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Abstract

Adapter modules were recently introduced
as an efficient alternative to fine-tuning in
NLP. Adapter tuning consists in freezing pre-
trained parameters of a model and injecting
lightweight modules between layers, resulting
in the addition of only a small number of task-
specific trainable parameters. While adapter
tuning was investigated for multilingual neu-
ral machine translation, this paper proposes a
comprehensive analysis of adapters for multi-
lingual speech translation (ST). Starting from
different pre-trained models (a multilingual ST
trained on parallel data or a multilingual BART
(mBART) trained on non-parallel multilingual
data), we show that adapters can be used to: (a)
efficiently specialize ST to specific language
pairs with a low extra cost in terms of parame-
ters, and (b) transfer from an automatic speech
recognition (ASR) task and an mBART pre-
trained model to a multilingual ST task. Ex-
periments show that adapter tuning offer com-
petitive results to full fine-tuning, while being
much more parameter-efficient.

1 Introduction

The question of versatility versus specialization
is often raised in the design of any multilingual
translation system: is it possible to have a single
model that can translate from any source language
to any target one, or does it have to be multiple
models each of which is in charge of one language
pair? The former is referred to as a multilingual
model, while the latter are bilingual ones. These
two paradigms have their own strengths and limita-
tions. From a practical point of view, a multilingual
model seems to be highly desirable due to its sim-
plicity in training and deployment, in terms of both
time and space complexities. However, in terms
of accuracy, a multilingual model could be outper-
formed by its bilingual counterparts, especially on
high-resource language pairs.
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Figure 1: (a) Transformer with adapters at its FFN sub-
layers. For simplicity, layer normalization (Ba et al.,
2016) is omitted. During fine-tuning, only the adapters
are trained. (b) A typical adapter architecture.

In practice, a certain trade-off between the afore-
mentioned factors (and thus more generally be-
tween versatility and specialization) has often to be
made, and depending on the application, one can
be favored more than the other. One way to move
along the spectrum between multilingual and bilin-
gual models is to use adapter tuning which consists
in freezing pre-trained parameters of a multilingual
model and injecting lightweight modules between
layers resulting in the addition of a small number
of language-specific trainable parameters. While
adapter tuning was investigated for multilingual
neural machine translation (NMT) (Bapna and Fi-
rat, 2019), to our knowledge, this paper proposes
the first comprehensive analysis of adapters for
multilingual speech translation.

Our contributions are the following: (1) we
show that both versatility and specialization can be
achieved by tuning language-specific adapter mod-
ules on top of a multilingual system. Bilingual mod-
els with higher accuracy than the original multilin-
gual model are obtained, yet keeping a low mainte-
nance complexity; (2) starting from a different ini-
tialization point, we show that adapters can also be
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used as a glue to connect off-the-shelf systems (an
automatic speech recognition (ASR) model and a
multilingual denoising auto-encoder mBART (Liu
et al., 2020; Tang et al., 2020)) to perform the mul-
tilingual ST task. Extensive experiments on the
MuST-C dataset (Di Gangi et al., 2019) show that
adapter-based fine-tuning can achieve very compet-
itive results to full fine-tuning—while being much
more parameter-efficient—in both standard and
low-resource settings. Our code based on FAIRSEQ

S2T (Wang et al., 2020) is publicly available.1

2 Related Work

Adapter layers (or adapters for short) were first
proposed in computer vision (Rebuffi et al., 2017),
then explored for text classification tasks in
NLP (Houlsby et al., 2019). Adapters are generally
inserted between the layers of a pre-trained network
and finetuned on the adaptation corpus. Bapna
and Firat (2019) studied adapters in the context of
NMT and evaluated them on two tasks: domain
adaptation and massively multilingual NMT. Philip
et al. (2020) later introduced monolingual adapters
for zero-shot NMT. Other research groups made
contributions on the use of adapters in NLP (Pfeif-
fer et al., 2020b, 2021) and a framework built on
top of HuggingFace Transformers library (Wolf
et al., 2020) was also released to facilitate the down-
loading, sharing, and adapting state-of-the-art pre-
trained models with adapter modules (Pfeiffer et al.,
2020a). Also very relevant to our paper is the work
of Stickland et al. (2021) where adapters are used
to adapt pre-trained BART (Lewis et al., 2020) and
mBART25 (multilingual BART pre-trained on 25
languages) (Liu et al., 2020) to machine translation.

