
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5937–5947

August 1–6, 2021. ©2021 Association for Computational Linguistics

5937

Instantaneous Grammatical Error Correction with
Shallow Aggressive Decoding

Xin Sun1∗† Tao Ge2† Furu Wei2 Houfeng Wang1

1 MOE Key Lab of Computational Linguistics, School of EECS, Peking University;
2 Microsoft Research Asia

{sunx5,wanghf}@pku.edu.cn;
{tage,fuwei}@microsoft.com

Abstract

In this paper, we propose Shallow Aggressive
Decoding (SAD) to improve the online infer-
ence efficiency of the Transformer for instan-
taneous Grammatical Error Correction (GEC).
SAD optimizes the online inference efficiency
for GEC by two innovations: 1) it aggres-
sively decodes as many tokens as possible in
parallel instead of always decoding only one
token in each step to improve computational
parallelism; 2) it uses a shallow decoder in-
stead of the conventional Transformer archi-
tecture with balanced encoder-decoder depth
to reduce the computational cost during infer-
ence. Experiments in both English and Chi-
nese GEC benchmarks show that aggressive
decoding could yield the same predictions as
greedy decoding but with a significant speedup
for online inference. Its combination with the
shallow decoder could offer an even higher
online inference speedup over the powerful
Transformer baseline without quality loss. Not
only does our approach allow a single model to
achieve the state-of-the-art results in English
GEC benchmarks: 66.4 F0.5 in the CoNLL-
14 and 72.9 F0.5 in the BEA-19 test set with
an almost 10× online inference speedup over
the Transformer-big model, but also it is easily
adapted to other languages. Our code is avail-
able at https://github.com/AutoTemp/

Shallow-Aggressive-Decoding.

1 Introduction

The Transformer (Vaswani et al., 2017) has become
the most popular model for Grammatical Error Cor-
rection (GEC). In practice, however, the sequence-
to-sequence (seq2seq) approach has been blamed
recently (Chen et al., 2020; Stahlberg and Kumar,

∗ This work was done during the author’s internship at
MSR Asia. Contact person: Tao Ge (tage@microsoft.com)

†Co-first authors with equal contributions

2020; Omelianchuk et al., 2020) for its poor infer-
ence efficiency in modern writing assistance ap-
plications (e.g., Microsoft Office Word1, Google
Docs2 and Grammarly3) where a GEC model usu-
ally performs online inference, instead of batch in-
ference, for proactively and incrementally checking
a user’s latest completed sentence to offer instanta-
neous feedback.

To better exploit the Transformer for instanta-
neous GEC in practice, we propose a novel ap-
proach – Shallow Aggressive Decoding (SAD) to
improve the model’s online inference efficiency.
The core innovation of SAD is aggressive decoding:
instead of sequentially decoding only one token at
each step, aggressive decoding tries to decode as
many tokens as possible in parallel with the assump-
tion that the output sequence should be almost the
same with the input. As shown in Figure 1, if the
output prediction at each step perfectly matches its
counterpart in the input sentence, the inference will
finish, meaning that the model will keep the input
untouched without editing; if the output token at
a step does not match its corresponding token in
the input, we will discard all the predictions after
the bifurcation position and re-decode them in the
original autoregressive decoding manner until we
find a new opportunity for aggressive decoding. In
this way, we can decode the most text in parallel
in the same prediction quality as autoregressive
greedy decoding, but largely improve the inference
efficiency.

In addition to aggressive decoding, SAD pro-
poses to use a shallow decoder, instead of the
conventional Transformer with balanced encoder-
decoder depth, to reduce the computational cost for
further accelerating inference. The experimental

1https://www.microsoft.com/en-us/
microsoft-365/word

2https://www.google.com/docs/about
3https://www.grammarly.com

https://github.com/AutoTemp/Shallow-Aggressive-Decoding
https://github.com/AutoTemp/Shallow-Aggressive-Decoding
mailto:tage@microsoft.com
https://www.microsoft.com/en-us/microsoft-365/word
https://www.microsoft.com/en-us/microsoft-365/word
https://www.google.com/docs/about
https://www.grammarly.com

5938

[BOS] I 'm wri,ng to inform some some advice on traveling and working . [PAD]

I 'm wri,ng to give you advice advice on traveling and working . [EOS] ﹅
✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Input

Output

[BOS] I 'm wri,ng to give you

[BOS] I 'm wri,ng to give you some

[BOS] I 'm wri,ng to give you some advice

One-by-one	decoding	
for	suffix	match

Ini9al	Aggressive	Decoding	(in	parallel)

Re-decoding

Switch	back	to	Aggressive	Decoding	(in	parallel)

bifurcation

✔ accept
✘ discard
﹅ no prediction

[BOS] I 'm wri,ng to give you some advice on traveling and working . [PAD]

