented
as m〈l,enhi〉. � means that the model used depends
on the configuration of the corresponding data. For
example, m〈l,�〉 with enes data would mean that
the model used is m〈l,enes〉 while with enhi data
would mean that the model used is m〈l,enhi〉.

4 Task-based Probing

In this section, we describe layer-wise task-based
probing of the different models.

4.1 Tasks

Recently, two benchmarks for code-mixing were
released: GLUECoS (Khanuja et al., 2020) and
LINCE (Aguilar et al., 2020). For this study, we
probe with the following tasks from GLUECoS:
Language Identification (LID), Part-of-Speech
(POS) Tagging, Named Entity Recognition (NER)
and Sentiment Analysis (SENT) for both enes and
enhi, and Question Answering (QA) and Natural
Language Inference (NLI) for only enhi.



115

4.2 Method

We first measure the performance of these models
on the aforementioned tasks. For each task, we
fine-tune the models further after attaching a task
specific classification layer. We report the aver-
age performances and standard deviations of each
model run for 5 seeds in Table 1. 3

In addition to getting absolute performances, we
want to get an insight of how much each layer of
the different models contribute to the performance
of a particular task. Following Tenney et al. (2019),
we measure the solvability of a task by finding out
the expected layer at which the model is able to
correctly solve the task. Here the mBERT weights
are kept frozen and a weighted sum of representa-
tions from each layer are passed to the task specific
layer. Figure 2 shows the layer-wise F1 scores for
the tasks for different models and language pairs.
We additionally calculate scalar mixing weights
which lets us know the contribution of each layer
by calculating the attention paid to each layer for
the task.

4.3 Observations

From Table 1 it is clear that for almost all the tasks,
m〈r,�〉 models perform better than the other fine-
tuned models. In Particular, fine-tuning with r-CM
data helps with SENT, NER, LID enes as well as
QA tasks. While for POS, the performance remains
almost same regardless of which data the model is
fine-tuned with. 4

These differences are also reflected in the layer-
wise performance of these models as shown in Fig-
ure 2. The tasks are considered solved at the knee
point where the performances start plateauing. The
performances of different models start at the same
note, and after a certain point m〈r,�〉 diverges to
plateau at a higher performance than others. This
can be attributed to final layers adapting the most
during MLM fine-tuning. (Liu et al., 2019; Koval-
eva et al., 2019). LID gets solved around 2nd layer.
enhi LID gives a relatively high performance at
the 0th layer indicating that it only needs the to-
ken+positional embeddings. This is because enhi

3As we use just 100k sentences as opposed to 3M sen-
tences, we do not get the same performance jump reported by
Khanuja et al. (2020).

4We also carried out training in a curriculum fashion where
synthetic CM data was first introduced followed by real CM
data in different ratios similar to Pratapa et al. (2018a). How-
ever, we do not include these numbers as we could not derive
any meaningful insights from them. This can most probably
be due to a fixed constraint of 100k sentences that we use.

LID task has en and hi words in different scripts,
which means it can be solved even with a sim-
ple unicode classification rule. POS gets solved at
around 4th layer. The indifference to fine-tuning
observed in case of POS is reflected here as well,
as all the models are performing equally at all the
layers for both the languages.

NER gets solved around the 5th layer. Here, r-
CM training seems to help for enhi, perhaps due
to exposure to more world knowledge which is
required for NER. SENT shows an interesting shift
in patterns. We can see that m〈l,enes〉 solves the
task at 6th layer whereas the other models solve it at
around 8th layer. Thus, the general trend observed
is that easier tasks like LID, POS are solved in the
earlier layers and as the complexity of the tasks
increase, the effective layer moves deeper - which
shows a neat pattern of how BERT “re-discovers”
the NLP pipeline (Tenney et al., 2019), or rather
the CM pipeline in our case.

