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Abstract

Commonsense reasoning aims to incorporate
sets of commonsense facts, retrieved from
Commonsense Knowledge Graphs (CKG), to
draw conclusion about ordinary situations.
The dynamic nature of commonsense knowl-
edge postulates models capable of perform-
ing multi-hop reasoning over new situations.
This feature also results in having large-scale
sparse Knowledge Graphs, where such rea-
soning process is needed to predict relations
between new events. However, existing ap-
proaches in this area are limited by considering
CKGs as a limited set of facts, thus rendering
them unfit for reasoning over new unseen sit-
uations and events. In this paper, we present
a neural-symbolic reasoner, which is capable
of reasoning over large-scale dynamic CKGs.
The logic rules for reasoning over CKGs are
learned during training by our model. In addi-
tion to providing interpretable explanation, the
learned logic rules help to generalise predic-
tion to newly introduced events. Experimental
results on the task of link prediction on CKGs
prove the effectiveness of our model by outper-
forming the state-of-the-art models.

1 Introduction

Commonsense reasoning refers to the ability of
capitalising on commonly used knowledge by most
people, and making decisions accordingly (Sap
et al., 2020). This process usually involves com-
bining multiple commonsense facts and beliefs to
draw a conclusion or judgement (Lin et al., 2019).
While human trivially performs such reasoning,
current Artificial Intelligence models fail, mostly
due to challenges of acquiring relevant knowledge
and forming logical connections between them.

Recent attempts in empowering machines with
the capability of commonsense reasoning are
mostly centred around large-scale Commonsense
Knowledge Graphs (CKG), such as ATOMIC and

ConceptNet (Sap et al., 2019; Speer et al., 2017).
Unlike conventional Knowledge Graphs (KG),
CKGs usually contain facts about arbitrary phrases.
For instance, “PersonX thanks PersonY" is con-
nected to “ To express gratitude" via the link “
because X wanted". This non-canonicalised free-
form text representation has resulted in having con-
ceptually related nodes with different representa-
tion, which forms large sparse CKGs (Malaviya
et al., 2020). Therefore, established reasoning
models on conventional KGs perform poorly on
CGKs (Yang et al., 2014; Sun et al., 2018; Dettmers
et al., 2018; Minervini et al., 2020). In addi-
tion, the nature of commonsense reasoning encour-
ages dynamic CKGs, where new sets of facts and
phrases are introduced frequently. Most existing
models in this realm are based on a static set of
facts and phrases, which results in poor generali-
sation (Malaviya et al., 2020; Shang et al., 2019).
Nevertheless, the inference process in existing ap-
proaches is like a black box, where internal be-
haviour of the model is hardly interpretable.

To overcome these limitations, we propose
a neural-symbolic reasoning model based on
backward-chaining. While traditional theorem
proving algorithms (Bratko, 2001) work based on a
set of predefined rules and unification over discrete
symbols, we leverage a continuous relaxation of
weak unification and a rule learner module. The
weak unification over continuous embedding repre-
sentation helps to address the challenges of unseen
sparsity of CKGs. The rule learner module, in ad-
dition to providing interpretability, is used to gen-
eralise prediction to unseen data points to mitigate
the problem of large-scale dynamic CKGs. The
experiments on the task of link prediction confirm
the superiority of our model, by a margin of up to
22 points, over the state-of-the-art models.
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Figure 1: A visual representation of rules and new relations estimated by our model for a sample query, xIn-
tent(Alex thanks Jesse, ?). Based on the subject of the query, a subgraph of ATOMIC is retrieved for the reasoning
process (middle). Sets of rules estimated from relation of the query is generated using our proposed rule creation
module (left). Based on our reasoning model, the answers to query are predicted by unification module (right).

2 Related Works

Recent approaches in knowledge base completion
task have mostly relied on a graph and entity-
relation embedding methods (Yang et al., 2014;
Dettmers et al., 2018). In these approaches, entities
and relations are embedded in a complex space,
and using a scoring function plausibility of a triple
is estimated (Bordes et al., 2013; Trouillon et al.,
2016; Sun et al., 2018). In addition to node em-
bedding, graph embedding methods have also been
used to capture the structural complexity of knowl-
edge bases (Schlichtkrull et al., 2018; Shang et al.,
2019). Language generative models also have been
applied on knowledge bases in order to use the rich
information of pre-trained models to address CKG
completion task (Bosselut et al., 2019; Moghimifar
et al., 2020). Malaviya et al. (2020) proposed a
method based on using language models and graph
networks to solve the problem of the sparsity of
CKGs, by taking structural and contextual char-
acteristics of CKGs into account. However, the
aforementioned models are highly dependant on
training on a set of static entities, and fail to per-
form when new triples are presented.