﹅ ﹅ ﹅ ﹅ ﹅ ﹅ ﹅ ﹅ on traveling and working . [EOS] ﹅
✔ ✔ ✔ ✔ ✔ ✔ ✘

Decoder	Input

Output

bifurcation

Figure 1: The overview of aggressive decoding. Aggressive decoding tries decoding as many tokens as possible
in parallel with the assumption that the input and output should be almost the same in GEC. When we find a bifur-
cation between the input and the output of aggressive decoding, then we accept the predictions before (including)
the bifurcation, and discard all the predictions after the bifurcation and re-decode them using original one-by-one
autoregressive decoding. If we find a suffix match (i.e., some advice highlighted with the blue dot lines) between
the output and the input during one-by-one re-decoding, we switch back to aggressive decoding by copying the
tokens (highlighted with the orange dashed lines) following the matched tokens in the input to the decoder input
by assuming they are likely to be the same.

results in both English and Chinese GEC bench-
marks show that both aggressive decoding and the
shallow decoder can significantly improve online
inference efficiency. By combining these two tech-
niques, our approach shows a 9× ∼ 12× online
inference speedup over the powerful Transformer
baseline without sacrificing the quality.

The contributions of this paper are two-fold:

• We propose a novel aggressive decoding ap-
proach, allowing us to decode as many token
as possible in parallel, which yields the same
predictions as greedy decoding but with a sub-
stantial improvement of computational paral-
lelism and online inference efficiency.

• We propose to combine aggressive decoding
with the Transformer with a shallow decoder.
Our final approach not only advances the state-
of-the-art in English GEC benchmarks with
an almost 10× online inference speedup but
also is easily adapted to other languages.

2 Background: Transformer

The Transformer is a seq2seq neural network archi-
tecture based on multi-head attention mechanism,
which has become the most successful and widely

used seq2seq models in various generation tasks
such as machine translation, abstractive summa-
rization as well as GEC.

The original Transformer follows the balanced
encoder-decoder architecture: its encoder, consist-
ing of a stack of identical encoder layers, maps an
input sentence x = (x1, . . . , xn) to a sequence
of continuous representation z = (z1, . . . , zn);
and its decoder, which is composed of a stack of
the same number of identical decoder layers as
the encoder, generates an output sequence o =
(o1, . . . , om) given z.

In the training phase, the model learns an autore-
gressive scoring model P (y | x;Φ), implemented
with teacher forcing:

Φ∗ = argmax
Φ

logP (y | x;Φ)

= argmax
Φ

l−1∑
i=0

logP (yi+1 | y≤i,x;Φ)
(1)

where y = (y1, . . . , yl) is the ground-truth target
sequence and y≤i = (y0, . . . , yi). As ground truth
is available during training, Eq (1) can be efficiently
obtained as the probability P (yi+1 | y≤i,x) at each
step can be computed in parallel.

During inference, the output sequence o =

5939

(o1, . . . , om) is derived by maximizing the follow-
ing equation:

o∗ = argmax
o

logP (o | x;Φ)

= argmax
o

m−1∑
j=0

logP (oj+1 | o≤j ,x;Φ)
(2)

Since no ground truth is available in the infer-
ence phase, the model has to decode only one token
at each step conditioning on the previous decoded
tokens o≤j instead of decoding in parallel as in the
training phase.

3 Shallow Aggressive Decoding

3.1 Aggressive Decoding

As introduced in Section 2, the Transformer de-
codes only one token at each step during inference.
The autoregressive decoding style is the main bot-
tleneck of inference efficiency because it largely
reduces computational parallelism.

For GEC, fortunately, the output sequence is usu-
ally very similar to the input with only a few edits
if any. This special characteristic of the task makes
it unnecessary to follow the original autoregres-
sive decoding style; instead, we propose a novel
decoding approach – aggressive decoding which
tries to decode as many tokens as possible during
inference. The overview of aggressive decoding is
shown in Figure 1, and we will discuss it in detail
in the following sections.

3.1.1 Initial Aggressive Decoding
The core motivation of aggressive decoding is
the assumption that the output sequence o =
(o1, . . . , om) should be almost the same with the
input sequence x = (x1, . . . , xn) in GEC. At the
initial step, instead of only decoding the first token
o1 conditioning on the special [BOS] token o0, ag-
gressive decoding decodes o1...n conditioning on
the pseudo previous decoded tokens ô0...n−1 in par-
allel with the assumption that ô0...n−1 = x0,...,n−1.
Specifically, for j ∈ {0, 1, . . . , n− 2, n− 1}, oj+1

is decoded as follows:

o∗j+1 = argmax
oj+1

logP (oj+1 |o≤j ,x;Φ)

= argmax
oj+1

logP (oj+1 | ô≤j ,x;Φ)

= argmax
oj+1

logP (oj+1 | x≤j ,x;Φ)

(3)

where ô≤j is the pseudo previous decoded tokens
at step j+1, which is assumed to be the same with
x≤j .