As far as speech processing is concerned,
adapters were mostly used in ASR (Kannan et al.,
2019; Lee et al., 2020; Winata et al., 2020; Zhu
et al., 2020). Recently, they have also been ex-
plored for ST as well but in a limited scope. Es-
colano et al. (2020) addressed a very specific set-
ting (zero-shot ST), while Li et al. (2020) used only
a single adapter after a Transformer encoder.

3 Adapters for Speech Translation

In this section, we describe the integration of
adapters into a given backbone model for speech
translation. As the Transformer (Vaswani et al.,
2017) has become increasingly common in speech

1https://github.com/formiel/fairseq/tree/master/
examples/speech to text/docs/adapters.md

processing,2 it will be used as our backbone. Our
method, however, can be easily applied to any other
architectures, e.g., dual-decoder Transformer (Le
et al., 2020).

Adapter modules can be introduced into a Trans-
former in a serial or parallel fashion. Consider a
layer represented by a function f that produces an
output y from an input x, i.e., y = f(x). This can
be an entire encoder or decoder layer, or just one of
their sub-layers (e.g., the self-attention or the final
feed-forward network (FFN) component). Suppose
that our adapter layer is represented by a function
g. The new “adapted” output is then given by:

yserial = g(f(x)), yparallel = f(x) + g(x).

Intuitively, a serial adapter modifies the output di-
rectly, while a parallel one performs the operations
in parallel before merging its output to the layer. In
Figure 1a, we show an example of serial adapters
being integrated to the Transformer, or more pre-
cisely to its FFN sub-layers. A common adapter
module (Bapna and Firat, 2019) is presented in
Figure 1b. Here g is a small FFN with a resid-
ual connection. The first linear layer is typically
a down projection to a bottleneck dimension, and
the second one projects the output back to the ini-
tial dimension. Bottleneck allows us to limit the
number of parameters. Other adapter architectures
also exist, e.g., Stickland and Murray (2019) ex-
plored parallel adapters consisting of a multi-head
attention (MHA) layer in a multi-task setup.

For multilingual ST, we adopt the following gen-
eral recipe for adapter-based fine-tuning. Starting
from a pre-trained backbone, an adapter is added
for each language pair and then finetuned on the
corresponding bilingual data (while the rest of the
backbone is frozen). The pre-trained backbone
plays a crucial role in this recipe. We explore
two common scenarios to obtain this pre-trained
model, namely refinement and transfer learning.
We present them in details, together with extensive
experimental results, in Section 5 and 6. In the next
section, we present our experimental setup.

4 Experimental Setup

4.1 Dataset
MuST-C We evaluate our recipes on MuST-
C (Di Gangi et al., 2019), a large-scale one-to-many

2For speech applications (Inaguma et al., 2020; Wang et al.,
2020), the embedding layer of the encoder is often a small
convolutional neural network (Fukushima and Miyake, 1982;
LeCun et al., 1989).

https://github.com/formiel/fairseq/tree/master/examples/speech_to_text/docs/adapters.md
https://github.com/formiel/fairseq/tree/master/examples/speech_to_text/docs/adapters.md
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Adapter Finetune # params (M)
Dict D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

Training data (hours) 408 504 492 465 442 385 432 489

1 mono

25
6

- - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82
2 multi - - - - - 32.1/32.1 22.37 30.40 27.49 22.79 24.42 27.32 20.78 14.54 23.76