3 Our Approach

A CKG G = (N,E), where N is the set of nodes
and E is the set of edges in G, consists of triples in
form of r(h, t), where h, t ∈ N are referred to as
the head and the tail of the triple, and r ∈ E denotes
their relation. The goal of the CKG completion task
is to estimate probable t given a query q = r(h, ?).
As the target node may not pose a direct link to h
via r, this task requires a model capable of multi-
step reasoning.

Given a query rq(hq, ?), we try to identify an

implication rule and apply it to prove rq(hq, t) for
a target entity or event t. A rule R takes the form
of rq(X,Z) :− r0(X,Y0), ..., rk(Yk−1, Z), where
capitalised letters denote variables, rq(X,Z) is
the rule head, and the rule body is a conjunction
of atoms. We apply such a rule by unifying
atoms with triples in the given CKG to obtain
rq(hq, tk) :− r0(h0, t0), r1(t0, t1), ..., rk(tk−1, tk),
which entails rq(hq, tk). Since semantically equiv-
alent/similar events or entities in a CKG often
have different surface forms, we consider weak
unification of an atom with a triple instead of only
considering exact match of two atoms, a weak
unification operator (Sessa, 2002) unifies two
different symbols by measuring the similarity of
their representations.

Given a query, we do not know the target rule
in advance. As shown in the example in Fig. 1,
we successively create a new rule by appending
the body of the previous rule with an atom in the
form of r(tk−1, X). Whenever such a new atom is
added, we query the CKG to find triples as candi-
dates of unification. This step enables reasoning on
large scale KBs. In contrast, the prior works (Min-
ervini et al., 2020; Ren and Leskovec, 2020) require
comparison with each node in a CKG. After apply-
ing the weak unification operator to each of the
triples, we find topk most similar nodes and use
each of the entity/event in the place of X to create
a new atom for a new rule. The process is repeated
until the maximal rule length is reached.

The above mentioned reasoning process is deliv-
ered by a a neural-symbolic reasoner. It consists of
a query module, a weak unification operator, and a
rule creation module.
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Dataset #Nodes #Edges Avg. In-degree Density Unseen Nodes Unseen Edges #Relations
ATOMIC 382823 785952 2.25 1.6e-5 38.36% 27.91% 9

ConceptNet-100k 80994 102400 1.25 9.0e-6 11% 8% 34

Table 1: Statistics on ATOMIC and ConceptNet-100k. Unseen Nodes is the ratio of the nodes in test set that are
not in train set to all of the nodes in test set. Unseen edges is the ratio of edges where either the head or tail nodes
are not in train set to the number of all edges in test set.

Query Given a rule with a rightmost atom
rk−1(tk−1, X) in the rule body, we send the rep-
resentation of tk−1 as query to the given CKG to
retrieve unification candidates. A node in a CKG is
a word sequence. To support comparison of nodes
w.r.t. their semantic similarities, we encode queries
and nodes in a CKG with a pre-trained BERT (De-
vlin et al., 2019) into embeddings. To this end, a
node is converted into [CLS]+node+[SEP ], and
fed into the model, and we use the representation
of [CLS] token from the last layer of BERT as rep-
resentation of node node. We apply FAISS1 (John-
son et al., 2019) to index embeddings of an CKG,
because it supports fast retrieval of k nearest neigh-
bours of a dense vector. For each node v in the
topk list, we collect a set of triples C(v), which are
all triples having v as the head in the CKG. As a
result, we have k such sets and form a candidate
set C by taking the union of them.

Weak Unification From a candidate set C

we identify topk most relevant triples to unify
rk−1(tk−1, X). First, we formulate a set of hy-
potheses H by replacing X with possible tails. In
practice, we use all tails of the triples in C. Fur-
thermore, we construct a bipartite graph between
C and H, in which an edge denotes the unification
between a triple from C and another from H. We
measure unification scores by using cosine similar-
ity and obtain an similarity matrix U ∈ R|C|×|H|.
The final unification score of candidate triple i is
computed by maxj Uij . We keep only topk high-
est scored candidate triples.

Rule creation Given the topk highest scored can-
didate triples and a rule Rk with a rightmost atom
rk−1(tk−1, X), we create a new rule based on Rk

for each triple k by substituting it for r(tk−1, X)
and append another atom rk(tk, X). The relation
rk is estimated by a relation predictor fθ(rk−1, k),
where both rk−1 and the current step k are mapped
to the corresponding embeddings.

