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Abstract

Humor recognition has been widely studied as
a text classification problem using data-driven
approaches. However, most existing work
does not examine the actual joke mechanism
to understand humor. We break down any joke
into two distinct components: the set-up and
the punchline, and further explore the special
relationship between them. Inspired by the in-
congruity theory of humor, we model the set-
up as the part developing semantic uncertainty,
and the punchline disrupting audience expec-
tations. With increasingly powerful language
models, we were able to feed the set-up along
with the punchline into the GPT-2 language
model, and calculate the uncertainty and sur-
prisal values of the jokes. By conducting ex-
periments on the SemEval 2021 Task 7 dataset,
we found that these two features have better ca-
pabilities of telling jokes from non-jokes, com-
pared with existing baselines.

1 Introduction

One of the important aspects of computational hu-
mor is to develop computer programs capable of
recognizing humor in text. Early work on hu-
mor recognition (Mihalcea and Strapparava, 2005)
proposed heuristic-based humor-specific stylistic
features, for example alliteration, antonymy, and
adult slang. More recent work (Yang et al., 2015;
Chen and Soo, 2018; Weller and Seppi, 2019) re-
garded the problem as a text classification task, and
adopted statistical machine learning methods and
neural networks to train models on humor datasets.
However, only few of the deep learning methods
have tried to establish a connection between humor
recognition and humor theories. Thus, one research
direction in humor recognition is to bridge the dis-
ciplines of linguistics and artificial intelligence.

In this paper, we restrict the subject of investiga-
tion to jokes, one of the most common humor types

Set-up: Today my neighbor knocked at my
door at 3am. Can you believe that?

I was so pissed off.

Punchline: Lucky for him that I was awake
playing the drums!

Expected follow-up

Expectation violated

Figure 1: A joke example consisting of a set-up and
a punchline. A violation can be observed between the
punchline and the expectation.

in text form. As shown in Figure 1, these jokes
usually consist of a set-up and a punchline. The
set-up creates a situation that introduces the hearer
into the story framework, and the punchline con-
cludes the joke in a succinct way, intended to make
the hearer laugh. Perhaps the most suitable humor
theory for explaining such humor phenomenon is
the incongruity theory, which states that the cause
of laughter is the perception of something incon-
gruous (the punchline) that violates the hearer’s
expectation (the set-up).

Based on the incongruity theory, we propose two
features for humor recognition, by calculating the
degree of incongruity between the set-up and the
punchline. Recently popular pre-trained language
models enable us to study such relationship based
on large-scale corpora. Specifically, we fed the
set-up along with the punchline into the GPT-2 lan-
guage model (Radford et al., 2019), and obtained
the surprisal and uncertainty values of the joke, in-
dicating how surprising it is for the model to gener-
ate the punchline, and the uncertainty while gener-
ating it. We conducted experiments on a manually
labeled humor dataset, and the results showed that
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these two features could better distinguish jokes
from non-jokes, compared with existing baselines.
Our work made an attempt to bridge humor theo-
ries and humor recognition by applying large-scale
pre-trained language models, and we hope it could
inspire future research in computational humor.

2 Related Work

Humor Data Mihalcea and Strapparava (2005)
created a one-liner dataset with humorous exam-
ples extracted from webpages with humor theme
and non-humorous examples from Reuters titles,
British National Corpus (BNC) sentences, and En-
glish Proverbs. Yang et al. (2015) scraped puns
from the Pun of the Day website1 and negative
examples from various news websites. There is
also work on the curation of non-English humor
datasets (Zhang et al., 2019; Blinov et al., 2019).
Hasan et al. (2019) developed UR-FUNNY, a mul-
timodal humor dataset that involves text, audio and
video information extracted from TED talks.