After we obtain o1...n, we verify whether o1...n

is actually identical to x1...n or not. If o1...n is
fortunately exactly the same with x1...n, the infer-
ence will finish, meaning that the model finds no
grammatical errors in the input sequence x1...n and
keeps the input untouched. In more cases, how-
ever, o1...n will not be exactly the same with x1...n.
In such a case, we have to stop aggressive decod-
ing and find the first bifurcation position k so that
o1...k−1 = x1...k−1 and ok 6= xk.

Since o1...k−1 = ô1...k−1 = x1...k−1, the pre-
dictions o1...k could be accepted as they will not
be different even if they are decoded through the
original autoregressive greedy decoding. However,
for the predictions ok+1...n, we have to discard and
re-decode them because ok 6= ôk.

3.1.2 Re-decoding
As ok 6= ôk = xk, we have to re-decode for oj+1

(j ≥ k) one by one following the original autore-
gressive decoding:

o∗j+1 = argmax
oj+1

P (oj+1 | o≤j ,x;Φ) (4)

After we obtain o≤j (j > k), we try to match its
suffix to the input sequence x for further aggressive
decoding. If we find its suffix oj−q...j (q ≥ 0) is the
unique substring of x such that oj−q...j = xi−q...i,
then we can assume that oj+1... will be very likely
to be the same with xi+1... because of the special
characteristic of the task of GEC.

If we fortunately find such a suffix match, then
we can switch back to aggressive decoding to de-
code in parallel with the assumption ôj+1... =
xi+1.... Specifically, the token oj+t (t > 0) is
decoded as follows:

o∗j+t = argmax
oj+t

P (oj+t | o<j+t,x;Φ) (5)

In Eq (5), o<j+t is derived as follows:

o<j+t = CAT(o≤j , ôj+1...j+t−1)

= CAT(o≤j ,xi+1...i+t−1)
(6)

where CAT(a, b) is the operation that concatenates
two sequences a and b.

Otherwise (i.e., we cannot find a suffix match at
the step), we continue decoding using the original

5940

Algorithm 1 Aggressive Decoding
Input: Φ, x = ([BOS], x1, . . . , xn, [PAD]), o = (o0) = ([BOS]);
Output: o1...j = (o1, . . . , oj);

1: Initialize j ← 0;
2: while oj 6= [EOS] and j < MAX LEN do
3: if oj−q...j (q ≥ 0) is a unique substring of x such that ∃ ! i : oj−q...j = xi−q...i then
4: Aggressive Decode õj+1... according to Eq (5) and Eq (6);
5: Find bifurcation j + k (k > 0) such that õj+1...j+k−1 = xi+1...i+k−1 and õj+k 6= xi+k;
6: o← CAT(o, õj+1...j+k);
7: j ← j + k;
8: else
9: Decode o∗j+1 = argmaxoj+1 P (oj+1 | o≤j ,x;Φ);

10: o← CAT(o, o∗j+1);
11: j ← j + 1;
12: end if
13: end while

autoregressive greedy decoding approach until we
find a suffix match.

We summarize the process of aggressive decod-
ing in Algorithm 1. For simplifying implementa-
tion, we make minor changes in Algorithm 1: 1) we
set o0 = x0 = [BOS] in Algorithm 1, which en-
ables us to regard the initial aggressive decoding as
the result of suffix match of o0 = x0; 2) we append
a special token [PAD] to the end of x so that the
bifurcation (in the 5th line in Algorithm 1) must ex-
ist (see the bottom example in Figure 1). Since we
discard all the computations and predictions after
the bifurcation for re-decoding, aggressive decod-
ing guarantees that generation results are exactly
the same as greedy decoding (i.e., beam=1). How-
ever, as aggressive decoding decodes many tokens
in parallel, it largely improves the computational
parallelism during inference, greatly benefiting the
inference efficiency.

3.2 Shallow Decoder

Even though aggressive decoding can significantly
improve the computational parallelism during infer-
ence, it inevitably leads to intensive computation
and even possibly introduces additional computa-
tion caused by re-decoding for the discarded pre-
dictions.

To reduce the computational cost for decoding,
we propose to use a shallow decoder, which has
proven to be an effective strategy (Kasai et al.,
2020; Li et al., 2021) in neural machine transla-
tion (NMT), instead of using the Transformer with
balanced encoder-decoder depth as the previous
state-of-the-art Transformer models in GEC. By

combining aggressive decoding with the shallow
decoder, we are able to further improve the infer-
ence efficiency.

