
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5823–5833

August 1–6, 2021. ©2021 Association for Computational Linguistics

5823

An In-depth Study on Internal Structure of Chinese Words

Chen Gong1, Saihao Huang1∗, Houquan Zhou1, Zhenghua Li1, Min Zhang1,
Zhefeng Wang2, Baoxing Huai2, Nicholas Jing Yuan2

1Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, China; 2 Huawei Cloud, China

1{cgong,shhuang1999,hqzhou}@stu.suda.edu.cn
1{zhli13,minzhang}@suda.edu.cn

2{wangzhefeng, huaibaoxing, nicholas.yuan}@huawei.com

Abstract

Unlike English letters, Chinese characters
have rich and specific meanings. Usually, the
meaning of a word can be derived from its con-
stituent characters in some way. Several previ-
ous works on syntactic parsing propose to an-
notate shallow word-internal structures for bet-
ter utilizing character-level information. This
work proposes to model the deep internal struc-
tures of Chinese words as dependency trees
with 11 labels for distinguishing syntactic re-
lationships. First, based on newly compiled
annotation guidelines, we manually annotate a
word-internal structure treebank (WIST) con-
sisting of over 30K multi-char words from
Chinese Penn Treebank. To guarantee qual-
ity, each word is independently annotated by
two annotators and inconsistencies are han-
dled by a third senior annotator. Second, we
present detailed and interesting analysis on
WIST to reveal insights on Chinese word for-
mation. Third, we propose word-internal struc-
ture parsing as a new task, and conduct bench-
mark experiments using a competitive depen-
dency parser. Finally, we present two simple
ways to encode word-internal structures, lead-
ing to promising gains on the sentence-level
syntactic parsing task.

1 Introduction

Unlike English, Chinese adopts a logographic writ-
ing system and contains tens of thousands of dis-
tinct characters. Many characters, especially fre-
quently used ones, have rich and specific meanings.

However, words, instead of characters, are often
considered as the basic unit in processing Chinese
texts. We believe the reason may be two-fold. First,
usually a character may have many meanings and
usages. Word formation process greatly reduces
such char-level ambiguity. Second, by definition,
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Figure 1: Three example words with internal struc-
ture under different annotation paradigms. “想(think
of) 方(plan) 设(design) 法(method)” is a verb and
means “find ways or means to do”. “婚(marriage)
姻(marriage) 法(law)” is a noun. “法老” is phonetic
transliteration of “Pharaoh”. The three words all con-
tain the character “法” under different meanings.

words are the minimal units that express a com-
plete semantic concept or play a grammatical role
independently (Xia, 2009; Yu et al., 2003).1

Roles played by characters in word formation
can be divided into three types. (1) There is a stable
and important set of single-char words, such as
“你” (you)”, “的” (of), and most punctuation marks.
(2) A character having no specific meaning acts
as a part of a single-morpheme word, such as “仿

1There is still a dispute on the word granularity issue (Gong
et al., 2017; Lai et al., 2021). Words are defined as a character
sequence that is in tight and steady combination. However, the
combination intensity is usually yet vaguely qualified accord-
ing to co-occurrence frequency. We believe this work may
also be potentially useful to this direction.
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佛” (like) and “法(fǎ)老(lǎo)” (Pharaoh, translitera-
tion of foreign words). (3) A character corresponds
to a morpheme, the smallest meaningful unit in
a language, and composes a polysyllabic word
with other characters. This work targets multi-char
words, and is particularly interested in the third
type which most characters belong to.

Intuitively, modeling how multiple characters
form a word, i.e., the word-formation process, al-
lows us to more effectively represent the meaning
of a word via composing the meanings of charac-
ters. This is especially helpful for handling rare
words, considering that the vocabulary size of char-
acters is much smaller than that of words. In fact,
many NLP researchers have tried to utilize char-
level word-internal structures for better Chinese
understanding. Most related to ours, previous stud-
ies on syntactic parsing have proposed to annotate
word-internal structures to alleviate the data sparse-
ness problem (Zhang et al., 2014; Li et al., 2018).
However, their annotations mainly consider flat and
shallow word-internal structure, as shown in Figure
1-(a) and (b). Meanwhile, researchers try to make
use of character information to learn better word
embeddings (Chen et al., 2015; Xu et al., 2016).
Without explicitly capturing word-internal struc-
tures, these studies have to treat a word as a bag of
characters. See Section 2 for more discussion.

This paper presents an in-depth study on char-
level internal structure of Chinese words. We en-
deavour to address three questions. (1) What are
the word-formation patterns for Chinese words? (2)
Can we train a model to predict deep word-internal
structures? (3) Is modeling word-internal structures
beneficial for word representation learning?

