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Abstract
Despite the achievements of large-scale mul-
timodal pre-training approaches, cross-modal
retrieval, e.g., image-text retrieval, remains a
challenging task. To bridge the semantic gap
between the two modalities, previous studies
mainly focus on word-region alignment at the
object level, lacking the matching between the
linguistic relation among the words and the vi-
sual relation among the regions. The neglect
of such relation consistency impairs the con-
textualized representation of image-text pairs
and hinders the model performance and the
interpretability. In this paper, we first pro-
pose a novel metric, Intra-modal Self-attention
Distance (ISD), to quantify the relation con-
sistency by measuring the semantic distance
between linguistic and visual relations. In re-
sponse, we present Inter-modal Alignment on
Intra-modal Self-attentions (IAIS), a regular-
ized training method to optimize the ISD and
calibrate intra-modal self-attentions from the
two modalities mutually via inter-modal align-
ment. The IAIS regularizer boosts the perfor-
mance of prevailing models on Flickr30k and
MS COCO datasets by a considerable margin,
which demonstrates the superiority of our ap-
proach.1

1 Introduction

Cross-modal retrieval, including image-text re-
trieval, video-text retrieval, etc., has long been
an important downstream task in cross-modal rep-
resentation learning. Image-Text Retrieval (ITR)
aims at modeling the similarity of image-text pairs
and recalling the most relevant one. It remains quite
challenging due to the heterogeneity of the data and
the semantic gap between two different modalities.
To bridge this gap, neural networks are responsi-
ble for learning global representations of images

∗Corresponding Author
1Our code is available at https://github.com/

lancopku/IAIS

A guy with a red shirt walking.

withA guy a red shirt walking.

Previous alignment: object level

Our alignment: relation level

a red
shirt

withA guy a red shirt walking.

a re
d

shir
t

0.12

0.36

0.52

a re
d sh

irt
A g

uy

(the rest regions)

wit
h, w

alki
ng.

(the
rest

tok
ens

)

0.47

0.23
0.30

Intra-modal
Self-attention
Disagreement

☹

A bad case of intra-modal self-attention disagreement

Self-attention

Attention distribution

Figure 1: The upper part shows a comparison of previ-
ous object-level alignment and our relation-level align-
ment. The symbol ↔ denotes alignment and 99K de-
notes the self-attention stems from a query. The lower
panel gives a bad case of inconsistent textual and vi-
sual relations. The region of “a red shirt” pays consid-
erable attention to the region of the dog, which does
not benefit the matching and is inconsistent with the
self-attention of the corresponding phrase.

and texts in a joint semantic space and aligning the
images and texts with the same semantics (Faghri
et al., 2018; Kiros et al., 2014). A straightforward
way to enhance the alignment is to enforce the local
matching between the object-oriented words and
the corresponding image regions, and then lever-
age the object co-occurrence statistics (Liu et al.,
2020; Zhang et al., 2020a) in the pairs for inference.
Previous studies incorporate auxiliary knowledge
source like scene graphs (Yu et al., 2020) or object
tags (Li et al., 2020) to explicitly indicate the cross-

https://github.com/lancopku/IAIS
https://github.com/lancopku/IAIS
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modal mapping. Other researches try to establish
fine-grained interaction on cross-modal attention
to reinforce the focus from words to their most rel-
evant regions, and vice versa (Chen et al., 2020;
Wang et al., 2019; Messina et al., 2020; Lee et al.,
2018; Zhang et al., 2020b; Yang et al., 2020).

However, such word-region alignment at object
level serves only as the basis because it mainly fo-
cuses on the local semantics but lacks the matching
of global features like the intra-modal relation.
The intra-modal relation refers to the correlation
of items within a textual or visual sequence. More
specifically, given a sentence and an image that
describe the same scene and are highly matched,
the correlation of the items in the textual sequence
should also agree with the correlation of the corre-
sponding items in the visual sequence. But such
constraint of relation consistency is neglected in
previous works, which hinders performance and
interpretability of the models. To corroborate this,
we conduct a case study on Flickr30k Entities
dataset (Plummer et al., 2015) to probe the agree-
ment of relation-level semantics in pre-trained mod-
els like UNITER (Chen et al., 2020). We utilize
the self-attention distribution as a representation of
the intra-modal relations (Clark et al., 2019; Htut
et al., 2019; Kovaleva et al., 2019).