Humor Recognition Most of the existing work
on humor recognition in text focuses on one-liners,
one type of jokes that delivers the laughter in a sin-
gle line. The methodologies typically fall into two
categories: feature engineering and deep learning.
Mihalcea and Strapparava (2005) designed three
human-centric features (alliteration, antonymy and
synonym) for recognizing humor in the curated one-
liner dataset. Mihalcea et al. (2010) approached the
problem by calculating the semantic relatedness be-
tween the set-up and the punchline (they evaluated
150 one-liners by manually splitting them into “set-
up” and “punchline”). Shahaf et al. (2015) inves-
tigated funny captions for cartoons and proposed
several features including perplexity to distinguish
between funny and less funny captions. Morales
and Zhai (2017) proposed a probabilistic model
and leveraged background text sources (such as
Wikipedia) to identify humorous Yelp reviews. Liu
et al. (2018) proposed to model sentiment associ-
ation between elementary discourse units and de-
signed features based on discourse relations. Cattle
and Ma (2018) explored the usage of word associa-
tions as a semantic relatedness feature in a binary
humor classification task. With neural networks
being popular in recent years, some deep learn-
ing structures have been developed for the recog-
nition of humor in text. Chen and Lee (2017) and

1http://www.punoftheday.com/

Chen and Soo (2018) adopted convolutional neural
networks, while Weller and Seppi (2019) used a
Transformer architecture to do the classification
task. Fan et al. (2020) incorporated extra phonetic
and semantic (ambiguity) information into the deep
learning framework. In addition to these method-
ological papers, there are also some tasks dedicated
to computational humor in recent years. SemEval
2020 Task 7 (Hossain et al., 2020) aims at assess-
ing humor in edited news headlines. SemEval 2021
Task 7 (Meaney et al., 2021) involves predicting
the humor rating of the given text, and if the rating
is controversial or not. In this task, Xie et al. (2021)
adopted the DeBERTa architecture (He et al., 2020)
with disentangled attention mechanism to predict
the humor labels.

Although the work of Mihalcea et al. (2010) is
the closest to ours, we are the first to bridge the
incongruity theory of humor and large-scale pre-
trained language models. Other work (Bertero and
Fung, 2016) has attempted to predict punchlines in
conversations extracted from TV series, but their
subject of investigation should be inherently differ-
ent from ours—punchlines in conversations largely
depend on the preceding utterances, while jokes
are much more succinct and self-contained.

3 Humor Theories

The attempts to explain humor date back to the age
of ancient Greece, where philosophers like Plato
and Aristotle regarded the enjoyment of comedy
as a form of scorn, and held critical opinions to-
wards laughter. These philosophical comments on
humor were summarized as the superiority the-
ory, which states that laughter expresses a feeling
of superiority over other people’s misfortunes or
shortcomings. Starting from the 18th century, two
other humor theories began to challenge the dom-
inance of the superiority theory: the relief theory
and the incongruity theory. The relief theory ar-
gues that laughter serves to facilitate the relief of
pressure for the nervous system (Morreall, 2020).
This explains why laughter is caused when people
recognize taboo subjects—one typical example is
the wide usage of sexual terms in jokes. The incon-
gruity theory, supported by Kant (1790), Schopen-
hauer (1883), and many later philosophers and psy-
chologists, states that laughter comes from the per-
ception of something incongruous that violates the
expectations. This view of humor fits well the types
of jokes commonly found in stand-up comedies,

http://www.punoftheday.com/


35

where the set-up establishes an expectation, and
then the punchline violates it. As an expansion of
the incongruity theory, Raskin (1979) proposed the
Semantic Script-based Theory of Humor (SSTH)
by applying the semantic script theory. It posits
that, in order to produce verbal humor, two require-
ments should be fulfilled: (1) The text is compatible
with two different scripts; (2) The two scripts with
which the text is compatible are opposite.

4 Methodology

The incongruity theory attributes humor to the vi-
olation of expectation. This means the punchline
delivers the incongruity that turns over the expecta-
tion established by the set-up, making it possible to
interpret the set-up in a completely different way.
With neural networks blooming in recent years, pre-
trained language models make it possible to study
such relationship between the set-up and the punch-
line based on large-scale corpora. Given the set-up,
language models are capable of writing expected
continuations, enabling us to measure the degree
of incongruity, by comparing the actual punchline
with what the language model is likely to generate.