For the first question, we propose to use labeled
dependency trees to represent word-internal struc-
tures, and employ 11 labels to distinguish syntactic
roles in word formation. We compile annotation
guidelines following the famous textbook of Zhu
(1982) on Chinese syntax, and annotate a high-
quality word-internal structure treebank (WIST),
consisting of 30K words from Penn Chinese Tree-
bank (CTB) (Xia, 2009). We conduct detailed anal-
ysis on WIST to gain insights on Chinese word-
formation patterns.

For the second question, we propose word-
internal structure parsing as a new task, and present
benchmark experimental results using a competi-
tive open-source dependency parser.

For the third question, we investigate two sim-

ple ways to encode word-internal structure, i.e.,
LabelCharLSTM and LabelGCN, and show that
using the resulting word representation leads to
promising gains on the dependency parsing task.

We release WIST at https://github.com/

SUDA-LA/ACL2021-wist, and also provide a demo
to parse the internal structure of any input word.

2 Related Work

Annotating word-internal structure. In the
deep learning (DL) era, pretraining techniques are
extremely powerful in handling large-scale unla-
beled data, including Skip-Gram or CBOW mod-
els (Mikolov et al., 2013) for learning context-
independent word embedding in the beginning, and
the recent ELMo (Peters et al., 2018) or BERT
(Devlin et al., 2019) for learning context-aware
word representations. Conversely, in the pre-DL
era, there exist few (if any) effective methods for
utilizing unlabeled data, and statistical models rely
on discrete one-hot features, leading to severe data
sparseness for many NLP tasks. This directly mo-
tivates annotation of word-internal structure, espe-
cially for dealing with rare words.

Annotation of shallow internal structure of Chi-
nese words was first mentioned in Zhao (2009),
largely based on heuristic rules. Li (2011); Li and
Zhou (2012) found that many multi-char words
could be divided into two subwords, i.e., root and
affix. They annotated structures of about 19K
words (35% of 54,214) in CTB6. Their experi-
ments showed that subword-level syntactic parsing
is superior to word-level parsing. For the three
words in Figure 1, their approach is only applicable
to the second word, i.e., “婚姻/法”. As an exten-
sion to Li and Zhou (2012), Zhang et al. (2013,
2014) proposed char-level syntactic parsing by fur-
ther dividing subwords into chars. As shown in
Figure 1-(a), for each word, they annotated a binary
hierarchical tree, using constituent labels to mark
which child constituent is more syntactically impor-
tant, i.e., left, right, or coordinate. In such way, they
could convert a word-level constituent/dependency
tree into a char-level one. Similar to Li and Zhou
(2012), Cheng et al. (2014) annotated internal struc-
ture of synthesis (multi-morpheme) words with
four relations, i.e., branching, coordinate, begin-
ning and other parts of a single-morpheme word.

In the DL era, three works have studied word-
internal structure. Similarly to our work, Li et al.
(2018) employed dependency trees to encode word-

https://github.com/SUDA-LA/ACL2021-wist
https://github.com/SUDA-LA/ACL2021-wist
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Label Meaning Example Annotation

root word root 登场 (come on stage) $ root−−→登 (come)
obj−−→场 (stage)

subj subject 年轻 (young) 年 (age)
subj←−−轻 (small)

obj object 下雨 (rain) 下 (drop)
obj−−→雨 (rain)

att attribute modifier 大衣 (overcoat) 大 (large) att←−衣 (coat)
adv adverbial modifier 不同 (different) 不 (not) adv←−−同 (same)
cmp complement modifier 放下 (put down) 放 (put)

cmp−−→下 (down)
coo coordination 上下文 (context) 上 (above) coo−−→下(below)

pobj preposition object 到期 (expire) 到 (reach)
pobj−−→期 (deadline)

adjct adjunct 走过 (pass by) 走 (walk)
adjct−−−→过 (by)

frag fragment 沙发 (sofa) 沙 (sand)
frag−−→发 (send)

repet repetition 常常 (often) 常 (often)
repet−−−→常 (often)

Table 1: The 11 labels adopted in our guidelines for distinguishing syntactic roles in word formation.

internal structure. As shown in Figure 1-(b), for
each multi-char word, they first annotate the part-
of-speech (POS) tag of each character, and then de-
termine an unlabeled dependency tree, and finally
use a POS tag triple as arc label, corresponding
to the POS tags of the modifier/head characters
and the whole word. However, we argue POS tag
triples are only loosely related with word-formation
patterns, not to mention the severe difficulty of an-
notating char-level POS tags in each word.