As shown in Figure 1, the attention distributions
grouped by the annotated object of the given text
and image are in disagreement with each other.
Specifically, the attention distribution in the linguis-
tic modality is reasonable. However, in the visual
modality, the region “a red shirt” pays inappropri-
ate attention to the region of the dog that doesn’t
appear in the text, which impairs the representation
of this visual item, i.e., “a red shirt” under the con-
dition of the corresponding text. Such mismatched
attention distributions suggest that the model repre-
sents the same concept with inconsistent semantics,
which misleads the model to reduce the estimated
similarity of the positive pairs and further leads
to the wrong predictions that they are unmatched.
What’s even worse is that in practice, the input re-
gions of the existing methods are extracted by a
pre-trained object detector like Faster R-CNN (Ren
et al., 2015). The visual features are much noisier
due to over-sampling (Li et al., 2020; Anderson
et al., 2018), which necessitates a stronger regu-
larizer to guide the alignment of the intra-modal
relations.

Motivated by the above observations, we pro-

mote the semantic alignment from object level to
relation level. We leverage self-attention matrix to
characterize the relation of items within one modal-
ity, and design Intra-modal Self-attention Distance
(ISD), a novel metric to measure the consistency
between textual and visual relations. Our empiri-
cal analysis illustrates that the ISD and the model
performance on image-text retrieval are highly cor-
related, which verifies our hypothesis and inspires
us to minimize the semantic distance between intra-
modal self-attentions in training. Accordingly,
we propose a new regularized training method
called Inter-modal Alignment on Intra-modal Self-
attentions (IAIS) to calibrate two intra-modal at-
tention distributions mutually via inter-modal align-
ment, which helps learn better contextualized repre-
sentations for image-text pairs. The model perfor-
mance of image-text retrieval on Flickr30k and MS
COCO datasets is improved by a considerable mar-
gin with IAIS, which demonstrates the superiority
of our proposal.

2 Measuring Semantic Distance between
Intra-modal Relations

In this section, we present a formal definition of
intra-modal relation alignment (Section 2.1). Such
alignment requires extracting the visual and linguis-
tic items corresponding to all objects and sorting
them in the same order to make their self-attention
distributions comparable. We first introduce the
mechanism for multimodal attention calculation,
and then present the method of attention weight
extraction for constructing comparable intra-modal
self-attentions (Section 2.2). Finally, we propose a
metric named Intra-modal Self-attention Distance
(ISD) to quantify the relation consistency. We con-
duct an empirical analysis on prevailing models
to verify the correlation of the model performance
and our metric (Section 2.3).

2.1 From Intra-modal Relation to
Self-attention

Given a sequence O = [o1, · · · , oN ] of N objects
appeared in an image-text pair, the linguistic and vi-
sual representation of such object sequence can be
written as L = [l1, · · · , lN ] and V = [v1, · · · , vN ],
respectively. Each item li, vi with the same index
refers to the same object oi.2 For every object, its

2An object oi may require one or more tokens in the text
and one or more regions in the image to describe, such that
the linguistic item li and the visual item vi may refer to a
collection of tokens and regions, respectively.
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relation to the others is depicted in both the lin-
guistic and the visual modality. From a linguistic
view, we regard the following textual self-attention
distribution as the relation Rli stems from li:

Rli = [ali→l1 , · · · , ali→li , · · · , ali→lN ], (1)

where ali→lj is the attention weight from li to lj .
Similarly, the relation Rvi from the view of the
visual modality can be written as

Rvi = [avi→v1 , · · · , avi→vi , · · · , avi→vN ]. (2)

Consequently, we can achieve relation-level align-
ment by narrowing the semantic distance, e.g.,
Kullback-Leibler Divergence, between the linguis-
tic and visual self-attention distribution for all ob-
jects from i = 1 to N :

min
∑N

i=1
distance (Rli ,Rvi) . (3)

In the original self-attention matrix, however, the at-
tention weights of specific objects are scattered and
disordered. We need to extract the target weights
and reorder them to construct comparable attention
distributions Rli and Rvi .

