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Abstract

The impressive performances of pre-trained vi-
sually grounded language models have moti-
vated a growing body of research investigating
what has been learned during the pre-training.
As a lot of these models are based on Trans-
formers, several studies on the attention mech-
anisms used by the models to learn to associate
phrases with their visual grounding in the im-
age have been conducted. In this work, we in-
vestigate how supervising attention directly to
learn visual grounding can affect the behavior
of such models. We compare three different
methods on attention supervision and their im-
pact on the performances of a state-of-the-art
visually grounded language model on two pop-
ular vision-and-language tasks.

1 Introduction

The introduction of Transformers (Vaswani et al.,
2017) has been a major component of the suc-
cess of pre-trained language models (Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019; Lan et al.,
2020) which achieved new records in many natu-
ral language processing tasks. The same mecha-
nism has been adapted to create models (Su et al.,
2020; Chen et al., 2020; Li et al., 2019; Lu et al.,
2019, 2020; LXM) that can now tackle vision-and-
language tasks with impressive performances.

A large body of research (Clark et al., 2019;
Kovaleva et al., 2019) has been dedicated to un-
derstanding what attention heads learn during the
pre-training of language models. Liu et al. (2016)
have even shown how providing attention heads
with guidance can improve performance on neural
machine translation.

On the other hand, the internal behaviors of
vision-and-language models have attracted less in-
terest from the research community. Li et al. (2020)
have shown some attention heads in vision-and-
language models are able to map entities to image

regions while others even detect syntactic relations
between non-entity words and image regions. Nev-
ertheless, no initiative has been taken towards su-
pervising directly the attention modules.

In this paper, we study how different meth-
ods on attention supervision can affect vision-and-
language models. We propose a fine-tuning method
aimed at using the visual grounding of entities
to provide guidance to attention heads. We com-
pare three different methods by evaluating their
performance on popular downstream tasks and vi-
sualize the different attention modules obtained.
We observe that an indirect method which uses a
module appended to the final output of the Trans-
former obtains worse results than methods which
focus on supervising every attention head directly.
The codes are available at https://github.com/
jules-samaran/VL-BERT.

2 Our Method

We use a state-of-the-art pre-trained vision-and-
language model on which we propose multi-task
fine-tuning methods focusing on attention super-
vision. After this proposed fine-tuning, we judge
the success of our approach by further fine-tuning
the model on downstream tasks of visual question
answering and referring expressions, and evaluat-
ing it. We propose a fine-tuning approach after an
initial pretraining step on a large unlabelled dataset
because we believe the model would benefit from
learning first from scratch freely about text and im-
ages without any supervision on its attention heads,
and that our fine-tuning would allow it to then re-
fine the representations it provided using visual
grounding labels.

2.1 Backbone Model
We choose as our basic architecture VL-BERT (Su
et al., 2020), a state-of-the-art vision-and-language
pre-trained model that revisits BERT (Devlin et al.,

https://github.com/jules-samaran/VL-BERT
https://github.com/jules-samaran/VL-BERT
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2019) to take both visual and linguistic inputs.
Based on a multi-layer bidirectional multi-modal
Transformer encoder (Vaswani et al., 2017), VL-
BERT learns during its pre-training a generic fea-
ture representation mainly on the conceptual cap-
tions dataset consisting of 3.3M image-caption
pairs (Sharma et al., 2018). Note that many other
choices are possible for this backbone model (see
the Section 4).1 The reason we chose VL-BERT is
that it was available; it achieved state-of-the-art per-
formances (better than ViLBERT (Lu et al., 2019,
2020) for example) on several classical vision-and-
language downstream tasks; the way it handles
both visual and textual tokens in a single stream
(whereas ViLBERT processes them in two separate
streams) made it very adapted for our approach
of supervising the attention between textual and
visual elements.

2.2 VGP Fine-tuning

To provide guided attention supervision in vision-
and-language models, we devise a multi-task fine-
tuning method that aims to improve the model’s
ability to understand complex semantic relations
(e.g. paraphrases) and align visual with linguistic
elements. Li et al. (2020) hinted the importance of
attention-based vision-and-language model’s abil-
ity to map entity-words to corresponding image
regions. Following this direction and to improve a
model’s reasoning abilities, we propose to further
fine-tune a pre-trained model with the aim of learn-
ing visually grounded paraphrases (VGPs) (Chu
et al., 2018; Otani et al., 2020).

