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Abstract

Crowdworker-constructed natural language in-
ference (NLI) datasets have been found to
contain statistical artifacts associated with the
annotation process that allow hypothesis-only
classifiers to achieve better-than-random per-
formance (Poliak et al., 2018; Gururangan
et al., 2018; Tsuchiya, 2018). We investi-
gate whether MedNLI, a physician-annotated
dataset with premises extracted from clinical
notes, contains such artifacts (Romanov and
Shivade, 2018).

We find that entailed hypotheses contain
generic versions of specific concepts in the
premise, as well as modifiers related to respon-
siveness, duration, and probability. Neutral hy-
potheses feature conditions and behaviors that
co-occur with, or cause, the condition(s) in
the premise. Contradiction hypotheses feature
explicit negation of the premise and implicit
negation via assertion of good health. Adver-
sarial filtering demonstrates that performance
degrades when evaluated on the difficult subset.
We provide partition information and recom-
mendations for alternative dataset construction
strategies for knowledge-intensive domains.

1 Introduction

In the clinical domain, the ability to conduct natural
language inference (NLI) on unstructured, domain-
specific texts such as patient notes, pathology re-
ports, and scientific papers, plays a critical role in
the development of predictive models and clinical
decision support (CDS) systems.

Considerable progress in domain-agnostic NLI
has been facilitated by the development of large-
scale, crowdworker-constructed datasets, including
the Stanford Natural Language Inference corpus
(SNLI), and the Multi-Genre Natural Language In-
ference (MultiNLI) corpus (Bowman et al., 2015;
Williams et al., 2017). MedNLI is a similarly-
motivated, healthcare-specific dataset created by a

small team of physician-annotators in lieu of crowd-
workers, due to the extensive domain expertise re-
quired (Romanov and Shivade, 2018).

Poliak et al. (2018), Gururangan et al. (2018),
Tsuchiya (2018), and McCoy et al. (2019) empiri-
cally demonstrate that SNLI and MultiNLI contain
lexical and syntactic annotation artifacts that are
disproportionately associated with specific classes,
allowing a hypothesis-only classifier to signifi-
cantly outperform a majority-class baseline model.
The presence of such artifacts is hypothesized to
be partially attributable to the priming effect of
the example hypotheses provided to crowdworkers
at annotation-time. Romanov and Shivade (2018)
note that a hypothesis-only baseline is able to out-
perform a majority class baseline in MedNLI, but
they do not identify specific artifacts.

We confirm the presence of annotation artifacts
in MedNLI and proceed to identify their lexical and
semantic characteristics. We then conduct adversar-
ial filtering to partition MedNLI into easy and diffi-
cult subsets (Sakaguchi et al., 2020). We find that
performance of off-the-shelf fastText-based
hypothesis-only and hypothesis-plus-premise clas-
sifiers is lower on the difficult subset than on the full
and easy subsets (Joulin et al., 2016). We provide
partition information for downstream use, and con-
clude by advocating alternative dataset construction
strategies for knowledge-intensive domains.1

2 The MedNLI Dataset

MedNLI is domain-specific evaluation dataset in-
spired by general-purpose NLI datasets, including
SNLI and MultiNLI (Romanov and Shivade, 2018;
Bowman et al., 2015; Williams et al., 2017). Much
like its predecessors, MedNLI consists of premise-
hypothesis pairs, in which the premises are drawn

1See https://github.com/crherlihy/clinical_nli_artifacts for
code and partition ids.
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from the Past Medical History sections of
a randomly selected subset of de-identified clinical
notes contained in MIMIC-III (Johnson et al., 2016;
Goldberger et al., 2000 (June 13). MIMIC-III was
created from the records of adult and neonatal in-
tensive care unit (ICU) patients. As such, complex
and clinically severe cases are disproportionately
represented, relative to their frequency of occur-
rence in the general population.

Physician-annotators were asked to write a def-
initely true, maybe true, and definitely false set
of hypotheses for each premise, corresponding to
entailment, neutral and contradiction labels, re-
spectively. The resulting dataset has cardinality:
ntrain = 11232; ndev = 1395; ntest = 1422.