2.2 Intra-modal Self-attention
Reconstruction

In this subsection, we first introduce the vanilla
multimodal attention mechanism and then present
a specific way of attention weight extraction.

Consider models of single-stream Transformer-
based architecture like UNITER (Chen et al., 2020).
The model consists of a stack of Transformer layers
with attention mechanism (Vaswani et al., 2017)
and is responsible for encoding image-text pairs
into feature representations. Given Q,K,V ∈
RN×d, the matrix of N query, key and value vec-
tors with dimension d, respectively, the attention
function Att(Q,K,V) is defined as:

Att(Q,K,V) = σ
(
QK>

)
V = σ (S)V. (4)

Here, σ is a row-wise, scaled softmax and S is a ma-
trix of attention scores that measure the similarity
between every pair of query and key vectors. Let L
and V denote the linguistic and the visual modality,
respectively. Given a textual sequence XL of NL
tokens and a visual sequence XV of NV regions,
the input X = [XL‖XV ] in the single-stream ar-
chitecture is a concatenation of two sequences with
length N = NL+NV . Accordingly, the query and
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Figure 2: An example of calculating Intra-modal Self-
attention Distance (ISDa) for a matched image-text
pair. Two inputs in the pair both contain the object
of “two surfers” and “the waves”. For self-attention
matrix SLL and SVV from each modality, we extract
object-orientated patches according to the annotations
and summarize it with the Cps operation (Eq. (7)) to
synthesize new matrices S(a)

LL and S
(a)
VV . Finally, we use

our ISDa metric to measure their semantic distance.

key matrix3 can be written as

Q = XWQ =

(
XL
XV

)
WQ =

(
QL
QV

)
K = XWK =

(
XL
XV

)
WK =

(
KL
KV

)
,

(5)

where WQ and WK are learnable parame-
ters. Furthermore, the attention score matrix
S ∈ RN×N can be organized into four sub-
matrices (Bugliarello et al., 2020):

S = QK> =

(
QL
QV

)(
K>LK

>
V

)
=

(
QLK

>
L QLK

>
V

QVK
>
L QVK

>
V

)
=

(
SLL SLV
SVL SVV

)
.

(6)

The matrices SLL and SVV on the diagonal rep-
resent the linguistic and the visual intra-modal
self-attention, respectively. SLV and SVL on
back-diagonal represent the inter-modal attention
scores from text to image, and the opposite. We
regard the self-attention σ (SLL) and σ (SVV) as
depictions of the intra-modal relations. Each row
of the matrix represents the relation stemming from
one linguistic or visual item to the others within
the same modality.

To construct the comparable intra-modal self-
attention matrices, we leverage the object annota-
tions in the Flickr30k Entities dataset (Plummer

3The value matrix V is omitted for brevity.
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et al., 2015) to extract the tokens, regions, and at-
tention weights with respect to the target objects.
As shown in Figure 2, the text and the image both
contain annotated objects of “two surfers” and “the
waves”. The linguistic object sequence can be writ-
ten as L = [l1, l2] = [“two surfers”, “the waves”].
These two objects derive four intrinsic relations
and can be described by four patches in the origi-
nal linguistic self-attention matrix SLL. For clarity,
we define an operation Ext(S, oi, oj) that extracts
the patch of attention scores in matrix S from the
object oi to oj . Accordingly, the relation from
“two surfers” to “the waves” can be denoted as
Ext (SLL, l1, l2). To describe the relation with a
single value instead of a sub-matrix, we further con-
struct an operation Cps(·) to summarize the atten-
tion patch S ∈ RM×N to a scalar via column-wise
sum and row-wise average:

Cps(S) =
(∑M

i

∑N

j
Sij

)
/M. (7)

After the above processing, we complete the ex-
traction of the linguistic self-attention SLL through
grouping the items by annotated object. The ex-
traction of visual self-attention SVV is similar and
the final results are denoted as S(a)

LL and S
(a)
VV . As

our processing for two intra-modal self-attentions
follows the same order of object annotations, the
matrices S(a)

LL and S
(a)
VV from two modalities are of

the same dimension and comparable.