VGPs are two phrasal expressions that describe
the same visual concept in an image. As shown
in Figure 1, we fine-tune a model based on VGPs
with three different tasks simultaneously as a multi-
task learning problem: an image description iden-
tification task (§2.2.1), a VGP classification task
(§2.2.2), and an attention supervision task (§2.2.3).
The first two tasks are inspired by Arase and Tsujii
(2019), who showed that injecting semantic rela-
tions between a sentence pair can improve a BERT
model’s performance on several downstream tasks.
We adapted them to make the model learn from
both visual and linguistic elements.

Input The input of the fine-tuning process is
composed of 1) an image, and 2) a pair of captions,

1It is unclear how well the results we obtained would
generalize to other vision-and-language models, especially
since our approach is designed for VL-BERT’s architecture,
but we leave it as future work.
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Figure 1: Overview of the VGP fine-tuning. The Trans-
former Encoder is the VL-BERT model, our contribu-
tions are the modules on the bottom.

c1 and c2, where at least one of them corresponds
to the image. Hard negative captions are chosen
offline following Lu et al. (2019). The input se-
quence to the Transformer model is constructed
as: [[CLS], c1,[SEP], c2,[SEP], img,[END]], where
[CLS] is the start of sequence token, [SEP] sepa-
rates different elements, img is the image regional
features extracted as Girshick (2015) and [END] is
the end of sequence token.

2.2.1 Image Description Identification
In this task, a Softmax classifier f takes the output
x0 of the Transformer corresponding to [CLS] and
predicts which of the captions corresponds to the
image (c1, c2, or both). The loss is given by

Lossid = LCE(y, log f(x0)), (1)

where y indicates which caption corresponds to the
image and LCE is the cross-entropy loss function.

2.2.2 VGP Classification
The second task is to classify VGPs according to
the semantic relationship between the two phrases,
e.g. entailment, equivalence, etc. More details on
the semantic classes are provided in the supplemen-
tary material. Let p = {xi} denote the set of the
final encodings xi, where i ranges from the first
to the last words of the sampled phrase. Phrase
embedding e of the phrase is given by

e = MaxPooling(p). (2)

We obtain phrase embeddings e1 and e2 from c1
and c2, combining them as Arase and Tsujii (2019)

ec = [e1, e2, e1 ∗ e2, |e1 − e2|], (3)

where ∗ denotes the element-wise multiplication
and | · | gives element-wise absolute values. For
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VGP classification, we input ec to a Softmax clas-
sifier g to predict the paraphrase’s semantic class.
The loss for this task is computed as

LossVGP = LCE(t, log g(ec)), (4)

where t is the label of the VGP semantic class.

2.2.3 Attention Supervision Task
Since VGPs align directly with image regions, we
can have the model learn the visual grounding. We
explore three methods of supervising attention.

Indirect attention supervision We learn the vi-
sual grounding using the final representations of
grounded phrases and their aligned regions of inter-
est. We train a binary classifier d that takes as input
phrase embedding e as well as the representation xi
of one of the regions in img, and predicts whether
they align or not. We repeat this classification for
every grounded phrase with every region. The loss
is computed by

Lossatt =
1

nr

∑
i

LCE(zi, log d([e, xi])), (5)

where zi is the indicator of whether the phrase
refers to the i-th region, nr is the number of re-
gions, and the summation is computed over i corre-
sponding to regions in img.

Direct attention supervision Similarly to Liu
et al. (2016), we view every attention head in ev-
ery layer as a classifier that, given an input token,
outputs probabilities distributed over all the other
tokens. Our motivation is that the attention be-
tween two elements should reflect how much they
are relevant to each other, hence grounded word en-
tities should pay attention the most to their visual
grounding, and vice versa. We re-normalize the
attention so that this supervision has only a limited
impact on text-to-text and region-to-region atten-
tion. Specifically, let W denote the set of indices i
of all text tokens, and R corresponding to regions
in img. The attention αlh

ij for layer l, head h, from
the i-th token to j-th region can be normalized by

α̂lh
ij =

αlh
ij∑

j′∈R α
lh
ij′
, α̃lh

ij =
αlh
ij∑

j′∈W αlh
ij′
. (6)