3 multi 64 - X - - 8×0.2/33.7 22.32 30.50 27.55 22.91 24.51 27.36 21.09 14.74 23.87
4 multi 64 X X - - 8×0.6/36.9 22.75 31.07 28.03 23.04 24.75 28.06 21.20 14.75 24.21

5 multi 128 - X - - 8×0.4/35.3 22.45 30.85 27.71 23.06 24.57 27.52 20.93 14.57 23.96
6 multi 128 X X - - 8×1.2/41.7 22.84∗ 31.25∗ 28.29∗ 23.27∗ 24.98∗ 28.16∗ 21.36∗ 14.71 24.36

7 multi - - - - X 8×14.6/8×32.1 23.49 31.29 28.40 23.63 25.51 28.71 21.73 15.22 24.75
8 multi - - - X X 8×32.1/8×32.1 23.13∗ 31.39∗ 28.67∗ 23.80∗ 25.52∗ 29.03∗ 22.25∗ 15.44∗ 24.90

9 mono

51
2

- - - - - 8×74.3/8×74.3 21.93 30.46 27.90 22.64 23.98 25.98 20.50 14.01 23.42
10 multi - - - - - 76.3/76.3 23.98 32.47 29.24 24.97 26.20 29.81 22.74 15.30 25.59

11 multi 64 - X - - 8×0.4/79.5 24.24 32.52 29.47 24.74 26.13 29.72 22.53 15.25 25.57
12 multi 64 X X - - 8×1.2/85.9 24.13 32.80 29.55 24.90 26.04 30.25 22.73 15.31 25.72

13 multi 128 - X - - 8×0.8/82.7 24.34 32.86 29.51 24.73 26.15 30.01 22.58 15.07 25.66
14 multi 128 X X - - 8×2.4/95.5 24.30 32.61 29.72∗ 25.07 26.29 30.46∗ 22.99 15.47 25.86

15 multi 256 - X - - 8×1.6/89.1 24.38 32.78 29.69 24.72 26.25 29.93 22.63 15.40 25.72
16 multi 256 X X - - 8×4.8/114.7 24.61 32.94 29.67 25.12 26.16 30.53 22.66 15.31 25.88

17 multi - - - - X 8×35.5/8×36.3 24.67 33.12 30.11 25.05 26.33 29.85 23.04 15.61 25.97
18 multi - - - X X 8×76.3/8×76.3 24.54∗ 32.95∗ 29.96∗ 25.01 26.31 30.04 22.66 15.54∗ 25.88

Table 1: BLEU on MuST-C dev set for refinement. In the Dict column, mono and multi mean, respectively,
monolingual and multilingual dictionary. D is the Transformer hidden dimension. In the Adapter group, d is the
adapter bottleneck dimension, ENC and DEC mean adding adapters to encoder and decoder, respectively; and
idem for the Finetune group. Rows 1–2 and rows 9–10 represent our bilingual and multilingual baselines for each
D. Values lower than the multilingual baselines are colored in blue. The highest values in each group of D are
underlined, while the highest values of each column are in bold face. Furthermore, we select the top configurations
(6, 8, 14, 18) and perform statistical significance test using bootstrap re-sampling (Koehn, 2004). Results passing
the test (compared to the corresponding multilingual baselines, with p-value < 0.05) are marked with a star.

ST dataset from English to eight target languages
including Dutch (nl), French (fr), German (de),
Italian (it), Portuguese (pt), Romanian (ro), Rus-
sian (ru), and Spanish (es). Each direction includes
a triplet of speech, transcription, and translation.
Sizes range from 385 hours (pt) to 504 hours (es).

MuST-C-Imbalanced We built a low-resource
version of MuST-C, called MuST-C-Imbalanced, in
which we randomly keep only X% of the original
training data, where X = 100 for es, fr; X = 50
for ru, it; X = 20 for nl, ro; and X = 10 for
de, pt (same order of the languages in the original
MuST-C if we sort them in decreasing amount of
data). The amount of speech data ranges from 41
hours (de) to 504 hours (es) in this version, better
reflecting real-world data imbalance scenarios.