Recently, Lin et al. (2020) extended Zhang et al.
(2014) by using an extra label for marking single-
morpheme words, and annotated hierarchical inter-
nal structure of 53K words from a Chinese-English
machine translation (MT) dataset. Li et al. (2019a)
annotated the internal structure of words with 4
dependency relations.

In summary, we can see that most previous stud-
ies adopted quite shallow hierarchical structure. In
contrast, this work presents a more in-depth inves-
tigation on internal structure of Chinese words and
employs 11 labels to distinguish different syntactic
roles in word formation, as shown in Figure 1-(c).

Leveraging character information for better
word representation. It has already become a
standard way in many NLP tasks to obtain char-
aware word representation by applying LSTM or
CNN to the character sequence of a word, and con-
catenate it with word embedding as input, such as
named entity recognition (Chiu and Nichols, 2016),
dependency parsing (Zhang et al., 2020), and con-
stituent parsing (Gaddy et al., 2018).

Another research direction is to leverage charac-

ter information to obtain better word embeddings.
Chen et al. (2015) extended the CBOW model and
proposed to jointly learn character and word embed-
dings. Based on Chen et al. (2015), Yu et al. (2017)
proposed to jointly learn embeddings of words,
characters, and sub-characters.2 However, both
studies assume that characters contribute equally
to the meaning of a word and directly average em-
beddings of all characters. To address this, Xu
et al. (2016) extended Chen et al. (2015) and pro-
posed a cross-lingual approach to distinguish con-
tribution of characters for a word. The idea is to
translate Chinese words and characters into English
words, and use similarities between corresponding
English word embeddings for contribution mea-
surement. Instead of treating a word as a bag of
characters, we experiment with two simple ways to
obtain structure-aware word representations. Mean-
while, enhancing their approach with explicit word-
internal structure could be also very interesting.

Utilizing word-internal structure. Word-
internal structure have been explored in various
NLP tasks. Several works propose to learn word-
internal structure, word segmentation, POS tagging
and parsing jointly (Zhang et al., 2013, 2014; Li
et al., 2018), demonstrating the effectiveness of
word-internal structure in helping downstream
tasks. Cheng et al. (2015) attempt to convert
words into fine-grained subwords according to the

2Following this direction, studies tried to explore more
character information for better Chinese word representation,
such as strokes (Cao et al., 2018) and ideographic shape (Sun
et al., 2019).
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internal structure of words for better dealing with
unknown words during word segmentation. Lin
et al. (2020) propose to integrate the representation
of word-internal structure into the input of neural
machine translation model, leading to improved
translation performance.

3 Word-internal Structure Annotation

In this section, we describe in detail the anno-
tation process of WIST. As shown in Figure 1-
(c), we adopt dependency trees for representing
word-internal structure. The reason is two-fold.
First, word-formation process correlates with syn-
tax in different ways depending on language type
(Aikhenvald, 2007). Such correlation is especially
close for Chinese due to its lack of morphologi-
cal inflections. In particular, Zhu (1982) presented
thorough investigation on Chinese word formation
mainly from a syntactic view. Second, as a gram-
mar formalism, dependency tree structure has been
widely adopted for capturing sentence-level syntax
due to its simplicity and flexibility in representing
relations. Meanwhile, its computational modeling
is also developed quite well.

Annotation guidelines. After several months’
survey, we have compiled systematic and detailed
guidelines for word-internal structure annotation.
Our guidelines are mainly based on the famous text-
book on Chinese grammar of Zhu (1982). We inten-
sively studied all previous works on word-internal
structure annotation, which are discussed in Sec-
tion 2. We also find that it is quite beneficial to
be familiar with guidelines developed by previous
annotation projects for Chinese word segmentation
(Xia, 2009; Yu et al., 2003).

Our guidelines contain 11 relations specifically
designed to capture the internal dependency syntax
for Chinese words, as shown in Table 1. We derive
most of the dependency relations by referring to
guidelines of three popular Chinese dependency
treebanks, i.e., UD, Harbin Institute Technology
Chinese Dependency Treebank (HIT-CDT) (Liu
et al., 2006), and Chinese Open Dependency Tree-
bank (CODT) (Li et al., 2019b). We give very
detailed illustrations with examples in our 30-page
guidelines to ensure annotation consistency and
quality. Our guidelines are also gradually improved
according to the feedback from the annotators.

Quality control. We employ 18 undergraduate
students as part-time annotators who are familiar

Total # 1 2 3 ≥4
word type 37,449 5.6 58.3 22.8 13.3
word token 508,764 48.0 44.1 6.0 1.9

Table 2: Word distr. regarding char number in CTB5.

with Chinese syntax, and select 6 capable anno-
tators with a lot of data annotation experience as
expert annotators to handle inconsistent submis-
sions. All the annotators (including expert anno-
tators) were paid for their work . The salary is
determined by both quantity and quality. Besides,
we give extra bonus to the annotators with high
accuracy. The average salary of the annotators is
30 RMB per hour. All annotators are trained for
several hours to be familiar with our guidelines and
the usage of annotation tool.