The phrase grounding gives pairs (i∗, j∗) in both
W ×R and R×W (we have multiple pairs since
a phrase has multiple tokens). We use the average
of cross-entropy losses for supervision, i.e.,

Losstxt→img =
1

nlnh

∑
l,h

LCE(si∗ , log α̂
lh
i∗j),

(7)

where j ∈ R; si∗ is the indicator whether respec-
tive region j ∈ R forms pair (i∗, j∗); nl and nh are
the numbers of layers and attention heads, respec-
tively. We do the same for the loss Lossimg→txt

for region-to-text pairs using α̃lh
ij , where j ∈ W

and s′i∗ is the corresponding indicator. The loss for
direct attention supervision loss is given by

Lossatt = Losstxt→img + Lossimg→txt. (8)

Semi-direct attention supervision Abnar and
Zuidema (2020) introduced a transformation of
raw attention called attention rollout and showed
that it gives a more accurate quantification of
how much information one token contains about
another token than raw attention does. Therefore,
we propose to replace the raw attention with the
attention rollout in the direct supervision method.
In other words, if we denote frollout(·) as the
function that transforms raw attention vectors into
attention rollout then our semi-direct attention
supervision approach consists in replacing αlh

ij

with frollout(α)
lh
ij in Equations (refeq6), (7) and (8).

The final loss for the VGP fine-tuning is

Losstotal = Lossid + LossVGP + Lossatt. (9)

3 Experiments

3.1 Dataset

For our fine-tuning, we used the VGP dataset (Chu
et al., 2018), which was created from the Flickr30k-
entities dataset’s captions (Plummer et al., 2017).
As it is based on Flickr30k-entities, those phrases
come with the id of the image region that corre-
sponds to their grounding. The dataset contains
54, 313 VGPs distributed across 31, 784 images.

3.2 Fine-tuning on Downstream Tasks

To evaluate how our fine-tuning methods can im-
prove the generic representations generated by
the model, we further fine-tune it on downstream
vision-and-language tasks and compare their perfor-
mances. Results are reported in Table 1, including
the performance of the original VL-BERT model.
We also include a model fine-tuned on VGPs with-
out the attention supervision task, with only the
image description identification and VGP classifi-
cation in order to estimate the impact of forcing the
model learn visual grounding.
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VQAv2.0 Refcoco+ (Detected) Refcoco+ (Ground-truth)

Fine-tuning Method val val testA testB val testA testB

w/o Attention 66.73 67.10 74.36 57.07 77.38 81.28 71.53
Indirect Attention 66.71 65.95 72.72 54.49 77.20 80.61 70.81
Direct Attention 67.09 69.99 76.25 58.99 77.07 80.86 70.96
Semi-direct Attention 67.41 69.63 75.93 58.72 78.12 80.96 71.75

Original (Su et al., 2020) 67.73 71.60 77.72 60.99 79.88 82.40 75.01

Table 1: Comparison of our different fine-tuning methods on the VQAv2.0 and the Refcoco+ datasets. For each
column, the best fine-tuning method is underlined. Original VL-BERT results added as reference.

3.2.1 Visual Question Answering

In this task, every input is an image coupled with
a question expressed in natural language. We used
the VQAv2.0 dataset (Goyal et al., 2017). The
model is expected to answer the question with the
correct answer picked from a shared set consist-
ing of 3, 129 answers according to Anderson et al.
(2018). We trained the models on the train split
(83k images and 444k questions) and report results
on the validation split (41k images and 214k ques-
tions). We used the same experimental protocol for
prediction and evaluation as in Su et al. (2020).

Results in Table 1 indicate that the original
model is the best performing method, showing that
forcing VL-BERT to learn paraphrases before train-
ing the VQAv2.0 dataset does not contribute to
the task. However, it is still relevant to compare
the performances of different attention supervision
methods. The two worse performance are attained
by the method without attention and the Indirect,
which does not seem to improve the model’s ability
to answer the question. Both the Direct and Semi-
direct methods, which use the attention heads as
classifiers, fare better with a slight advantage for
the Semi-direct method.