4.2 Implementation details

Our implementation is based on the FAIRSEQ S2T
toolkit (Wang et al., 2020). We experiment with
two architectures: a small Transformer model with
dimension D = 256 and a medium one where
D = 512. All experiments use the same encoder
with 12 layers. The decoder has 6 layers, except for
the transfer learning scenario where we used the
mBART decoder for initialization. We used 8k and

10k unigram vocabulary (Kudo and Richardson,
2018) for bilingual and multilingual models, re-
spectively. The speech features are 80-dimensional
log mel filter-bank. Utterances having more than
3000 frames are removed for GPU efficiency. We
used SpecAugment (Park et al., 2019) with Lib-
riSpeech basic (LB) policy for data augmentation.

We used the Adam optimizer (Kingma and Ba,
2015) with learning rate linearly increased for the
first 10K steps to a value ηmax, then decreased
proportionally to the inverse square root of the step
counter. For all adapter experiments, ηmax is set to
2e−3. For the others, however, we perform a grid
search over three values {2e−3, 2e−4, 2e−5} and
select the best one on the dev set, as they are more
sensitive to the learning rate.

5 Refinement

In this section, a fully trained multilingual ST back-
bone is further refined on each language pair to
boost the performance and close potential gaps
with bilingual models. We compare adapter tun-
ing with other fine-tuning approaches as well as
the bilingual and multilingual baselines (the lat-
ter being the starting point for all fine-tuning ap-
proaches) (Bapna and Firat, 2019). Starting from
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Adapter Finetune # params (M)
D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

Training data (hours) 41 504 492 232 89 38 86 245

1

25
6

- - - - - 32.1/32.1 15.99 30.51 28.17 21.80 20.27 22.47 17.38 13.18 21.22
2 128 X X - - 8×1.2/41.7 17.02 30.71 28.42 22.37 21.01 23.74 18.55 13.52 21.92
3 - - - X X 8×32.1/8×32.1 16.93 30.86 28.34 22.42 20.86 23.44 18.49 13.63 21.87

4

51
2

- - - - - 76.3/76.3 17.05 31.92 29.06 22.91 21.64 24.15 19.18 14.09 22.50
5 256 X X - - 8×4.8/114.7 17.46 31.94 29.09 23.11 21.76 24.96 19.50 14.10 22.74
6 - - - X X 8×76.3/8×76.3 17.49 31.67 29.27 22.97 21.80 24.80 19.43 14.17 22.70

Table 2: BLEU on MuST-C dev set for refinement in the low-resource scenario where the models were trained on
MuST-C-Imbalanced dataset. We refer to Table 1 for other notation.

Method # params (M)
trainable/total de es fr it nl pt ro ru avg

O
ur

s Baseline 76.3/76.3 24.18 28.28 34.98 24.62 28.80 31.13 23.22 15.88 26.39
Best adapting 8 × 4.8/76.3 24.63 28.73 34.75 24.96 28.80 30.96 23.70 16.36 26.61
Best fine-tuning 8 ×35.5/8 × 76.3 24.50 28.67 34.89 24.82 28.38 30.73 23.78 16.23 26.50

L
ie

ta
l. LNA-D 53.5/76.3 24.16 28.30 34.52 24.46 28.35 30.51 23.29 15.84 26.18

LNA-E 48.1/76.3 24.34 28.25 34.42 24.24 28.46 30.53 23.32 15.89 26.18
LNA-E,D 25.3/76.3 24.27 28.40 34.61 24.44 28.25 30.53 23.27 15.92 26.21

Table 3: BLEU on MuST-C test set. Our method compares favorably with (Li et al., 2020).

these backbones, we either add language-specific
adapters and train them only, or we finetune the
backbone on each language pair, either fully or par-
tially. All these trainings are performed on MuST-
C. The results are shown in Table 1. There are two
main blocks corresponding to two architectures:
D = 256 (small) and D = 512 (medium). Rows 1
and 9 provide the bilingual baselines, while rows 2
and 10 serve as the multilingual baselines for each
block. In addition, we compare adapter-tuning with
full fine-tuning and multilingual-training (baseline)
on MuST-C-Imbalanced. Table 2 displays the re-
sults for this set of experiments.