4 Experiments

4.1 Data and Model Configuration

We follow recent work in English GEC to con-
duct experiments in the restricted training setting
of BEA-2019 GEC shared task (Bryant et al.,
2019): We use Lang-8 Corpus of Learner En-
glish (Mizumoto et al., 2011), NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al., 2011) and
W&I+LOCNESS (Granger; Bryant et al., 2019)
as our GEC training data. For facilitating fair
comparison in the efficiency evaluation, we fol-
low the previous studies (Omelianchuk et al., 2020;
Chen et al., 2020) which conduct GEC efficiency
evaluation to use CoNLL-2014 (Ng et al., 2014)
dataset that contains 1,312 sentences as our main
test set, and evaluate the speedup as well as Max-
Match (Dahlmeier and Ng, 2012) precision, recall
and F0.5 using their official evaluation scripts4. For
validation, we use CoNLL-2013 (Ng et al., 2013)
that contains 1,381 sentences as our validation set.
We also test our approach on NLPCC-18 Chinese
GEC shared task (Zhao et al., 2018), following
their training5 and evaluation setting, to verify the
effectiveness of our approach in other languages.
To compare with the state-of-the-art approaches
in English GEC that pretrain with synthetic data,

4https://github.com/nusnlp/m2scorer
5Following Chen et al. (2020), we sample 5,000 training

instances as the validation set.

https://github.com/nusnlp/m2scorer

5941

Model Synthetic Data Total Latency (s) Speedup CoNLL-13
P R F0.5

Transformer-big (beam=5) No 440 1.0× 53.84 18.00 38.50
Transformer-big (greedy) No 328 1.3× 52.75 18.34 38.36
Transformer-big (aggressive) No 54 8.1× 52.75 18.34 38.36
Transformer-big (beam=5) Yes 437 1.0× 57.06 23.62 44.47
Transformer-big (greedy) Yes 320 1.4× 56.45 24.70 44.91
Transformer-big (aggressive) Yes 60 7.3× 56.45 24.70 44.91

Table 1: The performance and online inference efficiency of the Transformer-big with aggressive decoding in our
validation set (CoNLL-13) that contains 1,381 sentences. We use Transformer-big (beam=5) as the baseline to
compare the performance and efficiency of aggressive decoding.

we also synthesize 300M error-corrected sentence
pairs for pretraining the English GEC model follow-
ing the approaches of Grundkiewicz et al. (2019)
and Zhang et al. (2019). Note that in the following
evaluation sections, the models evaluated are by
default trained without the synthetic data unless
they are explicitly mentioned.

We use the most popular GEC model architec-
ture – Transformer (big) model (Vaswani et al.,
2017) as our baseline model which has a 6-layer
encoder and 6-layer decoder with 1,024 hidden
units. We train the English GEC model using an
encoder-decoder shared vocabulary of 32K Byte
Pair Encoding (Sennrich et al., 2016) tokens and
train the Chinese GEC model with 8.4K Chinese
characters. We include more training details in the
supplementary notes. For inference, we use greedy
decoding6 by default.

All the efficiency evaluations are conducted in
the online inference setting (i.e., batch size=1)
as we focus on instantaneous GEC. We perform
model inference with fairseq7 implementation us-
ing Pytorch 1.5.1 with 1 Nvidia Tesla V100-PCIe
of 16GB GPU memory under CUDA 10.2.

4.2 Evaluation for Aggressive Decoding
We evaluate aggressive decoding in our validation
set (CoNLL-13) which contains 1,381 validation
examples. As shown in Table 1, aggressive decod-
ing achieves a 7× ∼ 8× speedup over the original
autoregressive beam search (beam=5), and gener-
ates exactly the same predictions as greedy decod-
ing, as discussed in Section 3.1.2. Since greedy
decoding can achieve comparable overall perfor-
mance (i.e., F0.5) with beam search while it tends

6Our implementation of greedy decoding is simplified for
higher efficiency (1.3× ∼ 1.4× speedup over beam=5) than
the implementation of beam=1 decoding in fairseq (around
1.1× speedup over beam=5).

7https://github.com/pytorch/fairseq

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Edit Ratio

0

5

10

15

20

25

30

35

Sp
ee

du
p

Figure 2: The speedup (over greedy decoding) distribu-
tion of all the 1,381 validation examples with respect
to their edit ratio in CoNLL-13.

to make more edits resulting in higher recall but
lower precision, the advantage of aggressive decod-
ing in practical GEC applications is obvious given
its strong performance and superior efficiency.

We further look into the efficiency improve-
ment by aggressive decoding. Figure 2 shows
the speedup distribution of the 1,381 examples in
CoNLL-13 with respect to their edit ratio which
is defined as the normalized (by the input length)
edit distance between the input and output. It is
obvious that the sentences with fewer edits tend to
achieve higher speedup, which is consistent with
our intuition that most tokens in such sentences
can be decoded in parallel through aggressive de-
coding; on the other hand, for the sentences that
are heavily edited, their speedup is limited because
of frequent re-decoding. To give a more intuitive
analysis, we also present concrete examples with
various speedup in our validation set to understand
how aggressive decoding improves the inference
efficiency in Table 2.