In this paper, we leverage the GPT-2 language
model (Radford et al., 2019), a Transformer-based
architecture trained on the WebText dataset. We
chose GPT-2 because: (1) GPT-2 is already pre-
trained on massive data and publicly available on-
line, which spares us the training process; (2) it
is domain independent, thus suitable for modeling
various styles of English text. Our goal is to model
the set-up and the punchline as a whole piece of
text using GPT-2, and analyze the probability of
generating the punchline given the set-up. In the
following text, we denote the set-up as x, and the
punchline as y. Basically, we are interested in
two quantities regarding the probability distribu-
tion p(y|x): uncertainty and surprisal, which are
elaborated in the next two sections.

4.1 Uncertainty

The first question we are interested in is: given the
set-up, how uncertain it is for the language model to
continue? This question is related to SSTH, which
states that, for a piece of text to be humorous, it
should be compatible with two different scripts. To
put it under the framework of set-up and punchline,
this means the set-up could have multiple ways of
interpretation, according to the following punch-
line. Thus, one would expect a higher uncertainty

GPT-2

xm· · ·x2x1 y1 y2 · · · yn−1

v1 v2 v3 · · · vn

y1 y2 y3 yn

Figure 2: The set-up x and the punchline y are concate-
nated and fed into GPT-2 for predicting the next token.
vi’s are probability distributions on the vocabulary.

value when the language model tries to continue
the set-up and generate the punchline.

We propose to calculate the averaged entropy
of the probability distributions at all token posi-
tions of the punchline, to represent the degree of
uncertainty. As shown in Figure 2, the set-up x
and the punchline y are concatenated and then fed
into GPT-2 to predict the next token. While predict-
ing the tokens of y, GPT-2 produces a probability
distribution vi over the vocabulary. The averaged
entropy is then defined as

U(x, y) = − 1

|y|

n∑
i=1

∑
w∈V

vwi log vwi , (1)

where V is the vocabulary.

4.2 Surprisal
The second question we would like to address is:
how surprising it is when the language model ac-
tually generates the punchline? As the incongruity
theory states, laughter is caused when something in-
congruous is observed and it violates the previously
established expectation. Therefore, we expect the
probability of the language model generating the
actual punchline to be relatively low, which indi-
cates the surprisal value should be high. Formally,
the surprisal is defined as

S(x, y) = − 1

|y|
log p(y|x)

= − 1

|y|

n∑
i=1

log vyii .
(2)

5 Experiments

We evaluated and compared the proposed features
with several baselines by conducting experiments
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in two settings: predicting using individual features,
and combining the features with a content-based
text classifier.

5.1 Baselines

Similar to our approach of analyzing the relation-
ship between the set-up and the punchline, Mihal-
cea et al. (2010) proposed to calculate the semantic
relatedness between the set-up and the punchline.
The intuition is that the punchline (which deliv-
ers the surprise) will have a minimum relatedness
to the set-up. For our experiments, we chose two
relatedness metrics that perform the best in their pa-
per as our baselines, plus another similarity metric
based on shortest paths in WordNet (Miller, 1995):

• Leacock & Chodorow similarity (Leacock
and Chodorow, 1998), defined as

Simlch = − log
length
2 ∗D

, (3)

where length is the length of the shortest path
between two concepts using node-counting,
and D is the maximum depth of WordNet.

• Wu & Palmer similarity (Wu and Palmer,
1994) calculates similarity by considering the
depths of the two synsets in WordNet, along
with the depth of their LCS (Least Common
Subsumer), which is defined as

Simwup =
2 ∗ depth(LCS)

depth(C1) + depth(C2)
, (4)

where C1 and C2 denote synset 1 and synset
2 respectively.

