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Abstract

Although multilingual neural machine transla-
tion (MNMT) enables multiple language trans-
lations, the training process is based on inde-
pendent multilingual objectives. Most multi-
lingual models can not explicitly exploit dif-
ferent language pairs to assist each other, ig-
noring the relationships among them. In this
work, we propose a novel agreement-based
method to encourage multilingual agreement
among different translation directions, which
minimizes the differences among them. We
combine the multilingual training objectives
with the agreement term by randomly sub-
stituting some fragments of the source lan-
guage with their counterpart translations of
auxiliary languages. To examine the effective-
ness of our method, we conduct experiments
on the multilingual translation task of 10 lan-
guage pairs. Experimental results show that
our method achieves significant improvements
over the previous multilingual baselines.

1 Introduction

Multilingual neural machine translation (MNMT)
has experienced rapid growth in recent years (John-
son et al., 2017; Zhang et al., 2020; Aharoni et al.,
2019; Wang et al., 2019). It is not only capable
of translating among multiple language pairs by
encouraging the crosslingual knowledge transfer to
improve low-resource translation performance (Fi-
rat et al., 2016b; Zoph et al., 2016; Sen et al., 2019;
Qin et al., 2020; Hedderich et al., 2020; Raffel et al.,
2020), but also can handle multiple language pairs
in a single model, reducing model parameters and
training costs (Firat et al., 2016a; Blackwood et al.,
2018; Wang et al., 2020; Sun et al., 2020).

Previous works in MNMT simply optimize in-
dependent translation objectives and do not use ar-
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Figure 1: Comparison between (a) the multilingual
translation and (b) our agreement-based method.

bitrary auxiliary languages to encourage the agree-
ment across different translation directions. As
shown in Figure 1, the multilingual baseline is
separately trained on French-English and German-
English directions and cannot explicitly promote
each other. The German-English translation only
implicitly helps the French-English translation
since both translation directions share the same
encoder. There still exists a gap between German-
English and French-English translation directions.
As a result, minimizing the difference across differ-
ent translation directions by an explicit paradigm
requires further exploration.

In this paper, we propose a novel agreement-
based method, which explicitly models the shared
semantic space for multiple languages and encour-
ages the agreement across them. Our training pro-
cedure extends the multilingual translation with
the agreement term, which encourages the model
to produce the source sentence with multiple lan-
guages into the target sentence. As Figure 1 shows,
we randomly substitute some source phrases with
their counterparts of other languages to create code-
switched sentences using word alignment. Our
model is jointly trained with the multilingual trans-
lation and agreement objectives, where the code-
switched sentences are translated into the target
sentences. The key idea is to encourage the agree-
ment among different translation directions simul-
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Figure 2: Overview of our method. xLi
mi

denotes the mi-th token in the sentence of language Li. We randomly
substitute source phrases of language Lsrc = Li with the translations of other languages Laux ∈ Lall to create
code-switched sentences. Different words/phrases with the same meanings may contain different numbers of to-
kens. Then the code-switched source sentences are translated to the target language Ltgt = Lk by the multilingual
model. This process greatly encourages multilingual agreement across different translation directions.

taneously by leveraging alignment information of
the bilingual source sentence pairs.

Experimental results on the multilingual trans-
lation task of WMT demonstrate that our method
outperforms the multilingual baseline by a large
margin. To better explain the BLEU improvements,
we visualize the sentence-level crosslingual repre-
sentations and the attention weights across different
languages, which shows that our method effectively
encourages the agreement between languages.

2 Our Approach

2.1 Multilingual Machine Translation
Our multilingual model is based on the single
Transformer model (Vaswani et al., 2017) and
shares all embedding matrices by a common vo-
cabulary of all languages. Given M languages
Lall = {L1, . . . , LM}, the multilingual model ap-
pends special symbols to the source text to indicate
the translation direction from the source language
Lsrc to the target language Ltgt.