Bilingual vs. Multilingual For the small archi-
tecture (D = 256), the bilingual models slightly
outperform their multilingual counterpart (rows 1,
2). Looking further into the performance of each
language pair, the multilingual model is able to
improve the results for 4 out of 8 pairs (de, nl, pt,
ru), mainly those in the lower-resource direction,
but the joint multilingual training slightly hurts the
performance of higher-resource pairs such as es,
fr, it, and ro. Finally, we observe that the medium
model (D = 512) performs better in the multilin-
gual setting than the bilingual one (rows 9, 10).

Adapter tuning vs. Fine-tuning Both recipes
yield improvements over the multilingual baseline
and recover the lost performance of higher-resource
directions compared to the bilingual baseline for
the small model (D = 256). For the medium
one (D = 512), one adapter tuning (row 14) can

slightly improve the scores in all directions and
even approach the results of the best fine-tuning
experiment (row 17) while maintaining much lower
model sizes (95.5M vs. 8× 36.3M parameters).

Low-resource scenario The obtained results on
small models show that adapter-tuning achieved the
best performance, producing clear improvements
over the baseline, especially for the low-resource
languages: +1.1 BLEU on average on nl, ro, de,
pt; +0.3 BLEU on average on es, fr, ru, it; which
is competitive to full fine-tuning (+0.9 and +0.4
BLEU, respectively) while being more parameter-
efficient as well as simpler for training and deploy-
ment (one model with adapters versus eight sep-
arate models). For larger models, however, the
improvement is smaller: +0.4 BLEU on average
on the lower-resource pairs and +0.1 on the higher-
resource ones; while those of full fine-tuning are
+0.4 and roughly no improvement, respectively.

Results on test set We select the best-performing
fine-tuning recipes on the dev set (rows 16 and 17
in Table 1) for evaluation on the test set. For refer-
ence, we also include the multilingual baseline (row
10). Moreover, to go beyond conventional fine-
tuning approaches, we also compare our recipes
with a contemporary work in which only several
components of the network are finetuned (Li et al.,
2020). For a fair comparison, we did not use large
pre-trained components such as wav2vec (Baevski
et al., 2020) or mBART (Tang et al., 2020) but
instead considered the same pre-trained compo-
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Adapter Finetune # params (M)
d ENC DEC xattn trainable/total de es fr it nl pt ro ru avg

1 - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82

2 - - - X 38 / 486 18.41 25.42 23.46 18.44 20.87 20.55 17.19 11.79 19.52
3 512 - X - 101 / 587 0.94 0.65 0.93 0.76 0.95 0.89 0.52 0.93 0.82
4 512 - X X 139 / 587 21.98 29.47 27.05 22.89 24.06 26.34 21.0 14.35 23.39
5 512 X X - 152 / 638 11.04 18.62 16.10 12.37 13.18 14.29 10.62 6.95 12.90
6 512 X X X 190 / 638 22.62 30.85 28.23 23.09 24.43 26.56 22.13 14.92 24.10

Table 4: BLEU on MuST-C dev set for transfer learning from pre-trained ASR and mBART models. We compare
the results with the bilingual baselines (trained from scratch), shown in row 1 (which is identical to row 1 in Table 1).
The column “Finetune xattn” means updating the cross-attention parameters. We refer to Table 1 for other notation.

nents used in our previous experiments. Follow-
ing (Li et al., 2020), we considered six variants:
fine-tuning LayerNorm + Attention in the encoder
(LNA-E), or the decoder (LNA-D), or both (LNA-

E,D); each with or without the length adapter. We
found that adding the length adapter did not help in
our experiments. Table 3 shows that our approach
compares favorably with (Li et al., 2020) in terms
of both performance and parameter-efficiency.