3 MedNLI Contains Artifacts

To determine whether MedNLI contains annota-
tion artifacts that may artificially inflate the perfor-
mance of models trained on this dataset, we train a
simple, premise-unaware, fastText classifier to
predict the label of each premise-hypothesis pair,
and compare the performance of this classifier to a
majority-class baseline, in which all training exam-
ples are mapped to the most commonly occurring
class label (Joulin et al., 2016; Poliak et al., 2018;
Gururangan et al., 2018). Note that since annota-
tors were asked to create an entailed, contradictory,
and neutral hypothesis for each premise, MedNLI
is class-balanced. Thus, in this setting, a major-
ity class baseline is equivalent to choosing a label
uniformly at random for each training example.

The micro F1-score achieved by the fastText
classifier significantly exceeds that of the majority
class baseline, confirming the findings of Romanov
and Shivade (2018), who report a micro-F1 score
of 61.9 but do not identify or analyze artifacts:

dev test
majority class 33.3 33.3
fastText 64.8 62.6

Table 1: Performance (micro F1-score) of the
fastText hypothesis-only classifier.

As the confusion matrix for the test set shown
in Table 2 indicates, the fastText model is most
likely to misclassify entailment as neutral, and neu-
tral and contradiction as entailment. Per-class pre-
cision and recall on the test set are highest for con-
tradiction (73.2; 72.8) and lowest for entailment
(56.7; 53.8).

entailment neutral contradiction
entailment 255 151 68
neutral 126 290 58
contradiction 69 60 345

Table 2: Confusion matrix for fastText classifier.

4 Characteristics of Clinical Artifacts

In this section, we conduct class-specific lexi-
cal analysis to identify the clinical and domain-
agnostic characteristics of annotation artifacts as-
sociated with each set of hypotheses in MedNLI.

4.1 Preprocessing
We cast each hypothesis string in the MedNLI train-
ing dataset to lowercase. We then use a scispaCy
model pre-trained on the en_core_sci_lg cor-
pus for tokenization and clinical named entity
recognition (CNER) (Neumann et al., 2019a). One
challenge associated with clinical text, and scien-
tific text more generally, is that semantically mean-
ingful entities often consist of spans rather than
single tokens. To mitigate this issue during lexi-
cal analysis, we map each multi-token entity to a
single-token representation, where sub-tokens are
separated by underscores.

4.2 Lexical Artifacts
Following Gururangan et al. (2018), to identify
tokens that occur disproportionately in hypotheses
associated with a specific class, we compute token-
class pointwise mutual information (PMI) with add-
50 smoothing applied to raw counts, and a filter to
exclude tokens appearing less than five times in the
overall training dataset. Table 3 reports the top 15
tokens for each class.

PMI(token, class) = log2
p(token, class)

p(token, ·)p(·, class)

Entailment Entailment hypotheses are charac-
terized by tokens about: (1) patient status and re-
sponse to treatment (e.g., responsive; failed; longer
as in no longer intubated); (2) medications and
procedures which are common among ICU pa-
tients (e.g., broad_spectrum; antibiotics; pressors;
steroid_medication; underwent; removal); (3) gen-
eralized versions of specific words in the premise
(e.g., comorbidities; multiple_medical_problems),
which Gururangan et al. (2018) also observe in
SNLI; and (4) modifiers related to duration, fre-
quency, or probability (e.g., frequent, possible,
high_risk).
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entailment % neutral % contradiction %

just 0.25% cardiogenic_shock 0.33% no_history_of_cancer 0.27%
high_risk 0.26% pelvic_pain 0.30% no_treatment 0.27%
pressors 0.25% joint_pain 0.30% normal_breathing 0.27%
possible 0.26% brain_injury 0.32% no_history_of_falls 0.27%
elevated_blood_pressure 0.26% delerium 0.30% normal_heart_rhythm 0.28%
responsive 0.25% intracranial_pressure 0.30% health 0.26%
comorbidities 0.26% smoking 0.42% normal_head_ct 0.26%
spectrum 0.27% obesity 0.41% normal_vision 0.26%
steroid_medication 0.25% tia 0.32% normal_aortic_valve 0.27%
longer 0.26% acquired 0.31% bradycardic 0.26%
history_of_cancer 0.26% head_injury 0.31% normal_blood_sugars 0.27%
broad 0.26% twins 0.30% normal_creatinine 0.28%
frequent 0.25% fertility 0.30% cancer_history 0.26%
failed 0.26% statin 0.30% cardiac 0.33%
medical 0.29% acute_stroke 0.30% normal_chest 0.28%

Table 3: Top 15 tokens by PMI(token, class); % of class training examples that contain the token.