Moreover, we conduct an ablation study to in-

https://github.com/pytorch/fairseq

5942

Speedup Edit Ratio Input Output
16.7× 0 Personally , I think surveillance technology

such as RFID (radio-frequency identifica-
tion) should not be used to track people , for
the benefit it brings to me can not match the
concerns it causes .

[Personally , I think surveillance technology
such as RFID (radio-frequency identification
) should not be used to track people , for the ben-
efit it brings to me can not match the concerns it
causes .]0

5.8× 0 Nowadays , people use the all-purpose smart
phone for communicating .

[Nowadays , people use the all-purpose smart
phone for communicating .]0

6.8× 0.03 Because that the birth rate is reduced while
the death rate is also reduced , the percentage
of the elderly is increased while that of the
youth is decreased .

[Because the]0 [birth]1 [rate is reduced while
the death rate is also reduced , the percentage of
the elderly is increased while that of the youth
is decreased .]2

5.1× 0.06 More importantly , they can share their ideas
of how to keep healthy through Internet ,
to make more interested people get involve
and find ways to make life longer and more
wonderful .

[More importantly , they can share their ideas of
how to keep healthy through the]0 [Internet]1 [,
to make more interested people get involved]2
[and]3 [find]4 [ways to make life longer and
more wonderful .]5

3.5× 0.13 As a result , people have more time to enjoy
advantage of modern life .

[As a result , people have more time to enjoy
the]0 [advantages]1 [of]2 [modern life .]3

1.5× 0.27 Nowadays , technology is more advance
than the past time .

[Nowadays , technology is more advanced]0
[than]1 [in]2 [the]3 [past .]4

1.4× 0.41 People are able to predicate some disasters
like the earth quake and do the prevention
beforehand .

[People are able to predict]0 [disasters]1 [like
the earthquake]2 [and]3 [prevent]4 [them]5 [be-
forehand]6 [.]7

Table 2: Examples of various speedup ratios by aggressive decoding over greedy decoding in CoNLL-13. We
show how the examples are decoded in the column of Output, where the tokens within a blue block are decoded in
parallel through aggressive decoding while the tokens in red blocks are decoded through the original autoregressive
greedy decoding.

Lmax Total Latency (s) Speedup
1 (Baseline) 328 1.0×

2 208 1.6×
3 148 2.2×
5 109 3.0×
10 75 4.4×
20 64 5.1×
40 54 6.1×

Unlimited 54 6.1×

Table 3: The ablation study of the effect of constraining
the maximal aggressive decoding length Lmax on the
online inference efficiency in CoNLL-13. Note that in
CoNLL-13, the average length of an example is 21 and
96% examples are shorter than 40 tokens.

vestigate whether it is necessary to constrain the
maximal aggressive decoding length8, because it
might become highly risky to waste large amounts
of computation because of potential re-decoding
for a number of steps after the bifurcation if we ag-
gressively decode a very long sequence in parallel.
Table 3 shows the online inference efficiency with
different maximal aggressive decoding lengths. It
appears that constraining the maximal aggressive

8Constraining the maximal aggressive decoding length to
Lmax means that the model can only aggressively decode at
most Lmax tokens in parallel.

Model
(Enc+Dec)

CoNLL-13 Total
Latency Speedup

F0.5

6+6 38.36 328 1.0×
3+6 36.26 314 1.0×
9+6 38.82 345 1.0×
6+3 37.95 175 1.9×
6+9 38.02 457 0.7×
7+5 38.49 271 1.2×
8+4 38.63 240 1.4×
9+3 38.88 181 1.8×

10+2 38.21 137 2.4×
11+1 38.15 86 3.8×

Table 4: The performance and efficiency of the Trans-
former with different encoder and decoder depths in
CoNLL-13, where 6+6 is the original Transformer-big
model that has a 6-layer encoder and a 6-layer decoder.

decoding length does not help improve the effi-
ciency; instead, it slows down the inference if the
maximal aggressive decoding length is set to a
small number. We think the reason is that sen-
tences in GEC datasets are rarely too long. For
example, the average length of the sentences in
CoNLL-13 is 21 and 96% of them are shorter than
40 tokens. Therefore, it is unnecessary to constrain
the maximal aggressive decoding length in GEC.