Other comments For small models, the encoder
adapters boost the performance (0.3–0.4 BLEU on
average) in all directions (rows 3 and 4, 5 and 6,
Table 1), indicating that language-specific adapters
can tweak the encoder representations to make
them better suited for the decoder. In larger mod-
els, however, the impact of the encoder adapters
is varied depending on languages and bottleneck
dimensions. We also notice that increasing the bot-
tleneck dimension slightly improves performance
while remaining parameter-efficient. Fine-tuning
remains the best option to optimize the models in
most cases but leads to much larger model sizes.
The adapter-tuning approach is competitive to fine-
tuning while being much more parameter-efficient.

6 Transfer Learning

In this section, we show that adapters can be used
to combine available pre-trained models to perform
a multilingual ST task. In particular, we initialize
the encoder using a pre-trained ASR encoder (on
MuST-C)3 provided by Wang et al. (2020) and the
decoder using mBART50, a multilingual denoising
auto-encoder pre-trained on 50 languages (Tang
et al., 2020). We tune language independent cross-
attention and language-specific adapters on top of
these backbone models (using MuST-C as well).
The results presented in Table 4 highlight that fine-

3Pre-training on ASR data and then transferring to ST is
not new but rather standard. See, e.g., Bansal et al. (2019).

tuning cross-attention is crucial to transfer to multi-
lingual ST (rows 3 and 5 show poor results without
doing so). Adding adapters to the backbone de-
coder (row 4) or to both encoder and decoder (row
6) further boosts performance, demonstrating the
ability of adapters to connect off-the-shelf models
in a modular fashion. The best-performing model
in this recipe (row 6) also outperforms bilingual
systems (row 1) despite having fewer trainable pa-
rameters (190M vs. 248M). It is also important
to mention that while we experiment on 8 target
languages of MuST-C corpus, the multilingual ST
model of row 2 should be practically able to decode
into 50 different target languages. Investigating
such a zero-shot ST scenario is left for future work.

7 Conclusion

We have presented a study of adapters for multilin-
gual ST and shown that language-specific adapters
can enable a fully trained multilingual ST model to
be further specialized in each language pair. With
these adapter modules, one can efficiently obtain
a single multilingual ST system that outperforms
the original multilingual model as well as multiple
bilingual systems while maintaining a low storage
cost and simplicity in deployment. In addition,
adapter modules can also be used to connect avail-
able pre-trained models such as an ASR model and
a multilingual denoising auto-encoder to perform
the multilingual speech-to-text translation task.
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A Parallel Adapters

In this section, we present our preliminary exper-
iments in which we explore different positions of
the parallel adapters: in parallel with either Trans-
former layers or their sub-layers. We perform ex-
periments where the adapters are added to the de-
coder. The results are shown in Table 5.

Adapter # params (M)
d h type trainable/total en-de

1 - - - 32.1/32.1 22.37
2 128 - ser 0.4/32.5 22.45
3 128 4 par-TL 0.8/32.9 21.67
4 128 4 par-SA 0.8/32.9 19.55
5 128 4 par-XA 0.8/32.9 19.22

Table 5: BLEU on dev set for parallel vs. serial
adapters. In the “Adapter” block, d is the adapter’s di-
mension, h is the number of heads, ser stands for serial
adapters, and par stands for parallel ones. The suffixes
denote the position of the parallel adapters: in parallel
with the Transformer layer (TL), or with self-attention
sub-layer (SA), or with cross-attention sub-layer (XA).