2.2 Agreement-based Training
Multilingual models can translate multiple source-
side languages into target-side languages. Given
N bilingual corpora DB = {DB1 , . . . , DBN }, the
multilingual model with parameters θ is jointly
trained over N language directions to optimize the
combined objective as below:

LMT =

N∑
n=1

Ex,y∈DBn
[− logPθ(y|x)] (1)

where x, y denote the sentence pair in the bilingual
corpus DBn . LMT is the combined translation
objective of the multilingual model.

The agreement objective over the code-switched
corpora DC is calculated by:

LAT = ExLsrc/Laux ,y∈DC
[− logPθ(y|xLsrc/Laux)] (2)

where xLsrc/Laux is the code-switched sentence in
which some phrases are substituted by their coun-
terpart phrases in other languages and y is the target
sentence. Laux is the auxiliary language.

We combine the bilingual corpora DB and code-
switched corpora DC to train our agreement-based
model, which minimizes the gaps among different
translation directions using word alignment:

LALL = LMT + LAT (3)

where LALL is the combined objective.

2.3 Constructing Training Samples
We use Lsrc as the source language, Ltgt as tar-
get language, and Laux as auxiliary languages to
construct training samples. As shown in Figure 2,
xLsrc = (xLsrc1 , . . . , xLsrcm ) is the source sentence
with m tokens and xLaux = (xLaux1 , . . . , xLauxn )
is the auxiliary sentence with n tokens. xLsrcu:v de-
notes the sentence fragment of xLsrc from the u-th
to v-th token and xLauxs:t denotes the fragment of
xLaux from the s-th to t-th token, where xLauxs:t of
language Laux is the translation of the xLsrcu:v of lan-
guage Lsrc. Formally, the code-switched sequence
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En → X Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Bilingual NMT 36.3 22.3 40.2 15.2 16.5 15.0 23.0 12.2 13.3 7.9 20.2

One-to-Many 34.2 20.9 40.0 15.0 18.1 20.9 26.0 14.5 17.3 13.2 22.0
One-to-Many + Pseudo 35.5 21.7 42.0 16.4 19.3 22.0 26.6 16.2 17.9 17.8 23.5
One-to-Many + AT (our method) 35.7 22.0 42.1 16.6 20.1 22.2 26.9 16.6 18.2 17.9 23.9

Table 1: En→X test results for bilingual and multilingual models of 10 language pairs on the WMT benchmark.

X → En Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Bilingual NMT 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
Many-to-One + Pseudo 35.4 30.1 42.1 22.0 21.2 29.0 35.8 27.3 26.0 22.6 29.1
Many-to-One + AT (our method) 35.7 30.2 42.6 22.3 21.8 29.5 36.4 27.6 26.7 22.8 29.6

Table 2: X→En test results for bilingual and multilingual models of 10 language pairs on the WMT benchmark.

xLsrc/Laux is described as:

xLsrc/Laux = (xLsrc
1 , . . . , xLaux

s:t , . . . , xLsrc
m ) (4)

where most words in the code-switched sentence
xLsrc/Laux are derived from xLsrc , while some
source phrases xLsrcu:v are substituted by their coun-
terpart phrases xLauxs:t .

Given the parallel sentences among M different
languages, we can construct code-switched source
sentence xLsrc/Laux with different auxiliary lan-
guages. Therefore, the code-switched corpora DC

can be constructed in a similar way for other lan-
guages to encourage the agreement across different
translation directions to help each other.

3 Experiment Setup

3.1 Multilingual Data

We use the same training, valid, and test sets as
the previous work (Wang et al., 2020) to evaluate
multilingual models by parallel data from multiple
WMT datasets with various languages, including
English (En), French (Fr), Czech (Cs), German
(De), Finnish (Fi), Latvian (Lv), Estonian (Et), Ro-
manian (Ro), Hindi (Hi), Turkish (Tr), and Gujarati
(Gu). For each language, we concatenate the WMT
data of the latest available year and get at most 10M
sentences by randomly sampling. Detailed statis-
tics of datasets are listed in Table 3. All sentences
in our experiments are tokenized by SentencePiece1

(Kudo and Richardson, 2018).