5943

Model Synthetic Data Multi-stage CoNLL-14
Fine-tuning P R F0.5 Speedup

Transformer-big (beam=5) No No 60.2 32.1 51.2 1.0×
Levenshtein Transformer? (Gu et al., 2019) No No 53.1 23.6 42.5 2.9×
LaserTagger? (Malmi et al., 2019) No No 50.9 26.9 43.2 29.6×
Span Correction? (Chen et al., 2020) No No 66.0 24.7 49.5 2.6×
Our approach (9+3) No No 58.8 33.1 50.9 10.5×
Transformer-big (beam=5) Yes No 73.0 38.1 61.6 1.0×
PIE? (Awasthi et al., 2019) Yes No 66.1 43.0 59.7 10.3×
Span Correction? (Chen et al., 2020) Yes No 72.6 37.2 61.0 2.6×
Our approach (9+3) Yes No 73.3 41.3 63.5 10.3×
Seq2Edits (Stahlberg and Kumar, 2020) Yes Yes 63.0 45.6 58.6 -
GECToR(RoBERTa) (Omelianchuk et al., 2020) Yes Yes 73.9 41.5 64.0 12.4×
GECToR(XLNet) (Omelianchuk et al., 2020) Yes Yes 77.5 40.1 65.3 -
Our approach (12+2 BART-Init) Yes Yes 71.0 52.8 66.4 9.6×

Table 5: The performance and online inference efficiency evaluation of efficient GEC models in CoNLL-14. For
the models with ?, their performance and speedup numbers are from Chen et al. (2020) who evaluate the online
efficiency in the same runtime setting (e.g., GPU and runtime libraries) with ours. The underlines indicate the
speedup numbers of the models are evaluated with Tensorflow based on their released codes, which are not strictly
comparable here. Note that for GECToR, we re-implement its inference process of GECToR (RoBERTa) using
fairseq for testing its speedup in our setting. - means the speedup cannot be tested in our runtime environment
because the model has not been released or not implemented in fairseq.

4.3 Evaluation for Shallow Decoder

We study the effects of changing the number of
encoder and decoder layers in the Transformer-big
on both the performance and the online inference
efficiency. By comparing 6+6 with 3+6 and 9+6
in Table 4, we observe the performance improves
as the encoder becomes deeper, demonstrating the
importance of the encoder in GEC. In contrast, by
comparing the 6+6 with 6+3 and 6+9, we do not
see a substantial fluctuation in the performance,
indicating no necessity of a deep decoder. More-
over, it is observed that a deeper encoder does not
significantly slow down the inference but a shal-
low decoder can greatly improve the inference effi-
ciency. This is because Transformer encoders can
be parallelized efficiently on GPUs, whereas Trans-
former decoders are auto-regressive and hence the
number of layers greatly affects decoding speed,
as discussed in Section 3.2. These observations
motivate us to make the encoder deeper and the
decoder shallower.

As shown in the bottom group of Table 4, we
try different combinations of the number of en-
coder and decoder layers given approximately the
same parameterization budget as the Transformer-
big. It is interesting to observe that 7+5, 8+4 and
9+3 achieve the comparable and even better per-
formance than the Transformer-big baseline with
much less computational cost. When we further
increase the encoder layer and decrease the decoder
layer, we see a drop in the performance of 10+2

and 11+1 despite the improved efficiency because
it becomes difficult to train the Transformer with
extremely imbalanced encoder and decoder well,
as indicated9 by the previous work (Kasai et al.,
2020; Li et al., 2021; Gu and Kong, 2020).

Since the 9+3 model achieves the best result
with an around 2× speedup in the validation set
with almost the same parameterization budget, we
choose it as the model architecture to combine with
aggressive decoding for final evaluation.

4.4 Results

We evaluate our final approach – shallow aggres-
sive decoding which combines aggressive decoding
with the shallow decoder. Table 5 shows the perfor-
mance and efficiency of our approach and recently
proposed efficient GEC models that are all faster
than the Transformer-big baseline in CoNLL-14
test set. Our approach (the 9+3 model with aggres-
sive decoding) that is pretrained with synthetic data
achieves 63.5 F0.5 with 10.3× speedup over the
Transformer-big baseline, which outperforms the
majority10 of the efficient GEC models in terms of
either quality or speed. The only model that shows
advantages over our 9+3 model is GECToR which
is developed based on the powerful pretrained mod-

9They show that sequence-level knowledge distillation
(KD) may benefit training the extremely imbalanced Trans-
former in NMT. However, we do not conduct KD for fair
comparison to other GEC models in previous work.

10It is notable that PIE is not strictly comparable here be-
cause their training data is different from ours: PIE does not
use the W&I+LOCNESS corpus.

5944

Model NLPCC-18
P R F0.5 Speedup

Transformer-big (beam=5) 36.0 17.2 29.6 1.0×
Levenshtein Transformer? 24.9 15.0 22.0 3.1×
LaserTagger? 25.6 10.5 19.9 38.0×
Span Correction? 37.3 14.5 28.4 2.7×
Our approach (9+3) 33.0 20.5 29.4 12.0×

Table 6: The performance and online inference efficiency evaluation for the language-independent efficient GEC
models in the NLPCC-18 Chinese GEC benchmark.

els (e.g., RoBERTa (Liu et al., 2019) and XL-
Net (Yang et al., 2019)) with its multi-stage training
strategy. Following GECToR’s recipe, we leverage
the pretrained model BART (Lewis et al., 2019)
to initialize a 12+2 model which proves to work
well in NMT (Li et al., 2021) despite more parame-
ters, and apply the multi-stage fine-tuning strategy
used in Stahlberg and Kumar (2020). The final sin-
gle model11 with aggressive decoding achieves the
state-of-the-art result – 66.4 F0.5 in the CoNLL-14
test set with a 9.6× speedup over the Transformer-
big baseline.