Neutral Neutral hypotheses feature tokens re-
lated to: (1) chronic and acute clinical conditions
(e.g., obesity; joint_pain; brain_injury); (2) clini-
cally relevant behaviors (e.g., smoking; alcoholic;
drug_overdose); and (3) gender and reproductive
status (e.g., fertility; pre_menopausal). Notably,
the most discriminative conditions tend to be com-
monly occurring within the general population and
generically stated, rather than rare and specific.
This presumably contributes to the relative diffi-
culty that the hypothesis-only fastText model
has distinguishing between the entailment and neu-
tral classes.

Contradiction Contradiction hypotheses are
characterized by tokens that convey normalcy and
good health. Lexically, such sentiment manifests
as: (1) explicit negation of clinical severity, medi-
cal history, or in-patient status (e.g., denies_pain;
no_treatment; discharged_home), or (2) affirma-
tion of clinically unremarkable findings (e.g., nor-
mal_heart_rhythm; normal_blood_sugars), which
would generally be rare among ICU patients. This
suggests a heuristic of inserting negation token(s)
to contradict the premise, which Gururangan et al.
(2018) also observe in SNLI.

4.3 Syntactic Artifacts

Hypothesis Length In contrast to Gururangan
et al. (2018)’s finding that entailed hypotheses in
SNLI tend to be shorter while neutral hypotheses
tend to be longer, hypothesis sentence length does
not appear to play a discriminatory role in MedNLI,
regardless of whether we consider merged- or
separated-token representations of multi-word enti-
ties, as illustrated by Table 4:

entailment neutral contradiction
mean median mean median mean median

separate 5.6 5.0 5.2 5.0 5.6 5.0
merged 5.3 5.0 4.9 5.0 5.3 5.0

Table 4: Average and median hypothesis length by
class and entity representation.

5 Physician-Annotator Heuristics

In this section, we re-introduce premises to our
analysis to evaluate a set of hypotheses regarding
latent, class-specific annotator heuristics. If annota-
tors do employ class-specific heuristics, we should
expect the semantic contents, ϕ, of a given hy-
pothesis, h ∈ H, to be influenced not only by the
semantic contents of its associated premise, p ∈ P ,
but also by the target class, c ∈ C.

To investigate, we identify a set of heuristics pa-
rameterized by ϕ(p) and c, and characterized by
the presence of a set of heuristic-specific Medical
Subject Headings (MeSH) linked entities in the
premise and hypothesis of each heuristic-satisfying
example. These heuristics are described below; spe-
cific MeSH features are detailed in the Appendix.

Hypernym Heuristic This heuristic applies
when the premise contains clinical condition(s),
medication(s), finding(s), procedure(s) or event(s),
the target class is entailment, and the generated hy-
pothesis contains term(s) that can be interpreted as
super-types for a subset of elements in the premise
(e.g., clindamycin <: antibiotic).

Probable Cause Heuristic This heuristic ap-
plies when the premise contains clinical condi-
tion(s), the target class is neutral, and the generated
hypothesis provides a plausible, often subjective
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or behavioral, causal explanation for the condition,
finding, or event described in the premise (e.g., as-
sociating altered mental status with drug overdose).

Everything Is Fine Heuristic This heuristic ap-
plies when the premise contains condition(s) or
finding(s), the target class is contradiction, and
the generated hypothesis negates the premise or
asserts unremarkable finding(s). This can take two
forms: repetition of premise content plus negation,
or inclusion of modifiers that convey good health.