• Path similarity (Rada et al., 1989) is also
based on the length of the shortest path be-
tween two concepts in WordNet, which is de-
fined as

Simpath =
1

1 + length
. (5)

In addition to the metrics mentioned above, we also
consider the following two baselines related to the
phonetic and semantic styles of the input text:

• Alliteration. The alliteration value is com-
puted as the total number of alliteration chains
and rhyme chains found in the input text (Mi-
halcea and Strapparava, 2005).

• Ambiguity. Semantic ambiguity is found
to be a crucial part of humor (Miller and
Gurevych, 2015). We follow the work of Liu
et al. (2018) to compute the ambiguity value:

log
∏
w∈s

num of senses(w), (6)

where w is a word in the input text s.

5.2 Dataset
We took the dataset from SemEval 2021 Task 7.2

The released training set contains 8,000 manually
labeled examples in total, with 4,932 being posi-
tive, and 3,068 negative. To adapt the dataset for
our purpose, we only considered positive examples
with exactly two sentences, and negative examples
with at least two sentences. For positive exam-
ples (jokes), the first sentence was treated as the
set-up and the second the punchline. For negative
examples (non-jokes), consecutive two sentences
were treated as the set-up and the punchline, respec-
tively.3 After splitting, we cleaned the data with
the following rules: (1) We restricted the length of
set-ups and punchlines to be under 20 (by counting
the number of tokens); (2) We only kept punchlines
whose percentage of alphabetical letters is greater
than or equal to 75%; (3) We discarded punchlines
that do not begin with an alphabetical letter. As a
result, we obtained 3,341 examples in total, consist-
ing of 1,815 jokes and 1,526 non-jokes. To further
balance the data, we randomly selected 1,526 jokes,
and thus the final dataset contains 3,052 labeled ex-
amples in total. For the following experiments,
we used 10-fold cross validation, and the averaged
scores are reported.

5.3 Predicting Using Individual Features
To test the effectiveness of our features in distin-
guishing jokes from non-jokes, we built an SVM
classifier (parameters can be found in Appendix A)
for each individual feature (uncertainty and sur-
prisal, plus the baselines). The resulted scores
are reported in Table 1. Compared with the base-
lines, both of our features (uncertainty and sur-
prisal) achieved higher scores for all the four met-
rics. In addition, we also tested the performance
of uncertainty combined with surprisal (last row

2https://semeval.github.io/
SemEval2021/

3We refer to them as set-up and punchline for the sake of
convenience, but since they are not jokes, the two sentences
are not real set-up and punchline.

https://semeval.github.io/SemEval2021/
https://semeval.github.io/SemEval2021/
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P R F1 Acc

Random 0.4973 0.4973 0.4958 0.4959

Simlch 0.5291 0.5179 0.4680 0.5177
Simwup 0.5289 0.5217 0.4919 0.5190
Simpath 0.5435 0.5298 0.4903 0.5291
Alliteration 0.5353 0.5349 0.5343 0.5354
Ambiguity 0.5461 0.5365 0.5127 0.5337

Uncertainty 0.5840 0.5738 0.5593 0.5741
Surprisal 0.5617 0.5565 0.5455 0.5570

U+S 0.5953 0.5834 0.5695 0.5832

Table 1: Performance of individual features. Last row
(U+S) is the combination of uncertainty and surprisal.
P: Precision, R: Recall, F1: F1-score, Acc: Accuracy.
P, R, and F1 are macro-averaged, and the scores are
reported on 10-fold cross validation.

P R F1 Acc

GloVe 0.8233 0.8232 0.8229 0.8234

GloVe+Simlch 0.8255 0.8251 0.8247 0.8250
GloVe+Simwup 0.8264 0.8260 0.8254 0.8257
GloVe+Simpath 0.8252 0.8244 0.8239 0.8244
GloVe+Alliter. 0.8299 0.8292 0.8291 0.8297
GloVe+Amb. 0.8211 0.8203 0.8198 0.8201

GloVe+U 0.8355 0.8359 0.8353 0.8359
GloVe+S 0.8331 0.8326 0.8321 0.8326

GloVe+U+S 0.8368 0.8368 0.8363 0.8365

Table 2: Performance of the features when combined
with a content-based classifier. U denotes uncertainty
and S denotes surprisal. P: Precision, R: Recall, F1: F1-
score, Acc: Accuracy. P, R, and F1 are macro-averaged,
and the scores are reported on 10-fold cross validation.

of the table), and the resulting classifier shows a
further increase in the performance. This suggests
that, by jointly considering uncertainty and sur-
prisal of the set-up and the punchline, we are better
at recognizing jokes.