1https://github.com/google/
sentencepiece

Train Size Valid Test

En-Fr 10.00M newstest13 newstest15
En-Cs 10.00M newstest16 newstest18
En-De 4.60M newstest16 newstest18
En-Fi 4.80M newstest16 newstest18
En-Lv 1.40M newsdev17 newstest17
En-Et 0.70M newsdev18 newstest18
En-Ro 0.50M newsdev16 newstest16
En-Hi 0.26M newsdev14 newstest14
En-Tr 0.18M newstest16 newstest18
En-Gu 0.08M newsdev19 newstest19

Table 3: The statistics of the training, valid, and test
sets on WMT datasets of 10 language pairs.

3.2 Baselines and Evaluation

We compare our method against the following base-
lines. Bilingual baseline is trained on each lan-
guage pair separately. One-to-Many and Many-
to-One are trained on the En→X and X→En direc-
tions respectively. We collect all English sentences
(33M) of the bilingual corpora described above and
translate them into other languages sentences. We
extract alignment pairs (Dyer et al., 2013) across
different languages for our method. One-to-Many
+ Pseudo and Many-to-One + Pseudo are trained
on multilingual data combined with the pseudo
data. We average the last 5 checkpoints and employ
the beam search strategy with a beam size of 5 for
evaluation. The evaluation metric is case-sensitive
detokenized sacreBLEU2 (Post, 2018).

2BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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3.3 Training Details
We adopt the Transformer big architecture as
the backbone model for all our experiments, which
has 6 layers with an embedding size of 1024, a
dropout of 0.1, the feed-forward network size of
4096, and 16 attention heads. We train multilingual
models with Adam (Kingma and Ba, 2015) (β1 =
0.9, β2 = 0.98). The learning rate is set as 5e-
4 with a warm-up step of 4,000. The models are
trained with the label smoothing cross-entropy with
a smoothing ratio of 0.1. The batch size is 5,120
tokens and the parameters are updated every 16
iterations to simulate a 128-GPU environment.

4 Results

The results of our model are separately listed in
Table 1 and Table 2. Table 1 shows that One-
to-Many outperforms bilingual NMT by +1.8
BLEU points on average. Our method further im-
proves over both One-to-Many and One-to-Many
+ Pseudo consistently. Using pseudo and code-
switched data brings more improvements to the
low-resource languages (Et, Ro, Hi, Tr, and Gu)
than high-resource languages (Fr, Cs, De, Fi, and
Lv). These results suggest that our model encour-
ages the agreement between different translation
directions.

Table 2 reports the results on the X→En test sets.
Many-to-One outperforms the bilingual NMT by
+4.2 BLEU points on average. We combine the
parallel data with the pseudo data, leading to an
improvement of +1.9 BLEU points over Many-
to-One. Our method further outperforms Many-
to-One + Pseudo by a large gain of +0.5 BLEU
points on average, showing the effectiveness of our
agreement-based method and the significance of
multilingual agreement.

5 Analysis

Attention Visualization The representations of
attention in Figures 3 and 4 are averaged over all
16 heads of the last layer. Figure 3 shows the self-
attention weights of a code-switched English sen-
tence, where the source phrase “coordination be-
tween law enforcement” is substituted by the Ger-
man phrase “Koordinierung zwischen Strafverfol-
gung sbehörden”. Similar to the common attention
pattern, our model can learn better crosslingual rep-
resentations in this code-switching case. Figure
4 shows that the cross-attention weights between
the input code-switched English sentence and the
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Figure 3: Visualization for the self-attention weights.
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Figure 4: Visualization for the cross-attention weights
between the code-switched input and target sentence.

output German sentence. The words with similar
meanings are aligned together between the code-
switched input and target output.