Analysis We conduct a χ2 test for each heuris-
tic to determine whether we are able to reject
the null hypothesis that pattern-satisfying premise-
hypothesis pairs are uniformly distributed over
classes.

heuristic χ2 p-value top class

hypernym 59.15 1.4e-13‡ entail. (45.2%)
probable cause 111.05 7.7e-25‡ neutral (57.8%)
everything fine 874.71 1.1e-190‡ contradict. (83.8%)

Table 5: Results of χ2 test statistic by heuristic, com-
puted using the combined MedNLI dataset (‡ p < 0.001,
† p < 0.01, * p < 0.5). Top class presented with % of
heuristic-satisfying pairs.

The results support our hypotheses regarding
each of the three heuristics. Notably, the percentage
of heuristic-satisfying pairs accounted for by the
top class is lowest for the HYPERNYM hypothesis,
which we attribute to the high degree of semantic
overlap between entailed and neutral hypotheses.

6 Adversarial Filtering

To mitigate the effect of clinical annotation arti-
facts, we employ AFLite, an adversarial filtering
algorithm introduced by Sakaguchi et al. (2020)
and analyzed by Bras et al. (2020), to create easy
and difficult partitions of MedNLI.
AFLite requires distributed representations of

the full dataset as input, and proceeds in an iterative
fashion. At each iteration, an ensemble of n linear
classifiers are trained and evaluated on different ran-
dom subsets of the data. A score is then computed
for each premise-hypothesis instance, reflecting the
number of times the instance is correctly labeled
by a classifier, divided by the number of times the
instance appears in any classifier’s evaluation set.
The top-k instances with scores above a threshold,
τ , are filtered out and added to the easy partition;
the remaining instances are retained. This process
continues until the size of the filtered subset is < k,

or the number of retained instances is < m; re-
tained instances constitute the difficult partition.

To represent the full dataset, we use
fastTextMIMIC-III embeddings, which have
been pretrained on deidentified patient notes from
MIMIC-III (Romanov and Shivade, 2018; Johnson
et al., 2016). We represent each example as the
average of its component token vectors. We pro-
portionally adjust a subset of the hyperparameters
used by Sakaguchi et al. (2020) to account for the
fact that MedNLI contains far fewer examples
than WINOGRANDE2: specifically, we set the
training size for each ensemble, m, to 5620, which
represents ≈ 2

5 of the MedNLI combined dataset.
The remaining hyperparameters are unchanged:
the ensemble consists of n = 64 logistic regression
models, the filtering cutoff, k = 500, and the
filtering threshold τ = 0.75.

We apply AFLite to two different versions of
MedNLI: (1) Xh,m: hypothesis-only, multi-token
entities merged, and (2) Xph,m: premise and hy-
pothesis concatenated, multi-token entities merged.
AFLIte maps each version to an easy and diffi-
cult partition, which can in turn be split into train-
ing, dev, and test subsets. We report results for
the fastText classifier trained on the original,
hypothesis-only (hypothesis + premise) MedNLI
training set, and evaluated on the full, easy and
difficult dev and test subsets of Xh,m (Xph,m), and
observe that performance decreases on the difficult
partition:

model eval dataset full easy (∆) difficult (∆)

no premise majority class dev 0.33 0.34 (+0.01) 0.35 (+0.02)
no premise majority class test 0.33 0.35 (+0.02) 0.37 (+0.04)
no premise fastText dev 0.65 0.67 (+0.02) 0.46 (-0.19)
no premise fastText test 0.63 0.65 (+0.02) 0.4 (-0.23)
with premise majority class dev 0.33 0.45 (+0.12) 0.36 (+0.03)
with premise majority class test 0.33 0.48 (+0.15) 0.37 (+0.04)
with premise fastText dev 0.53 0.6 (+0.07) 0.43 (-0.1)
with premise fastText test 0.51 0.55 (+0.04) 0.4 (-0.11)

Table 6: Performance (micro F1-score) for the major-
ity class baseline and fastText classifiers, with and
without premise, by partition (e.g., full, easy, difficult).