5 Structural Probing

As observed earlier, exposing mBERT to r-CM
help boost its overall and layer-wise performance
on CM tasks. In this section, we describe three
structural probing experiments, through which we
will try to visualize the structural changes in the
network, if any, induced by continued pre-training
with CM data that are responsible for performance
gains. We will first look at whether there are any
changes in the behaviour of attention heads at a
global level by checking the inter-head distances
within a model. Further, we want to localize and
identify the heads whose behaviours have changed.
Finally, we take a look at how the attention heads
respond to code-mixed stimulus.

5.1 Probes

The probes for conducting the experiments consist
of CM and Monolingual sentences. We take a sam-
ple of 1000 sentences for each type of CM as well
as monolingual sentences for each language.

Probe Notation: To denote these probes, we use
d〈p,q〉 such that p ∈ {l, g, r} is the complexity of
mixing and q ∈ {enes, enhi, en, hi, es} are the
languages. For example, English-Spanish lexical
CM data is represented as d〈l,enhi〉 and (real) Span-
ish monolingual data is represented as d〈−,es〉.



116

Figure 3: Intra-head distances d(Hi,Hj) for models.
The points are colored layer-wise and follows dark blue
→ light blue/red→ dark red scheme. The rows are the
models which are used and columns are the different
set of probes used. � indicates that model trained in
the same language (code-mixed) as probe is used.

5.2 Global Patterns of Change
Has anything changed within the models due to
pre-training with CM datasets? In order to answer
this question, we look at the global patterns of rela-
tive distances between the attention heads within a
model.
Method: Clark et al. (2019) describes an inter-
head similarity measure which allows for visual-
izing distances between each attention head with
another within a model. The distance d between
two heads Hi and Hj is calculated as,

d(Hi,Hj) =
∑

token∈ sentence

JS(Hi(token),Hj (token))

(1)
where JS is the Jensen-Shannon Divergence be-
tween attention distributions. We average these
distances obtained across 1000 sentences (d〈�,�〉).
Further, in order to visualize these head distances,
we use multidimensional scaling (Kruskal, 1964)
which preserves the relative distance better than
other scaling methods such as T-SNE or PCA (Van
Der Maaten et al., 2009).

Observation: Figure 3 shows the two-dimensional
projections of the heads labeled by the layers.
There are clear differences between the patterns
in m〈〉 and the other models, though the same can-
not be said for the probes. m〈〉 shows a rather

distributed representation of heads across layers;
in particular, g-CM models have a tightly packed
representation especially for the later layers.

5.3 Local Patterns of Change
Attention patterns of which heads have changed?
We observe that there is a change in the overall
internal representations based on the type of data
which the models are exposed to. It would be in-
teresting to know which specific attention heads,
or layers are most affected by the exposure to CM
data.

Method: In order to contrast the attention pat-
terns of specific heads between m〈�,�〉 and the
base model - m〈〉, we calculate the distance be-
tween their corresponding heads as follows:

∆m = JS(H
m〈�,�〉
i,j (token),H

m〈〉
i,j (token)) (2)

where JS is the Jensen-Shannon Divergence, i and
j are the layers and their respective heads, m〈�,�〉
is any model in the set of fine-tuned models and
m〈〉 is the vanilla model. We visualize these dis-
tances in form of heatmaps (∆m maps). For the
sake of clarity, only top 15 attention heads is plot-
ted for each ∆m map. The darker the head, the
more the head has changed between a particular
trained model and the vanilla model. Visual trian-
gulation can let us understand if there are common
heads between sets of models and probes.

Observation: Figure 4 depicts the different com-
binations of ∆m maps. It can be seen how there are
common heads between different configurations of
trained models as well as the inference data which
is used. Here, even the difference between differ-
ent languages and forms of code-mixing stand out
compared to the previous analysis. We also look
at cross-interaction of languages: fine-tuned in one
language and probed on another. Through visual
examination, we highlight some of the common
heads which are present among the different ∆m

plots.