Pθf (rk|rk−1, k) = σ(fθ([rk−1; k]).W + b) (1)

1https://github.com/facebookresearch/faiss

where θf := {W, b} contains the Rule creation
module’s parameters, and σ is the sigmoid function.
The relation predictor aims to generalise relation
co-occurrence patterns in rules. We implement it by
using a neural networks with two blocks of hidden
layers, followed by a softmax layer. Each block is
composed of a linear layer and a ReLU layer.

Given a query rq(hq, ?), we initialise the first
rule as rq(hq, X). After reaching the pre-defined
maximal rule length, we consider the score of a
rule after unification as the lowest unification score
associated with the rule, following (Sessa, 2002).
We rank all rules by their scores and select the tails
in the rule heads of the topk highest scored rules as
the results.

Another benefit of our reasoner is that humans
can easily collect evidences to interpret reasoning
results. The model can yield the rules and unified
triples in a human-friendly format, which are gener-
ated at each step. In contrast, prior work (Malaviya
et al., 2020) on commonsense reasoners produces
only hard-to-understand distributed representations
in intermediate steps.

Training We convert all the triples
in G into a set of queries (Q =
{r1(h1, ?), r2(h2, ?), . . . , rn(hn, ?), }), where
each query of ri(hi, ?)(i < n) is associated with
a set of gold answers Ti = {qi1 , qi2 , . . . , qim}.
The goal of training our model is to learn the
embedding representations by minimising a
cross-entropy loss function (Lθ) on final scores
associated with each estimated predictions and the
set of gold answer:

Lθ = −
∑
qpk∈T

log(Pr(qpk |G;θ)) (2)

−
∑
qpk 6∈T

log(1− Pr(Pr(qpk |G;θ)))

where θ denote all the parameters of our model.
The relation predication module of our model is
also trained by minimising loss in equation 2,
where the relation embeddings are decoded by
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ConceptNet-100k ATOMIC
Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10
DistMult 8.68 5.38 9.33 15.23 11.49 9.16 11.83 16.3
ComplEx 10.33 6.51 11.24 17.31 12.96 10.65 13.9 17.08
ConvE 16.55 10.19 18.79 28.08 9.04 7.05 9.42 12.74
RotatE 19.89 14.45 25.32 37.56 10.61 8.56 10.76 14.98
Malaviya et al. 43.60 39.33 49.41 66.58 23.43 20.54 24.1 27.43
Ours 65.72 57.49 61.7 71.46 46.41 43.31 45.94 47.24

Table 2: Results on CKG completion task, on ConceptNet-100K and ATOMIC.

alignment of the associated embedding and nearest
predicate representation.

4 Experiments

To evaluate the performance of our model 2 in the
task of CKG completion, in this section, we report
the results of our model in comparison with the
baselines.
Evaluation Metrics: Following previous works
on Knowledge Base completion (Dettmers et al.,
2018; Malaviya et al., 2020), we report the results
of HITS and Mean Reciprocal Rank. Similar to
Dettmers et al. (2018), when computing the scores
for a gold target entity, we filter out all remaining
valid entities. Furthermore, for each triple (h, r, t),
the score is the average of scores measured from
(h, r, ?) and (t, r−1, ?).
Baselines For comparison, we report the perfor-
mance of state-of-the-art models in CKG and
KB completion. We compare our model to Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018), RotatE (Sun
et al., 2018), and Malaviya (Malaviya et al., 2020).
The first four models are high performance models
in conventional KB completion, whereas the latter
is proposed for CKG completion.

4.1 Datasets
ATOMIC 3 is a CKG consisting of commonsense
facts in form of triples, based on if-then rela-
tions (Sap et al., 2019). This dataset consists of
more 877K facts, and more than 300K entities.
ConceptNet-100K 4 is a subset of ConceptNet
5 (Speer et al., 2017), containing Open Mind Com-
mon Sense (OMCS) entries, introduced by (Li et al.,
2016). This dataset contains general commonsense
facts in form of triples.