7 Discussion

7.1 MedNLI is Not Immune from Artifacts
In this paper, we demonstrate that MedNLI suffers
from the same challenge associated with annotation
artifacts that its domain-agnostic predecessors have

2MedNLI’s training dataset contains 14049 examples
when the training, dev, and test sets are combined, while
WINOGRANDE contains 47K after excluding the 6K used for
fine-tuning.
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encountered: namely, NLI models trained on {Med,
S, Multi}NLI can perform well even without access
to the training examples’ premises, indicating that
they often exploit shallow heuristics, with negative
implications for out-of-sample generalization.

Interestingly, many of the high-level lexical char-
acteristics identified in MedNLI can be considered
domain-specific variants of the more generic, class-
specific patterns identified in SNLI. This observa-
tion suggests that a set of abstract design patterns
for inference example generation exists across do-
mains, and may be reinforced by the prompts pro-
vided to annotators. Creative or randomized prim-
ing, such as Sakaguchi et al. (2020) ’s use of anchor
words from WikiHow articles, may help to decrease
reliance on such design patterns, but it appears un-
likely that they can be systematically sidestepped
without introducing new, “corrective” artifacts.

7.2 A Prescription for Dataset Construction

To mitigate the risk of performance overestima-
tion associated with annotation artifacts, Zellers
et al. (2019) advocate adversarial dataset construc-
tion, such that benchmarks will co-evolve with
language models. This may be difficult to scale
in knowledge-intensive domains, as expert vali-
dation of adversarially generated benchmarks is
typically required. Additionally, in high-stakes
domains such as medicine, information-rich infer-
ences should be preferred over correct but trivial
inferences that time-constrained expert annotators
may be rationally incentivized to produce, because
entropy-reducing inferences are more useful for
downstream tasks.

We advocate the adoption of a mechanism de-
sign perspective, so as to develop modified anno-
tation tasks that reduce the cognitive load placed
on expert annotators while incentivizing the pro-
duction of domain-specific NLI datasets with high
downstream utility (Ho et al., 2015; Liu and Chen,
2017). An additional option is to narrow the gener-
ative scope by defining a set of inferences deemed
to be useful for a specific task. Annotators can then
map (premise, relation) tuples to relation-satisfying,
potentially fuzzy subsets of this pool of useful in-
ferences, or return partial functions when more
information is needed.

8 Ethical Considerations

When working with clinical data, two key ethi-
cal objectives include: (1) the preservation of pa-

tient privacy, and (2) the development of language
and predictive models that benefit patients and
providers to the extent possible, without causing
undue harm. With respect to the former, MedNLI’s
premises are sampled from de-identified clinical
notes contained in MIMIC-III (Goldberger et al.,
2000 (June 13; Johnson et al., 2016), and the hy-
potheses generated by annotators do not refer to
specific patients, providers, or locations by name.
MedNLI requires users to complete Health Insur-
ance Portability and Accountability Act (HIPAA)
training and sign a data use agreement prior to be-
ing granted access, which we have complied with.

Per MedNLI’s data use agreement requirements,
we do not attempt to identify any patient, provider,
or institution mentioned in the de-identified corpus.
Additionally, while we provide AFLite easy and
difficult partition information for community use
in the form of split-example ids and a checksum,
we do not share the premise or hypothesis text
associated with any example. Interested readers
are encouraged to complete the necessary training
and obtain credentials so that they can access the
complete dataset (Romanov and Shivade, 2018;
Goldberger et al., 2000 (June 13).

With respect to benefiting patients, the discus-
sion of natural language artifacts we have pre-
sented is intended to encourage clinical researchers
who rely on (or construct) expert-annotated clinical
corpora to train domain-specific language models,
or consume such models to perform downstream
tasks, to be aware of the presence of annotation
artifacts, and adjust their assessments of model per-
formance accordingly. It is our hope that these
findings can be used to inform error analysis and
improve predictive models that inform patient care.
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A Appendix

A.1 Hypothesis-only Baseline Analysis
To conduct the analysis presented in Section 3, we
take the MedNLI training dataset as input, and ex-
clude the premise text for each training example.
We cast the text of each training hypothesis to low-
ercase, but do not perform any additional prepro-
cessing. We use an off-the-shelf fastText clas-
sifier, with all model hyperparameters set to their
default values with the exception of wordNgrams,
which we set equal to 2 to allow the model to use bi-
grams in addition to unigrams (Joulin et al., 2016).
We evaluate the trained classifier on the hypotheses
contained in the MedNLI dev and test datasets, and
report results for each split.