We apply strict double annotation in order to
guarantee quality. Each word is randomly assigned
to two annotators. Two identical submissions are
directly used as the final answer. Otherwise, a third
expert annotator is asked to decide the final answer
after analyzing the two inconsistent annotations.

Annotation tool. We build a browser-based an-
notation tool to support the annotation workflow
and facilitate project management.

Given an annotation task, all its POS tags 3 of
the focused word in CTB5 are presented to the an-
notator, in order to explore multiple internal struc-
tures for one word. In that case, the annotator can
click a checkbox to inform us for further process.
Please note that the manually annotated POS tags
in CTB5 are converted into Universal Dependen-
cies (UD) 4 POS tags based on predefined mapping
rules, since the original CTB5 POS tags are too
fine-grained (33 tags) and difficult for annotators to
understand. The interface also presents several ex-
ample sentences to improve annotation efficiency.
We strongly encourage annotators to look up diffi-
cult words or characters in electronic dictionaries.5

3In CTB5, a word may be annotated with different POS
tags under different contexts. For example, “发展 (develop-
ment)” is annotated as NN (noun) in the context “促进经济
发展 (boost the economic development )”, whereas “发展
(develop)” is annotated as (VV) verb in the context “稳定
地发展 (develop steadily)”. Therefore, when annotating the
word “发展 (develop/development )”, we present both “noun”
and “verb” to the annotators for reference.”

4universaldependencies.org/u/pos/
5Eg., hanyu.baidu.com; xh.5156edu.com/

universaldependencies.org/u/pos/
hanyu.baidu.com
xh.5156edu.com/
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Data selection. Following previous works, we
select multi-char words from CTB5 for annotation.
Table 2 shows word distribution regarding character
numbers. We can see that only 5.6% of words in
the vocabulary contain one char, but they account
for nearly half (48%) token occurrences in the text.
The percent of words with two characters is high in
both vocabulary (58.3) and text (44.1). We discard
words containing special symbols such as English
letters. Finally, we have annotated 32,954 multi-
char words with their internal structure, containing
83,999 dependencies (2.5 characters per word).

4 Analysis on Annotated WIST

In this section, we analyze the annotated WIST
from different aspects in order to gain more insights
on Chinese word-formation patterns.

Inter-annotator consistency. As discussed ear-
lier, each word is labeled by two annotators, and
inconsistent submissions are handled by a third se-
nior annotator for obtaining a final answer. The
averaged inter-annotator consistency ratio is 83.0
dependency-wise, i.e., the percent of characters
receiving the same head and label from two an-
notators, and 75.8 word-wise, i.e., the percent of
words receiving the same whole trees. If we do
not consider labels, the unlabeled consistency ra-
tios increase to 87.5 dependency-wise and 85.1
word-wise. Although it may be a factor that most
annotators are inexperienced in this new annotation
task, such low consistency ratios indicate that anno-
tating word-internal structure is quite challenging,
especially when it comes to distinguishing syntac-
tic roles. Meanwhile, this also demonstrates the
importance of strict double annotation, considering
that nearly a quarter of words are inconsistent and
require handling by senior annotators.

Annotation accuracy. We calculate annotation
accuracy by comparing all submissions (as denom-
inator) from annotators against the final answers in
WIST. Please note that each word is double anno-
tated. The overall dependency-wise accuracy for
all annotators is 90.9, and word-wise is 86.9. If
not considering labels, the overall unlabeled accu-
racy increases to 93.4 and 92.1, dependency- and
word-wise respectively.

The first major row in Table 3 shows the label-
wise annotation accuracy. We divide characters
in WIST into 11 groups according to their final-
answer labels, and then calculate the percent of

correct submissions for each group. The highest
accuracy is obtained on “repet”, since its pattern is
quite regular. Determining the root character also
seems relatively easy. The lowest accuracy is 62.0
on “subj” and 48.2 on “pobj”.

Comparing unlabeled versus labeled accuracy,
the gap is quite large. The extreme case is “pobj”.
Annotators usually can correctly decide the head
(84.5%), but very unlikely choose its true label
“pobj” (48.2%). Similarly, accuracy drops by 24.9
for “subj”. We give more discussions on annotation
difficulties below.