5.4 Boosting a Content-Based Classifier

Now that we have shown the advantage of our
features when used individually in prediction, we
would like to validate their effectiveness when com-
bined with the commonly used word embeddings.
Thus, we evaluated our features as well as the base-
lines under the framework of a content-based clas-
sifier. The idea is to see if the features could further
boost the performance of existing text classifiers.
To create a starting point, we encoded each set-up
and punchline into vector representations by aggre-
gating the GloVe (Pennington et al., 2014) embed-
dings of the tokens (sum up and then normalize
by the length). We used the GloVe embeddings
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Figure 3: Histograms of uncertainty (left) and surprisal
(right), plotted separately for jokes and non-jokes. Mdn
stands for Median.

with dimension 50, and then concatenated the set-
up vector and the punchline vector, to represent
the whole piece of text as a vector of dimension
100. For each of the features (uncertainty and sur-
prisal, plus the baselines), we appended it to the
GloVe vector, and built an SVM classifier to do
the prediction. Scores are reported in Table 2. As
we can see, compared with the baselines, our fea-
tures produce larger increases in the performance
of the content-based classifier, and similar to what
we have observed in Table 1, jointly considering
uncertainty and surprisal gives further increase in
the performance.

6 Visualizing Uncertainty and Surprisal

To get a straightforward vision of the uncertainty
and surprisal values for jokes versus non-jokes,
we plot their histograms in Figure 3 (for all 3,052
labeled examples). It can be observed that, for both
uncertainty and surprisal, jokes tend to have higher
values than non-jokes, which is consistent with our
expectations in Section 4.

7 Conclusion

This paper makes an attempt in establishing a con-
nection between the humor theories and the nowa-
days popular pre-trained language models. We
proposed two features according to the incongruity
theory of humor: uncertainty and surprisal. We
conducted experiments on a humor dataset, and
the results suggest that our approach has an advan-
tage in humor recognition over the baselines. The
proposed features can also provide insight for the
task of two-line joke generation—when designing
the text generation algorithm, one could exert ex-
tra constraints so that the set-up is chosen to be
compatible with multiple possible interpretations,
and the punchline should be surprising in a way
that violates the most obvious interpretation. We
hope our work could inspire future research in the
community of computational humor.
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Running Time

Simlch 1.76 sec
Simwup 1.71 sec
Simpath 1.71 sec
Alliteration 1.70 sec
Ambiguity 2.94 sec

Uncertainty 2.12 sec
Surprisal 2.49 sec

Uncertainty + Surprisal 2.26 sec

Table 3: Running time of the SVM classifiers trained
on individual features.

Running Time

GloVe 7.54 sec

GloVe + Simlch 14.85 sec
GloVe + Simwup 15.90 sec
GloVe + Simpath 13.76 sec
GloVe + Alliteration 15.41 sec
GloVe + Ambiguity 14.28 sec

GloVe + Uncertainty 14.70 sec
GloVe + Surprisal 13.84 sec

GloVe + U + S 19.27 sec

Table 4: Running time of the content-based SVM clas-
sifiers combined with individual features. U denotes
uncertainty and S denotes surprisal.
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A Model Parameters

For the SVM classifier, we set the regularization
parameter C = 1.0, and used the RBF kernel with
the kernel coefficient γ = 1/nfeatures. All models
were trained and evaluated on a machine with Intel
Core i7-6700K CPU, Nvidia GeForce GTX 1080
GPU, and 16GB RAM. The running time of each
method is listed in Table 3 and Table 4.
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