A.2 Lexical Artifact Analysis
To perform the analysis presented in Section 4, we
cast each hypothesis string in the MedNLI training
dataset to lowercase. We then use a scispaCy
model pre-trained on the en_core_sci_lg cor-
pus for tokenization and clinical named entity
recognition (CNER) (Neumann et al., 2019a). Next,
we merge multi-token entities, using underscores as
delimiters—e.g., “brain injury”→ “brain_injury”.

When computing token-class pointwise mutual
information (PMI), we exclude tokens that ap-
pear less than five times in the overall training
dataset’s hypotheses. Then, following Gururan-
gan et al. (2018), who apply add-100 smoothing
to raw counts to highlight particularly discrimina-
tive token-class co-occurrence patterns, we apply
add-50 smoothing to raw counts. Our approach is
similarly motivated; our choice of 50 reflects the
smaller state space associated with a focus on the
clinical domain.

A.3 Semantic Analysis of Heuristics
To perform the statistical analysis presented in
Section 5, we take the premise-hypothesis pairs
from the MedNLI training, dev, and test splits,
and combine them to produce a single corpus.
We use a scispaCy model pre-trained on the
en_core_sci_lg corpus for tokenization and
entity linking (Neumann et al., 2019b), and link
against the Medical Subject Headings (MeSH)
knowledge base. We take the top-ranked knowl-
edge base entry for each linked entity. Linking
against MeSH provides a unique concept id, canon-
ical name, alias(es), a definition, and one or more
MeSH tree numbers for each recovered entity. Tree

numbers convey semantic type information by em-
bedding each concept into the broader MeSH hier-
archy 3. We operationalize each of our heuristics
with a set of MeSH-informed semantic properties,
which are defined as follows:

1. Hypernym Heuristic: a premise-hypothesis
pair satisfies this heuristic if specific clinical
concept(s) appearing in the premise appear in
a more general form in the hypothesis. For-
mally: {(p, h)|ϕ(p) ( ϕ(h)}. MeSH tree
numbers are organized hierarchically, and in-
crease in length with specificity. Thus, when
a premise entity and hypothesis entity are left-
aligned, the hypothesis entity is a hypernym
for the premise entity if the hypothesis entity
is a substring of the premise entity. To pro-
vide a concrete example: diabetes mellitus is
an endocrine system disease; the associated
MeSH tree numbers are C19.246 and C19,
respectively.

2. Probable Cause Heuristic: a premise-
hypothesis pair satisfies this heuristic if: (1)
the premise contains one or more MeSH enti-
ties belonging to high-level categories C (dis-
eases), D (chemicals and drugs), E (analyt-
ical, diagnostic and therapeutic techniques,
and equipment) or F (psychiatry and psy-
chology); and (2) the hypothesis contains
one or more MeSH entities that can be in-
terpreted as providing a plausible causal or
behavioral explanation for the condition, find-
ing, or event described in the premise (e.g.,
smoking, substance-related disorders, mental
disorders, alcoholism, homelessness, obesity).

3. Everything Is Fine Heuristic: a premise-
hypothesis pair satisfies this heuristic if the
hypothesis contains one or more of the same
MeSH entities as the premise (excluding the
patient entity, which appears in almost all
notes) and also contains: (1) a negation word
or phrase (e.g., does not have, no finding, no,
denies); or (2) a word or phrase that affirms
the patient’s health (e.g., normal, healthy, dis-
charged).

For each heuristic, we subset the complete
dataset to find pattern-satisfying premise-heuristic
pairs. We use this subset when performing the χ2

tests.
3https://meshb.nlm.nih.gov/treeView

https://meshb.nlm.nih.gov/treeView
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A.4 Adversarial Filtering
When implementing AFLite, we follow Sak-
aguchi et al. (2020). We use a smaller training
set size of m = 5620, but keep the remaining hy-
perparameters unchanged, such that the ensemble
consists of n = 64 logistic regression models, the
filtering cutoff, k = 500, and the filtering threshold
τ = 0.75.