5.4 Responsivity to Code-Mixing
How do attention heads respond to code-mixed
probes? The common patterns in the way heads are
functioning between different models and probes
are easily observable from the set of ∆m maps.
These do point us to certain heads getting more
activated while encoding a particular type of CM
sentence. In this section, we want to understand



117

Figure 4: ∆m maps for different configurations of trained models and probes. The first row of maps depict head
interactions within same language whereas the second row of maps depict cross-language interaction i.e. trained
and probed on different languages. Some of the common heads that can be observed have been marked to show
the patterns which differentiate between complexity and language of models and probes.

how these heads respond to input probes. We bor-
row the term responsivity,R, from the field of neu-
roscience which is used to summarize the change
in the neural response per unit signal (stimulus)
strength. In this context, we want to understand
the change in attention head response of different
models when exposed to CM data which act as the
stimulus.

Method: Our aim is to understand the excitement
of different heads when they see code-mixed data
as a stimulus. To this end, we design a classifi-
cation experiment to quantify the excitement of
each head (/ neuron) while distinguishing between
monolingual and CM classes. For the CM class,
we randomly sample 2000 sentences from r-CM
in the same way as we did for probes. Similarly,
for monolingual class, we sample 1000 sentences
each from en and es or hi. Each probe is then
passed through the different models to obtain the

attentions. To summarize the net attention for each
head, we average the attentions over all the tokens
after removing [CLS] & [SEP] tokens present in
that head. ([CLS] & [SEP]) tokens are removed
as they act as a sink to non-attended tokens.

These average attention heads are then used as
features (x) (12 × 12 = 144 features) with the
monolingual and CM classes being the predictor
variable (y). To capture the relative excitement of
different heads to y, we define responsivity (R) as
the gain of information of each feature (or heads)
in context of the prediction variable (y). This is
analogous to Information Gain used in determining
feature importance. Hence, Responsivity of a head
x for class y can be written as:

Rx,y = H(x)−H(x|y) (3)

where, H(x) is the entropy of class distribution
for x and H(x|y) is the conditional entropy for x



118

Figure 5: R of different models when classifying Monolin-
gual vs. Code-mixing sentence

given y.

Observation: As shown in Figure 5, we plot the
responsivity of different attention heads to CM in
the form of 12 × 12R heatmaps. We also plot the
distribution of these values. We report two values,
mean responsivity (µ) of a model to code-mixing
and kurtosis (κ) to measure the skewness or the
tailedness of the distribution compared to a normal
distribution.

It can be observed from the heatmaps that there
are certain common heads such as (1, 0), (2, 9)
which are highly responsive to CM. As we pump
in different types of CM data, we can observe that
responsivity of some heads [(5, 10), (6,9)] are re-
ducing while for other heads [(1, 7), (4, 8)] it is
spiking up. A distinctive pattern that can be noticed
from the heatmaps is that as CM data is fed to the
models in the order of their linguistic complexity,
more and more heads are responding towards the
CM stimulus. Even the distribution density curve
widens as confirmed by decreasing Kurtosis.

As described earlier, there is no single point in
the network which responds to CM data. Previous
studies (Elazar et al., 2020) involving probing of
specific regions to understand their independent
contributions to solving any task has been some-
what futile. It has been observed that heads collec-

tively work towards solving tasks, and such spe-
cific regions cannot be demarcated - which means
that information pertaining to task-solving is rep-
resented in a distributed fashion. In line with this,
it has been shown that these models can be sig-
nificantly pruned during inference with minimal
drop in performance (Michel et al., 2019; Kovaleva
et al., 2019). Our study confirms these observa-
tions for code-mixing as well, through a different
visualization approach.

6 Conclusion & Future Work

In this work, we develop different methods of fine-
tuning BERT-like models for CM processing. We
then compare the downstream task performances of
these models through absolute performance, their
stability as well as the layer-wise solvability of
certain tasks. To further understand the varied per-
formances between the three types of CM, we per-
form structural probing. We adopted an existing ap-
proach and introduced a couple of new techniques
for the visualization of the attention heads as a
response to probes.