Label distribution. The third major row in Ta-
ble 3 shows distribution of different labels in WIST.
From the percentage of “root” (39.2%), we can
infer that one word contains 2.5 characters on av-
erage. The overall percent for “att” is 29.1, almost
half of the remaining labels, meaning that “att” ap-
pears once every 1.45 words. This reveals that at-
tribute modification is the most dominated pattern
in word formation. Coordination structure (“coo”)
takes the second place with 10.2%. The third most
used pattern is fragment (“frag”) with 5.7%. We
give more discussion on “frag” below.

Besides the overall distribution, the third major
row in Table 3 gives label distribution per POS tag.
For clarity, we give the full name of each POS tag
(UD, converted from the fine-grained CTB tags) in
Table 3, and it means the POS tag of the focused
word. If a word has multiple POS tags, then the
same word-internal structure is used for each tag.
For example, if a word “发 (expand) coo−−→展 (ex-
pand)” has two tags, i.e., Noun and Verb, then the
number of “coo” is added by one for both Noun
and Verb. Moreover, a label is repeatedly counted
if it appears several times in the same word. Due to
space limitation, we only present high-frequency
POS tags, with percentage shown in parenthesis.
Please note that we adopt a coarse-grained POS tag
set for clarity.

We can see that nouns are mostly formed with
“att” (33.8%) and “coo” (11.5%), whereas verbs
are with “coo/obj/adv/cmp” in the descending or-
der. Proper nouns are evenly dominated by “frag”
(29.6%) and “att” (28.4%). It is also obvious that
proper nouns tend to be longer, consisting of 2.7
characters according to its “root” percentage. Nu-
merals are mainly composed via “att” (75.7%) and
consist of 5.0 character on average.
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root att coo frag obj adv cmp adjct subj repet pobj
Annotation Accuracy 93.9 93.1 88.6 89.3 82.6 80.6 85.3 83.5 62.0 96.0 48.2

Unlabeled 93.8 94.2 92.3 93.3 92.7 88.1 97.9 92.2 86.9 99.4 84.5
Parsing Accuracy 89.0 89.5 75.8 80.6 77.4 68.0 84.0 76.8 64.2 81.1 58.1

Unlabeled 89.0 90.6 85.4 84.1 88.2 80.7 93.5 80.5 80.7 97.3 83.9
Overall Distribution 39.2 29.1 10.2 5.7 5.4 4.3 2.3 1.5 1.5 0.6 0.2

Noun (47.2%) 42.3 33.8 11.5 2.5 4.4 2.6 0.4 1.1 1.1 0.2 0.1
Verb (24.1%) 42.2 3.8 17.9 0.4 12.7 9.6 7.9 1.2 3.1 0.9 0.4
Proper Noun (13.1%) 36.6 28.4 2.3 29.6 0.8 0.6 0.1 0.9 0.6 0.3 0
Adjective (7.1%) 44.4 16.5 17.7 0.7 7.5 8.2 0.6 0.7 1.9 1.6 0.2
Adverb (3.9%) 45.5 12.1 10.3 0.6 6.4 12.1 1.8 5.3 1.0 2.8 2.3
Numeral (3.7%) 20.0 75.7 0.4 0.1 0.1 0.2 0 3.6 0 0.1 0
Others (0.9%) 47.6 15.2 8.7 2.1 1.4 7.7 4.8 8.2 0.3 3.9 0.1

Table 3: Label-wise accuracy and distribution. The first major row presents annotation accuracy of WIST and
“unlabeled” means not considering labels. The second major row gives parsing accuracy on WIST-test, discussed
in Section 5. The third major row gives distribution of different labels for words of different POS tags.

Multiple structures for one word? Many
words have multiple meanings. Then the question
is: how many words really have multiple internal
structures? As illustrated in Section 3, we show
all POS tags to annotators in order to obtain all
internal structures of an ambiguous word. How-
ever, in annotated WIST, we find there are only
103 such words with multiple internal structures,
accounting for about 0.3% of all annotated words,
and 2.7% of those having multiple POS tags. As a
typical example, “制服” have two structures. As a
verb, it means “subdue” and has “制(control)

cmp−−→
服(tamely)”. As a noun, it means “uniform” and
has “制(regulated) att←−−服(cloth)”. This low per-
centage reveals that most Chinese words actually
have very steady internal structure. They have mul-
tiple POS tags, mainly because they are used for
different syntactic functions without morphologi-
cal inflections, such as “发展” as verb (“develop”)
or noun (“development”).

More on “frag”. The “frag” label is designed
to handle all words that have no internal structure
due to the lack of semantic composition. From
Table 3, we can see that “frag” accounts for 5.7%
of all labels. In order to gain more insights, we
collect all 3,528 words containing “frag” in WIST,
and randomly sample 100 words for investigation.
Following the brief discussion in Section 1, we
divide these words into three types, and find that
81 words are proper nouns (such as person name);
16 correspond to transliteration of foreign words;
and 3 are single-morpheme words.