3.2.2 Referring Expression Comprehension

The objective of this task is to locate the object in
the image that is designated by the input phrase.
The input is constituted of a referring expression
and an image that contains the object that is be-
ing referred to. We used the RefCOCO+ dataset
(Kazemzadeh et al., 2014) (141k expressions for
50k referred objects in 20k images). The dataset
contains two test sets, where testA contains im-
ages with multiple persons and testB with multiple
objects. We report results both with ground-truth
RoIs and with the bounding boxes detected by Yu

et al. (2018). We also used the same experimental
protocol for prediction and evaluation as in Su et al.
(2020).

As shown in Table 1, despite having been de-
signed with the referring expression task in mind,
the Indirect attention supervision method is the
worse one, even behind the method without atten-
tion. The original VL-BERT model is still the
leading performance followed by the Direct and
Semi-direct attention supervision methods. Direct
attentions works better on detected bounding boxes.
We think the reason is that direct attention tries to
link tokens with image regions similarly to how the
region detector would do it.

VL-BERT is pre-trained on 3.3M image-caption
pairs, while VGP fine-tuning is conducted on 30k
image-caption pairs only. Therefore, for both tasks,
we believe that our methods failed to beat VL-
BERT due to two reasons: catastrophic forgetting,
and small-scale attention supervision training data.
To address catastrophic forgetting, applying knowl-
edge distillation (Hinton et al., 2015) that can in-
corporate both knowledge from the pre-trained VL-
BERT model and the VGP fine-tuned model might
be effective. For the small-scale attention supervi-
sion training data issue, a possible direction could
be applying visual grounding on the conceptual cap-
tions dataset and training VL-BERT from scratch
with attention supervision on the conceptual cap-
tions dataset.

3.2.3 Visualization
To gain more insights into what models learn with
the different attention supervision methods, we vi-
sualize attention heads using Bertviz2 (Vig, 2019).

By zooming in on individual attention heads, we
noticed that when the model was fine-tuned using

2https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz
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either the Semi-direct or Direct attention super-
vision methods, every grounded entity text token
attributes more attention to image tokens to image
tokens corresponding to the visual grounding of
the entity. We also observed that even though the
Direct method seemed to have an uniform impact
on all attention heads in every layer, with the Semi-
direct method attention heads displayed varying
attention patterns across different layers. A possi-
ble explanation is that the attention rollout trans-
formation makes the attention supervision problem
slightly different across different layers whereas
it is not the case for the Direct method which im-
poses the same constraint on the raw attention in
all attention heads (and it is the raw attention we
are visualizing). More details about the visualiza-
tion and images are provided in the supplementary
materials.

4 Related Work

Vision and language pre-trained models on large
image caption datasets have been proposed such
as VisualBERT (Li et al., 2019), ViLBERT (Lu
et al., 2019, 2020), VL-BERT (Su et al., 2020;
Lu et al., 2020), LXMERT (LXM) and UNITER
(Chen et al., 2020). Those vision and language pre-
training models differ from the model architecture.
We study visually grounded attention supervision
in VL-BERT.

Clark et al. (2019); Kovaleva et al. (2019) ana-
lyzed on language pre-trained models and showed
that different attention heads share similar patterns
and behaviors. For neural machine translation, Liu
et al. (2016) proposed to use word alignment for
cross-attention supervision during decoding in a
recurrent neural network based architecture. We
work specifically on vision-and-language trans-
formers and use phrase visual grounding for at-
tention supervision in order to help the model learn
how to align phrases with their associated regions
in the images.

5 Conclusion

Motivated by similar works in language models,
we have presented three different methods that at-
tempt to guide the model in its learning of entity
grounding. We observed that the indirect method
which is the most similar to the structure used for
downstream tasks had a little or negative effect on
the performance of the model. We also found that
supervising attention heads through attention roll-

out is the best performing method nevertheless all
these methods fell short of the performances of the
model before being fine-tuned on the VGP dataset.

Despite the performance, we have shown which
attention supervision methods give better results
and more interpretable attention patterns3 (i.e., di-
rect and semi-direct attention) than others that
should not be used (i.e., indirect attention). There-
fore, we believe that our work can pave the way
for further analyses of how this mechanism could
be made to improve the performance of vision-and-
language models. For future work, we plan to study
how direct supervision methods could be applied
on some selected heads instead of supervising uni-
formly all attention heads in every layer.
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