Unlike GECToR and PIE that are difficult to
adapt to other languages despite their competitive
speed because they are specially designed for En-
glish GEC with many manually designed language-
specific operations like the transformation of verb
forms (e.g., VBD→VBZ) and prepositions (e.g.,
in→at), our approach is data-driven without de-
pending on language-specific features, and thus
can be easily adapted to other languages (e.g., Chi-
nese). As shown in Table 6, our approach consis-
tently performs well in Chinese GEC, showing an
around 12.0× online inference speedup over the
Transformer-big baseline with comparable perfor-
mance.

5 Related Work

The state-of-the-art of GEC has been significantly
advanced owing to the tremendous success of
seq2seq learning (Sutskever et al., 2014) and the
Transformer (Vaswani et al., 2017). Most recent
work on GEC focuses on improving the perfor-
mance of the Transformer-based GEC models.
However, except for the approaches that add syn-
thetic erroneous data for pretraining (Ge et al.,
2018a; Grundkiewicz et al., 2019; Zhang et al.,

11The same model checkpoint also achieves the state-of-
the-art result – 72.9 F0.5 with a 9.3× speedup in the BEA-19
test set.

2019; Lichtarge et al., 2019; Zhou et al., 2020;
Wan et al., 2020), most methods that improve per-
formance (Ge et al., 2018b; Kaneko et al., 2020)
introduce additional computational cost and thus
slow down inference despite the performance im-
provement.

To make the Transformer-based GEC model
more efficient during inference for practical appli-
cation scenarios, some recent studies have started
exploring the approaches based on edit operations.
Among them, PIE (Awasthi et al., 2019) and GEC-
ToR (Omelianchuk et al., 2020) propose to accel-
erate the inference by simplifying GEC from se-
quence generation to iterative edit operation tag-
ging. However, as they rely on many language-
dependent edit operations such as the conversion
of singular nouns to plurals, it is difficult for them
to adapt to other languages. LaserTagger (Malmi
et al., 2019) uses the similar method but it is data-
driven and language-independent by learning op-
erations from training data. However, its perfor-
mance is not so desirable as its seq2seq counterpart
despite its high efficiency. The only two previ-
ous efficient approaches that are both language-
independent and good-performing are Stahlberg
and Kumar (2020) which uses span-based edit op-
erations to correct sentences to save the time for
copying unchanged tokens, and Chen et al. (2020)
which first identifies incorrect spans with a tag-
ging model then only corrects these spans with a
generator. However, all the approaches have to ex-
tract edit operations and even conduct token align-
ment in advance from the error-corrected sentence
pairs for training the model. In contrast, our pro-
posed shallow aggressive decoding tries to accel-
erate the model inference through parallel autore-
gressive decoding which is related to some previ-
ous work (Ghazvininejad et al., 2019; Stern et al.,
2018) in neural machine translation (NMT), and
the imbalanced encoder-decoder architecture which

5945

is recently explored by Kasai et al. (2020) and Li
et al. (2021) for NMT. Not only is our approach
language-independent, efficient and guarantees that
its predictions are exactly the same with greedy de-
coding, but also does not need to change the way
of training, making it much easier to train with-
out so complicated data preparation as in the edit
operation based approaches.

6 Conclusion and Future Work

In this paper, we propose Shallow Aggressive De-
coding (SAD) to accelerate online inference effi-
ciency of the Transformer for instantaneous GEC.
Aggressive decoding can yield the same predic-
tion quality as autoregressive greedy decoding but
with much less latency. Its combination with the
Transformer with a shallow decoder can achieve
state-of-the-art performance with a 9× ∼ 12× on-
line inference speedup over the Transformer-big
baseline for GEC.

Based on the preliminary study of SAD in GEC,
we plan to further explore the technique for acceler-
ating the Transformer for other sentence rewriting
tasks, where the input is similar to the output, such
as style transfer and text simplification. We believe
SAD is promising to become a general accelera-
tion methodology for writing intelligence models in
modern writing assistant applications that require
fast online inference.

Acknowledgments

We thank all the reviewers for their valuable com-
ments to improve our paper. We thank Xingxing
Zhang, Xun Wang and Si-Qing Chen for their in-
sightful discussions and suggestions. The work is
supported by National Natural Science Foundation
of China under Grant No.62036001. The corre-
sponding author of this paper is Houfeng Wang.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Par-
allel iterative edit models for local sequence trans-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4251–4261.