High-order structure distribution. To gain
more insights on complex word-formation struc-
ture, we focus on all three-char words. We find that
the root usually lies in the third character by 74.6%,
and the percentage for the second and first charac-
ters is only 15.3 and 10.1 respectively. Looking
more closely, we find the following four dominated
structures.

1← 2← 3 34.7% (1→ 2)← 3 34.2%
1← 2→ 3 15.3% 1→ 2→ 3 7.0%

Difficulties in annotation. Since it is difficult to
capture the patterns on unlabeled-dependency in-
consistencies, we focus on confusion patterns in
label annotation. Among all characters receiving
the same head but different labels from two annota-
tors, 20.1% correspond to “{att, adv}” confusion
due to the ambiguity of the head character being
a verb or a noun. The second confusion pattern is
“{coo,frag}”, with a proportion of 18.6, which are
mainly from proper nouns. According to our guide-
lines, if the meaning of a proper noun is compound-
ing, annotators have to annotate its real internal
structures rather than using “frag”. It is also very
difficult to distinguish “obj” and “pobj”, since the
boundary between prepositions and verbs is vague
in Chinese.

5 Word-internal Structure Parsing

With annotated WIST, we try to address the second
question: can we train a model to predict word-
internal structure? We adapt the Biaffine parser
proposed by Dozat and Manning (2017), a widely
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Figure 2: The basic architecture of Biaffine Parser.

used sentence-level dependency parser, for this pur-
pose, and present results and analysis.

5.1 Biaffine Parser

We adopt the SuPar implementation released by
Zhang et al. (2020).6 As a graph-based parser, Bi-
affine parser casts a tree parsing task as searching
for a maximum-scoring tree from a fully-connected
graph, with nodes corresponding to characters in
our case. As shown in Figure 2, it adopts stan-
dard encoder-decoder architecture, consisting of
the following components.

Input layer. Given an input sequence, each item
is represented as a dense vector xi. For word-
internal structure parsing, an item corresponds to a
character, and we use char embedding.

xi = emb(ci) (1)

BiLSTM encoder. Then, a three-layer BiLSTM
is applied to obtain context-aware representations.
We denote the hidden vector of the top-layer BiL-
STM for the i-th position as hi.

Biaffine scorer. Two separate MLPs are applied
to each hi, resulting in two lower-dimensional vec-
tors rhi (as head) and rdi (as dependent). Then the
score of a dependency i → j is obtained via a bi-
affine attention over rhi and rdj . Scoring of labeled

dependencies such as i l−→ j is analogous.
Decoder. With the scores of all dependencies,

we adopt the first-order algorithm of Eisner (2000)
to find the optimal unlabeled dependency tree, and
then independently decide the highest-scoring label
for each arc.

6https://github.com/yzhangcs/parser

Dev Test

UAS LAS UAS LAS CM
Random 81.18 76.15 80.63 75.58 65.13

Pretrained
82.42 77.30 81.64 76.98 67.09
+1.24 +1.15 +1.01 +1.40 +1.96

BERT
88.27 85.18 88.33 84.98 77.72
+5.85 +7.88 +6.69 +8.00 +10.63

Table 4: Results of word-internal structure parsing us-
ing different character representations.

Training loss. During training, the parser com-
putes two independent cross-entropy losses for
each position, i.e., maximizing the probability of
its correct head and the correct label between them.

5.2 Settings

Data. We randomly split all words in WIST into
three parts, 2,500/5,000 as development/test data
and remaining as training data.

Hyperparameters. We set the dimension of
char embeddings to 100. We obtain pre-trained
character embeddings by training word2vec on Chi-
nese Gigaword Third Edition. In order to see effect
of contextualized character representations, we ap-
ply BERT (Devlin et al., 2019) 7 to each word as
a char sequence. The output vectors of the top
four layers are concatenated and reduced into a
dimension of 100 via an MLP. For other hyper-
parameters, we keep the default configuration in
SuPar.

Evaluation metrics. We adopt the standard un-
labeled and labeled attachment score (UAS/LAS),
i.e., the percent of characters that receives the cor-
rect head (and label). The complete match (CM) is
the percent of words having correct whole trees.

5.3 Results

Table 4 shows the main results under different char
representations. It is obvious that using randomly
initialized char embeddings, the parser can only
reach about 76 in LAS. This shows that parsing
word-internal structure is very challenging with-
out using extra resources. When we pretrain char
embeddings on large-scale labeled data, the perfor-
mance can be consistently improved by over 1 point
in both UAS/LAS, and nearly 2 points in CM. Fi-
nally, employing the contextualized character rep-

7BERT-base-Chinese：https://github.com/
google-research/bert

https://github.com/yzhangcs/parser
https://github.com/google-research/bert
https://github.com/google-research/bert
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resentations dramatically improves performance
further by about 6/8/10 points in UAS/LAS/CM.