The most important finding from these probing
experiments is that there are discernable changes
introduced in the models due to exposure to CM
data, of which a particularly interesting observation
is that this exposure increases the overall respon-
sivity of the attention heads to CM. As of now,
these experiments are purely analytical in nature
where we observed how the attention heads behave
on a CM stimuli. One future direction is to ex-
pand the analysis to a wider range of domains and
fine-tuning experiments to understand how gener-
alizable are our findings of distributed information
in BERT-like models. We use a fairly simple and
easily replicable method for testing this through the
responsivity metric that we propose. This method
can be further improved to rigorously verify our
observations.

7 Acknowledgements

We thank the anonymous reviewers for their many
insightful comments and suggestions on our paper.
We also thank Tanuja Ganu and Amit Deshpande
for their valuable feedback on some of our experi-
ments.



119

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 1803–1813, Marseille, France. Euro-
pean Language Resources Association.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Hedi M Belazi, Edward J Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic inquiry,
pages 221–237.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Gayatri Bhat, Monojit Choudhury, and Kalika Bali.
2016. Grammatical constraints on intra-sentential
code-switching: From theories to working models.
arXiv preprint arXiv:1612.04538.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898–
2904, Online. Association for Computational Lin-
guistics.

Khyathi Chandu, Thomas Manzini, Sumeet Singh, and
Alan W. Black. 2018. Language informed modeling
of code-switched text. In Proceedings of the Third
Workshop on Computational Approaches to Linguis-
tic Code-Switching, pages 92–97, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2020. When bert forgets how to pos: Am-
nesic probing of linguistic properties and mlm pre-
dictions. arXiv preprint arXiv:2006.00995.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
specific language model pretraining for biomedical
natural language processing.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads in
bert track syntactic dependencies?

Aravind Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Coling 1982:
Proceedings of the Ninth International Conference
on Computational Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6282–6293, Online. Association for Computa-
tional Linguistics.

Abhinav Ramesh Kashyap, Devamanyu Hazarika, Min-
Yen Kan, and Roger Zimmermann. 2020. Domain
divergences: a survey and empirical analysis. arXiv
preprint arXiv:2010.12198.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/2020.lrec-1.223
https://www.aclweb.org/anthology/2020.lrec-1.223
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/W18-3211
https://doi.org/10.18653/v1/W18-3211
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N13-1073
https://www.aclweb.org/anthology/N13-1073
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.329
https://doi.org/10.18653/v1/2020.acl-main.329


120

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Joseph B Kruskal. 1964. Nonmetric multidimen-
sional scaling: a numerical method. Psychometrika,
29(2):115–129.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nalla-
pati, and Bing Xiang. 2019. Domain adaptation
with BERT-based domain classification and data se-
lection. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 76–83, Hong Kong, China.
Association for Computational Linguistics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Aakanksha Naik and Carolyn Rose. 2020. Towards
open domain event trigger identification using ad-
versarial domain adaptation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7618–7624, Online. As-
sociation for Computational Linguistics.

Jasabanta Patro, Bidisha Samanta, Saurabh Singh, Ab-
hipsa Basu, Prithwish Mukherjee, Monojit Choud-
hury, and Animesh Mukherjee. 2017. All that is
English may be Hindi: Enhancing language identi-
fication through automatic ranking of the likeliness
of word borrowing in social media. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2264–2274,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo on
ten benchmarking datasets. In Proceedings of the
18th BioNLP Workshop and Shared Task, pages 58–
65, Florence, Italy. Association for Computational
Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Shana Poplack. 2000. Sometimes i’ll start a sentence
in spanish y termino en español: Toward a typol-
ogy of code-switching. The bilingualism reader,
18(2):221–256.

Sai Prasanna, Anna Rogers, and Anna Rumshisky.
2020. When BERT Plays the Lottery, All Tickets
Are Winning. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 3208–3229, Online. As-
sociation for Computational Linguistics.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018a. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adithya Pratapa, Monojit Choudhury, and Sunayana
Sitaram. 2018b. Word embeddings for code-mixed
language processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3067–3072, Brussels, Bel-
gium. Association for Computational Linguistics.

Shruti Rijhwani, Royal Sequiera, Monojit Choud-
hury, Kalika Bali, and Chandra Shekhar Maddila.
2017. Estimating code-switching on Twitter with
a novel generalized word-level language detection
technique. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1971–1982, Van-
couver, Canada. Association for Computational Lin-
guistics.