Among the parallel variants, the one that per-
forms operations in parallel with a full layer pro-
duces the best result. However, its performance
still could not surpass the serial adapter (row 2) as
well as the starting point (row 1).

B Specializing

In addition to the refinement recipe where language-
specific adapters tailor the frozen multilingual ST
model to translate in the corresponding direction,
we also propose a recipe to facilitate the specializa-
tion in individual language pairs: by replacing the
multilingual vocabulary by the monolingual ones
corresponding to each target language. This recipe
allows us to transfer from multilingual models to
monolingual ones. A practical benefit is that one
can easily leverage pre-trained multilingual models
for new languages.
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Adapter Finetune # params (M)
Dict D d ENC DEC ENC DEC trainable/total de es fr it nl pt ro ru avg

1 mono

25
6

- - - - - 8×31.1/8×31.1 22.16 30.42 27.92 22.92 24.10 27.19 21.51 14.36 23.82
2 multi - - - - - 32.1/32.1 22.37 30.40 27.49 22.79 24.42 27.32 20.78 14.54 23.76

3 mono 64 - X - - 8×4.3/8×31.3 23.28 30.95 28.31 23.25 24.76 27.84 21.55 14.60 24.32
4 mono 64 X X - - 8×4.7/8×31.7 23.53 31.16 28.83 23.29 24.43 28.18 21.38 14.66 24.44

5 mono 128 - X - - 8×4.5/8×31.5 23.33 31.05 28.67 23.43 24.83 28.10 21.44 14.58 24.43
6 mono 128 X X - - 8×5.3/8×32.3 22.09 30.09 27.63 22.53 24.24 27.09 20.36 14.19 23.53

7 mono - - - - X 8×13.6/8×31.1 24.03 31.79 29.64 24.16 25.55 28.92 22.11 15.00 25.15
8 mono - - - X X 8×31.1/8×31.1 23.89 31.72 29.23 23.65 25.14 28.23 21.83 14.80 24.81

9 mono

51
2

- - - - - 8×74.3/8×74.3 21.93 30.46 27.90 22.64 23.98 25.98 20.5 14.01 23.42
10 multi - - - - - 76.3/76.3 23.98 32.47 29.24 24.97 26.20 29.81 22.74 15.30 25.59

11 mono 64 - X - - 8×8.6/8×74.7 23.85 31.79 29.63 24.26 25.77 28.97 22.18 15.02 25.18
12 mono 64 X X - - 8×9.4/8×75.5 23.74 31.62 29.44 24.02 25.56 29.23 22.25 15.39 25.16

13 mono 128 - X - - 8×9.0/8×75.1 23.91 32.05 29.47 24.08 25.86 29.28 22.30 15.28 25.28
14 mono 128 X X - - 8×10.6/8×76.7 23.98 32.28 29.40 24.46 25.46 29.28 21.90 15.15 25.24

15 mono 256 - X - - 8×9.8/8×75.9 23.91 32.12 29.45 24.17 25.67 29.01 22.31 15.37 25.25
16 mono 256 X X - - 8×13/8×79.1 24.39 32.33 29.46 24.07 25.72 29.84 22.07 15.25 25.39

17 mono - - - - X 8×33.4/8×74.3 24.95 32.85 30.33 25.02 26.08 29.97 23.01 15.69 25.99
18 mono - - - X X 8×74.3/8×74.3 24.77 32.35 30.14 24.79 25.79 29.85 22.71 15.77 25.77

Table 6: BLEU on MuST-C dev set for specialization. We refer to Table 1 for all notation.

Table 6 displays the results of the specializing
recipe. Starting from a trained multilingual ST
model, one can obtain an improvement of 1.3–1.4
BLEU on average (row 8 vs. row 1 and 2) compared
to the bilingual and multilingual baselines trained
from scratch for the small architecture where D =
256. However, for a larger network (D = 512), the
gain is more modest (0.4 BLEU on average).