However, even with BERT, model performance
still lags behind averaged human performance
(90.9 in LAS) by large margin. Our experienced
annotators can even reach more than 94. Our ex-
perience in manual annotation points out two pos-
sible directions to enhance the model: 1) making
use of sentence-level contextual information; 2)
leveraging the meanings in dictionaries, usually in
the form of explanation or example sentences. We
leave them for future exploration.

Analysis on label-wise accuracy. The second
major row in Table 3 reports accuracy regarding dif-
ferent labels for the model with BERT. The model
achieves the highest accuracy on “att” and “root”,
possibly because the two labels take very large
proportion in the data for sufficient model train-
ing. By contrast, “pobj” and “subj” have the lowest
accuracy, and are difficult for models as well as
discussed in Section 3. This leads to another ob-
servation that model accuracy is roughly correlated
with annotation accuracy, implying the difficulties
for human and model are usually consistent.

6 Utilizing Word-internal Structure

This section presents a preliminary study on utiliz-
ing word-internal structure, aiming to address the
third question: is modeling word-internal structures
beneficial for word representation learning?

We use sentence-level dependency parsing as the
focusing task (Kübler et al., 2009), mainly consid-
ering resemblance in tree structure representation
and close relatedness between the two tasks. Given
an input sentence w0w1...wm, the goal of depen-
dency parsing is to find an optimal dependency tree
for the sentence. Again, we adopt SuPar (Zhang
et al., 2020) for implementation of Biaffine parser
(Dozat and Manning, 2017) as our basic parser.

6.1 Methods

The basic parser applys a BiLSTM over character
sequence to obtain word representation. In this
part, we propose two simple alternative methods to
encode internal structure shown in Figure 1-(c).

Basic CharLSTM method. For each word, the
basic Biaffine parser uses the concatenation of
word embeddings and CharLSTM outputs to repre-

sent each word in the input layer:

xi = emb(wi)⊕ CharLSTM(wi)

CharLSTM(wi)← BiLSTM(..., zk, ...)

zk = emb(ci,k)

(2)

where ci,k is the k-th character of wi. The final
word representation from CharLSTM(wi) is ob-
tained by concatenating two last-timestamp hidden
output vectors of a one-layer BiLSTM.

LabelCharLSTM Method. Considering that
the word is usually very short and a bare label itself
provides rich syntax information, we propose a
straightforward extension to CharLSTM, named as
LabelCharLSTM, via minor modification.

zk = emb(ci,k)⊕ emb(li,k) (3)

where li,k represents the label between ci,k and its
head in the word-internal structure.

LabelGCN method. Previous work show that
GCN is very effective in encoding syntactic trees
(Marcheggiani and Titov, 2017; Zhang et al., 2018).
We follow the implementation of Zhang et al.
(2018) and use a two-layer GCN as a more so-
phisticated way. In order to utilize labels, we ex-
tend vanilla GCN to have the same input with La-
belCharLSTM, i.e., zk. We obtain the final word
representation by performing average pooling over
the output vectors of the top-layer GCN.

6.2 Experiments
Settings. Following Chen and Manning (2014),
we conduct experiments on CTB5 with the
same data split (16,091/803/1,910 sentences)
and constituent-to-dependency conversion. Both
char/label embeddings are randomly initialized and
have the same dimension of 50. For the parsers
using gold-standard POS tags, we randomly ini-
tialized the POS tagging embeddings and set the
dimension to 50. For other hyperparameters, we
adopt the default configuration of SuPar, including
the pre-trained word embeddings.

For multi-char words without annotated internal
structure, we use the automatic outputs from the
trained parser with BERT in Section 5, so that every
word corresponds to a single structure.

We use word-wise UAS/LAS/CM for evaluation,
and punctuation is excluded in all metrics.

Main results. Table 5 shows the parsing perfor-
mance. We can see that both LabelCharLSTM
and LabelGCN substantially outperform the basic
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UAS LAS CM
Basic CharLSTM 88.31 85.96 32.04
LabelCharLSTM 88.78 86.51 33.19
LabelGCN 89.02 86.76 32.93

w/o label 88.66 86.28 32.20

Table 5: Parsing performance on CTB5-test.

all > 2 ≤ 2 unk.
Basic CharLSTM 85.96 86.42 82.03 81.73

LabelGCN
86.76 87.10 83.79 84.30
+0.80 +0.68 +1.76 +2.57

Table 6: Parsing LAS regarding to word frequency.