2Code available at https://github.com/
farhadmfar/commonsense_reasoner

3https://homes.cs.washington.edu/ msap/atomic/
4https://ttic.uchicago.edu/ kgimpel/commonsense.html

In order to evaluate the performance of the mod-
els in dynamic CKG completion, we choose a sub-
set of the test set of ATOMIC and ConceptNet-
100K, where for any (h, r, t) either h or t is not
seen by the model in the train set. Statistics on
ATOMIC and ConceptNet-100k are provided in
table 1. To train our model, each triple in form
r(h, t) in train set was also converted to r−1(t, h),
to account for reverse relations as well. We have
used the embedding size of 1024 for both node
and relation embedding layer. To embed the
nodes in CKGs, we have fine-tuned uncased BERT-
Large (Devlin et al., 2019) for the objective of
masked language model. For this purpose, a node
is converted into [CLS] + ni + [SEP ] and fed
into BERT. The representation of the token [CLS]
from the last layer of BERT is then used as node
ni embedded representation. We used the maxi-
mum sequence of 128, and batch size of 64. Our
relation predication module consists of two Linear
layer. For all non-linearities in our model we have
used ReLU. For optimisation purpose, SGD has
been used, with staring learning rate of 10e − 4,
and decay rate of 0.9, if the loss of development
set does not decrease after each epoch. We set
the maximum depth of three for reasoning process.
We have trained the model for 200 epochs. Fol-
lowed by Malaviya et al. (2020), we have trained
all the baselines for 200 epochs. During training
the models were evaluated on development set, ev-
ery 10 and 30 epochs, for ConceptNet-100K and
ATOMIC, respectively. The checkpoint with the
highest MRR was then selected for testing.

4.2 Results

Table 2 summarises the results of the conducted
experiment on ConceptNet-100K and ATOMIC.
On ConceptNet-100K our proposed model outper-
forms the baselines by up to 22 points on MRR. The
gap between our model and the second best model
decrease as we move from HITS@1 to HITS@10.

https://github.com/farhadmfar/commonsense_reasoner
https://github.com/farhadmfar/commonsense_reasoner
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ATOMIC
xIntent(X,Y):-xIntent(X,Z),xIntent(Z,Y)

xNeed(X,Y):-xReact(Y,X)
xIntent(X,Y):-oWant(Y,X)

ConceptNet-100K
causes(X,Y):-causes(X,Z),causes(Z,Y)

isa(X,Y):-partof(X,Z),isa(Z,Y)
relatedto(X,Y):-relatedto(X,Z),relatedto(Z,Y)

Table 3: Examples of rules learned by our proposed
relation prediction module.

This suggested that on contrary to the baselines our
model performs better in estimating the probabil-
ity of query with higher accuracy. On ATOMIC
our model achieves a MRR of 46.41, which is 23
points higher than the second best model. As it
can be seen from table 2, comparison of perfor-
mance of different models on ConceptNet-100K
and ATOMIC shows a noticeable drop in perfor-
mance for models which rely on structural infor-
mation of CKGs. This observation suggests that
larger and sparser (lowest density) CKG are more
challenging to reason over.

Table 3 provides examples of generated rules
by our model on ATOMIC and ConceptNet-100k.
On ATOMIC, the first rule is based on transition,
and the second and third rules are inverse rules.
Similarly, on ConceptNet-100K the first and third
rules are transitive, and the second rule is a com-
positional rule. All provided rules are diverse and
meaningful, and can be used for explaining the
inference process of our model. For instance, con-
sider a query of xIntent(Alex drives Jesse there, ?).
Based on first rule from Table 3, X is unified by
Alex drives Jesse there, and Z is unified by Alex
helps Jesse (from triples of ATOMIC). Then, the
query is updated to xIntent(Alex helps Jesse, ?) and
Y is unified by to be of assistance (from triples of
ATOMIC), hence the answer to query. The path
generated by this example is Alex drives Jesse there
xIntent−−−−→ Alex helps Jesse xIntent−−−−→ to be of assistance.

Therefore, two nodes are connected via a new link:
Alex drives Jesse there xIntent−−→ to be of assistance.

Consider the following query from ConceptNet-
100K, HasProperty(novel, ?). Based on the re-
lation of the query, our rule creator module can
estimate the following rule: According to this rule,

HasProperty(X,Y):-IsA(X,Z),HasProperty(Z,Y)

X is unified by novel, and Z is unified by book (from
triples of ConceptNet-100K). Then, the query is
updated to HasProperty(book, ?) and Y is unified

by expensive (from triples of ConceptNet-100K),
resulting the answer to the query, by generating the

following path: novel IsA−−→ book
HasProperty−−−−−−→ expen-

sive, hence novel
HasProperty−−−−→ expensive.

5 Conclusion

In this work, we propose a neural-symbolic rea-
soning model over Commonsense Knowledge
Graphs (CKGs). Our proposed model leverages
a relation prediction module, which provides capa-
bility of multi-step reasoning. This ability, along-
side weak unification, helps generalising our model
to large-scale unseen data. We showed that our
model yields state-of-the-art results when applied
to large-scale sparse CKGs, and the inference step
is interpretable.
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