Christopher Bryant, Mariano Felice, Øistein E An-
dersen, and Ted Briscoe. 2019. The bea-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative

Use of NLP for Building Educational Applications,
pages 52–75.

Mengyun Chen, Tao Ge, Xingxing Zhang, Furu Wei,
and Ming Zhou. 2020. Improving the efficiency of
grammatical error correction with erroneous span de-
tection and correction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7162–7169.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
22–31.

Tao Ge, Furu Wei, and Ming Zhou. 2018a. Fluency
boost learning and inference for neural grammati-
cal error correction. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1055–
1065, Melbourne, Australia. Association for Compu-
tational Linguistics.

Tao Ge, Furu Wei, and Ming Zhou. 2018b. Reaching
human-level performance in automatic grammatical
error correction: An empirical study. arXiv preprint
arXiv:1807.01270.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6114–
6123.

Sylviane Granger. The computer learner corpus: a ver-
satile new source of data for SLA research.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 252–263.

Jiatao Gu and Xiang Kong. 2020. Fully non-
autoregressive neural machine translation: Tricks of
the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11181–11191.

https://doi.org/10.18653/v1/P18-1097
https://doi.org/10.18653/v1/P18-1097
https://doi.org/10.18653/v1/P18-1097

5946

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked lan-
guage models in grammatical error correction. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4248–
4254.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A Smith. 2020. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Yanyang Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021.
An efficient transformer decoder with compressed
sub-layers. arXiv preprint arXiv:2101.00542.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3291–
3301.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5057–5068.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In Pro-
ceedings of 5th International Joint Conference on
Natural Language Processing, pages 147–155.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
Gector–grammatical error correction: Tag, not
rewrite. arXiv preprint arXiv:2005.12592.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Felix Stahlberg and Shankar Kumar. 2020. Seq2edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147–5159.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In NeurIPS.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhaohong Wan, Xiaojun Wan, and Wenguang Wang.
2020. Improving grammatical error correction with
data augmentation by editing latent representation.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2202–2212.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th an-
nual meeting of the association for computational
linguistics: human language technologies, pages
180–189.

5947

Yi Zhang, Tao Ge, Furu Wei, Ming Zhou, and Xu Sun.
2019. Sequence-to-sequence pre-training with data
augmentation for sentence rewriting. arXiv preprint
arXiv:1909.06002.

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiao-
jun Wan. 2018. Overview of the nlpcc 2018 shared
task: Grammatical error correction. In CCF Interna-
tional Conference on Natural Language Processing
and Chinese Computing, pages 439–445. Springer.

Wangchunshu Zhou, Tao Ge, Chang Mu, Ke Xu, Furu
Wei, and Ming Zhou. 2020. Improving grammatical
error correction with machine translation pairs. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 318–328.

A Hyper-parameters

Hyper-parameters of training the Transformer for
English GEC are listed in table 7. The hyper-
parameters for Chinese GEC are the same with
those of training from scratch.

Configurations Values
Train From Scratch

Model Architecture Transformer (big)
(Vaswani et al., 2017)

Number of epochs 60
Devices 4 Nvidia V100 GPU
Max tokens per GPU 5120
Update Frequency 4
Optimizer Adam

(β1=0.9, β2=0.98, ε=1× 10−8)
(Kingma and Ba, 2014)

Learning rate [3× 10−4 , 5× 10−4]
Learning rate scheduler inverse sqrt
Warmup 4000
Weight decay 0.0
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout [0.3, 0.4, 0.5]
Pretrain

Number of epochs 10
Devices 8 Nvidia V100 GPU
Update Frequency 8
Learning rate 3× 10−4

Warmup 8000
Dropout 0.3

Fine-tune
Number of epochs 60
Devices 4 Nvidia V100 GPU
Update Frequency 4
Learning rate 3× 10−4

Warmup 4000
Dropout 0.3

Table 7: Hyper-parameters values of training from
scratch, pretraining and fine-tuning.

Model
(Enc+Dec) Thread Beam=5 Greedy Aggressive

Speedup Speedup Speedup
6+6 8 1× 1.6× 6.5×
9+3 8 1.5× 2.5× 8.0×
6+6 2 1× 2.1× 6.1×
9+3 2 1.5× 3.1× 7.6×

Table 8: The efficiency of the Transformer with differ-
ent encoder and decoder depths in CoNLL-13 on CPU
with 8 and 2 threads.

B CPU Efficiency

Table 8 shows total latency and speedup of
the Transformer with different encoder-decoder
depth on an Intel® Xeon® E5-2690 v4 Proces-
sor(2.60GHz) with 8 and 2 threads12, respectively.
Our approach achieves a 7× ∼ 8× online infer-
ence speedup over the Transformer-big baseline on
CPU.

12We set OMP NUM THREADS to 8 or 2.