CharLSTM method. LabelGCN achieves the best
performance on UAS and LAS, with a gain of 0.71
and 0.80 respectively.

The fourth row reports performance of Label-
GCN without using label embedding, leading to
consistent accuracy drop, demonstrating the useful-
ness of rich labels, which is a key contribution of
this work, despite the extra annotation effort.

Analysis on rare words. To gain more insights
on how word-internal structure helps word repre-
sentation learning, we divide the words in CTB5-
test into several groups according to their frequency
in CTB5-train, and report fine-grained accuracy in
Table 6. We can see that the overall performance
gain is mostly contributed by improvement over
rare words with low frequency or totally unknown.
This verifies that word-internal structures can help
the model to better represent rare words.

Results with gold-standard POS tags. As sug-
gested by a reviewer, we train our parser with gold-
standard POS tags by concatenating the original
input (i.e., xi in Equation 2) with gold-standard
POS tag embeddings, in order to compare with pre-
vious works. Table 7 shows the results. Compared
with the Basic CharLSTM results in Table 5, using
gold-standard POS tags as extra features for the Ba-
sic CharLSTM leads to substantial improvements
by 2.80 and 3.95 in UAS and LAS respectively,
and outperforms the previous works as presented
in Table 7, showing that the basic CharLSTM can
be served as a strong baseline model.

Compared with the Basic CharLSTM, utiliz-
ing word-internal structure with LabelCharLSTM
or LabelGCN achieves consistently better perfor-
mance by 0.24 and 0.25 respectively in LAS in

UAS LAS
Ma and Hovy (2017) 89.05 87.74
Dozat and Manning (2017) 89.30 88.23
Ma et al. (2018) 90.59 89.29
Basic CharLSTM 91.11 89.91
LabelCharLSTM 91.31 90.15
LabelGCN 91.31 90.16

Table 7: Parsing performance with gold-standard POS
tags on CTB5-test.

the scenario of using gold-standard POS tags. Be-
sides the strong baseline, another reason that the
improvement brings by the internal-word structure
is slight when using gold-standard POS tags is that
a part of linguistic information in the POS tags and
the word-internal structures may be overlapping.

7 Conclusions

This paper presents a thorough study on internal
structures of Chinese words. First, we annotate a
high-quality word-internal structure treebank cov-
ering over 30K words in CTB5, named as WIST.
Second, we perform analysis on WIST from dif-
ferent perspectives and draw many interesting find-
ings on Chinese word-formation patterns. Third,
we propose word-internal structure as a new task,
and present benchmark results using a popular de-
pendency parser. Finally, we conduct preliminary
experiments with two simple methods, i.e., La-
belCharLSTM and LabelGCN, to encode word-
internal structure as extra word representation, and
find promising performance gains on the sentence-
level dependency parsing task. Analysis shows
that the rich dependency labels adopted in WIST
play a key role, and word-internal structure is most
beneficial for rare word representation.

Acknowledgments

The authors would like to thank the anonymous
reviewers for the helpful comments. We are very
grateful to Guodong Zhou for the inspiring discus-
sions and suggestions on Chinese word-internal
structures. We thank Kaihua Lu for building the
annotation system, and Mingyue Zhou, Haoping
Yang, and Yahui Liu for their help in compiling
annotation guidelines, and all the annotators for
their hard work in data annotation. This work
is supported by the National Key Research and
Development Program of China under Grant No.
2017YFB1002104.



5832

References
Alexandra Y. Aikhenvald. 2007. Typological distinc-

tions in word-formation, 2 edition, volume 3, page
1–65. Cambridge University Press.

Shaosheng Cao, Wei Lu, Jun Zhou, and Xiaolong Li.
2018. cw2vec: Learning Chinese word embeddings
with stroke n-gram information. In Proceedings of
AAAI, pages 5053–5061.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of EMNLP, pages 740–750.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huan-Bo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Proceedings of IJCAI,
pages 1236–1242.

Fei Cheng, Kevin Duh, and Yuji Matsumoto. 2014.
Parsing chinese synthetic words with a character-
based dependency model. In Proceedings of LREC,
pages 67–72.

Fei Cheng, Kevin Duh, and Yuji Matsumoto. 2015.
Synthetic word parsing improves chinese word seg-
mentation. In Proceedings of IJCAI, pages 262–267.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. TACL,
4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of ICLR.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Advances in Prob-
abilistic and Other Parsing Technologies, pages 29–
62. Kluwer Academic Publishers.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of NAACL-HLT, pages
999–1010.

Chen Gong, Zhenghua Li, Min Zhang, and Xinzhou
Jiang. 2017. Multi-grained Chinese word segmenta-
tion. In Proceedings of EMNLP, pages 692–703.
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