Crosslingual Representation We select 500 par-
allel sentences across different languages and visu-
alize their sentence vectors of multilingual baseline
and our method in Figure 5. The vector of the
special language symbol of the source sentence is
used as the sentence representation for visualiza-
tion. Compared to Figure 5(a), different languages
become closer and overlap with each other in Fig-
ure 5(b), which shows our method aligns repre-
sentations and minimizes the differences among
different languages.

Substitution Strategy We employ both word-
level and phrase-level substitution strategies for
code-switching. The word-level and phrase-level
methods replace some words or spans of the source
sentence with other languages. In Table 4, phrase-
level substitution works better. Furthermore, we
investigate the effect of the substitution ratio of the
source words. From Figure 6, the best substitution
ratio is 10%. When increasing the ratio to 30%, the
performance gets worse, which indicates substitut-
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(a) (b)

Figure 5: t-SNE (Maaten and Hinton, 2008) visualiza-
tion of parallel sentences vector space of all languages
from the multilingual baseline (a) and our method (b).
Each color denotes one language.

X → En De Lv Ro Tr Avg

Word-level 42.5 21.5 35.9 26.2 31.5
Phrase-level 42.6 21.8 36.4 26.7 31.9

Table 4: Comparison of BLEU points between the
word-level and the phrase-level substitution strategies
on X→En directions.

ing too many words may degrade the performance.
As Equation 3 formulates, our method uses both

the original corpora and code-switched corpora
simultaneously to reduce the effect of the word
alignment errors. Besides, fast align (Dyer
et al., 2013) is a simple, fast, and effective tool
with a lower alignment error rate. Therefore, our
method can avoid the disturbance introduced by
the word alignment errors as much as possible.

Time Cost of Word Alignment In this work, we
try a large pseudo parallel corpus (33M) to train
the multilingual corpora. In most scenarios, the
size of the parallel corpus is less than 33M and thus
consumes less time to generate the alignment pairs.
All the alignment pairs are offline generated only
once before the training phase. Therefore, the time
cost of the word alignment is much smaller than
that of the model training.

6 Related Work

Multilingual Machine Translation Previous
works (Zoph et al., 2016; Firat et al., 2016b;
Johnson et al., 2017) have explored different set-
tings of the multilingual neural machine translation
(MNMT). Recent studies show that MNMT (Black-
wood et al., 2018; Platanios et al., 2018; Gu et al.,
2018) helps improve the performance of the low-
resource or zero-shot translation. Some researchers

0% 5% 10% 15% 20% 25% 30%
Substitution Ratio

28.9

29.1

29.3

29.5

BL
EU

Our method

Figure 6: Average results of X→En directions on differ-
ent substitution ratio settings. Large substitution ratio
may degrade the model performance and is even worse
than the multilingual baseline.

use the sentence pairs to enhance the bilingual
neural machine translation (Conneau and Lample,
2019; Song et al., 2019; Yang et al., 2020b).

Agreement-based Learning Many works try to
use the agreement-based method (Liang et al.,
2007, 2006; Al-Shedivat and Parikh, 2019) to en-
courage agreement among different translation or-
ders and directions (Liang et al., 2006; Castilho,
2020; Yang et al., 2020a; Cheng et al., 2016; Zhang
et al., 2019). Besides, the agreement-based method
is also used to minimize the difference between
the representation of source and target sentence
(Yang et al., 2019). Our method further explores
the approach of the multilingual agreement.

7 Conclusion

We propose a novel agreement-based framework
to encourage multilingual agreement across differ-
ent translation directions by the agreement term.
Experimental results on the multilingual transla-
tion task demonstrate that our method effectively
minimizes the gaps among different translation di-
rections and significantly outperforms the multilin-
gual baselines. The analytic experiment about the
crosslingual representation shows the effectiveness
of our multilingual agreement in minimizing the
differences among different languages.
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