Bidisha Samanta, Niloy Ganguly, and Soumen
Chakrabarti. 2019. Improved sentiment detection
via label transfer from monolingual to synthetic
code-switched text. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3528–3537, Florence, Italy. Asso-
ciation for Computational Linguistics.

David Sankoff. 1998. The production of code-mixed
discourse. In 36th Annual Meeting of the Associa-
tion for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics,

https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://www.aclweb.org/anthology/L18-1548
https://www.aclweb.org/anthology/L18-1548
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/D19-6109
https://doi.org/10.18653/v1/D19-6109
https://doi.org/10.18653/v1/D19-6109
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/D17-1240
https://doi.org/10.18653/v1/D17-1240
https://doi.org/10.18653/v1/D17-1240
https://doi.org/10.18653/v1/D17-1240
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/D18-1344
https://doi.org/10.18653/v1/D18-1344
https://doi.org/10.18653/v1/P17-1180
https://doi.org/10.18653/v1/P17-1180
https://doi.org/10.18653/v1/P17-1180
https://doi.org/10.18653/v1/P19-1343
https://doi.org/10.18653/v1/P19-1343
https://doi.org/10.18653/v1/P19-1343
https://doi.org/10.3115/980845.980848
https://doi.org/10.3115/980845.980848


121

Volume 1, pages 8–21, Montreal, Quebec, Canada.
Association for Computational Linguistics.

Anirudh Srinivasan. 2020. MSR India at SemEval-
2020 task 9: Multilingual models can do code-
mixing too. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 951–956,
Barcelona (online). International Committee for
Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Mary WJ Tay. 1989. Code switching and code mix-
ing as a communicative strategy in multilingual dis-
course. World Englishes, 8(3):407–417.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Laurens Van Der Maaten, Eric Postma, and Jaap
Van den Herik. 2009. Dimensionality reduction: a
comparative. J Mach Learn Res, 10(66-71):13.

Huazheng Wang, Zhe Gan, Xiaodong Liu, Jingjing Liu,
Jianfeng Gao, and Hongning Wang. 2019. Adversar-
ial domain adaptation for machine reading compre-
hension. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2510–2520, Hong Kong, China. Association for
Computational Linguistics.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Jian Yang, Shuming Ma, Dongdong Zhang, ShuangZhi
Wu, Zhoujun Li, and Ming Zhou. 2020a. Alternat-
ing language modeling for cross-lingual pre-training.
Proceedings of the AAAI Conference on Artificial In-
telligence, 34(05):9386–9393.

Yi Yang, Mark Christopher Siy UY, and Allen Huang.
2020b. Finbert: A pretrained language model for
financial communications.

Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou
Ng, and Lidong Bing. 2020. Feature adaptation of
pre-trained language models across languages and
domains with robust self-training. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 7386–
7399, Online. Association for Computational Lin-
guistics.

Xinyu Zhang, Andrew Yates, and Jimmy Lin. 2020.
A little bit is worse than none: Ranking with lim-
ited training data. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 107–112, Online. Association for
Computational Linguistics.

https://www.aclweb.org/anthology/2020.semeval-1.122
https://www.aclweb.org/anthology/2020.semeval-1.122
https://www.aclweb.org/anthology/2020.semeval-1.122
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/D19-1254
https://doi.org/10.18653/v1/D19-1254
https://doi.org/10.18653/v1/D19-1254
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.1609/aaai.v34i05.6480
https://doi.org/10.1609/aaai.v34i05.6480
http://arxiv.org/abs/2006.08097
http://arxiv.org/abs/2006.08097
https://doi.org/10.18653/v1/2020.emnlp-main.599
https://doi.org/10.18653/v1/2020.emnlp-main.599
https://doi.org/10.18653/v1/2020.emnlp-main.599
https://doi.org/10.18653/v1/2020.sustainlp-1.14
https://doi.org/10.18653/v1/2020.sustainlp-1.14