2.3 Intra-modal Self-attention Distance with
Annotation (ISDa)

Given two comparable matrices S(a)
LL and S

(a)
VV , we

propose a metric called Intra-modal Self-attention
Distance with annotation (ISDa) to quantify their
semantic gap at the relation level. We define the fol-
lowing symmetric matrix-based Kullback-Leibler
Divergence (m-KL) for measuring the distance be-
tween two matrices A and B:

m-KL(A,B) =
∑N

i
KL (Ai‖Bi) + KL (Bi‖Ai) , (8)

where (·)i stands for the ith row-vector in the ma-
trix and KL denotes the Kullback-Leibler Diver-
gence. Accordingly, the final ISDa metric for S(a)

LL
and S

(a)
VV is defined as:

ISDa = m-KL
(
S
(a)
LL, S

(a)
VV

)
. (9)

We present our algorithm for the calculation of
ISDa in Algorithm 1.

Algorithm 1: Intra-modal Self-attention
Distance with Annotation (ISDa)

Input: Intra-modal self-attention matrices SLL, SVV
Input: Linguistic object sequence L
Input: Visual object sequence V
for linguistic object li in L do

for linguistic object lj in L do
Sli→lj ← Ext (SLL, li, lj)

S
(a)
LL[i, j]← Cps

(
Sli→lj

)
for visual object vi in V do

for visual object vj in V do
Svi→vj ← Ext (SVV , vi, vj)

S
(a)
VV [i, j]← Cps

(
Svi→vj

)
ISDa = m-KL

(
S
(a)
LL, S

(a)
VV

)
// Eq.9

return ISDa
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Figure 3: The ISDa (blue ×) and model performance
(Meta-Sum of Recall, orange •) with respect to the
training steps. They are highly correlated with a Pear-
son’s correlation coefficient of -0.60.

To study the correlation between the ISDa metric
and the model performance,4 we conduct an empir-
ical analysis on UNITER (Chen et al., 2020). As
shown in Figure 3, the ISDa decreases during the
training phase while the model performance contin-
ues to increase. They are strongly correlated with
a Pearson’s correlation coefficient of -0.60. After
the middle stage of training, the curve of the model
performance and ISDa tends to be flat, suggest-
ing that merely optimizing the task-oriented loss
function while neglecting the constraint of relation
consistency hinders the model from achieving bet-
ter performance. To eliminate the bottleneck, we
can minimize the ISD in the training phase as a
regularization to induce further improvement for
the ITR task and better the model interpretability.

4We use the Meta-Sum (Chen et al., 2020), sum of Re-
call@1, Recall@5, Recall@10 across the image and text re-
trieval as a metric for model performance.
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3 Inter-modal Alignment on Intra-modal
Self-attentions (IAIS)

In this section, we propose a new regularized train-
ing method, Inter-modal Alignment on Intra-modal
Self-attentions (IAIS), for image-text retrieval. Our
goal is to enhance the semantic alignment of re-
lations by minimizing the distance between two
intra-modal self-attentions (ISD).

In practice, given the original visual and lin-
guistic input sequence V = [v1, · · · , vNV ], L =
[l1, · · · , lNL ] with the scattered items,5 there are no
object annotations and the region features extracted
by Faster R-CNN are much noisier (Li et al., 2020;
Anderson et al., 2018), which results in difficulty
in grouping the attention weights by ground-truth
object. The ISDa thus cannot be used directly as
the objective function to minimize.

To tackle this problem, we regard the input
sequence from one modality (e.g., the visual se-
quence V) as an anchor. For every item in the
anchor sequence, we extract its corresponding rep-
resentation from the other modality (e.g., one item
or a collection of items in the linguistic sequence L)
to reconstruct a mirrored sequence. After that, the
items and their relations within the anchor sequence
have a one-to-one correspondence with the items
and relations within the mirrored sequence, which
makes the intra-modal self-attentions derived from
the two sequences comparable. In the next two sub-
sections, we propose two methods, singular align-
ment and distributed alignment, to accomplish
the attention extraction and reconstruction. The
former establishes a one-to-one mapping between

5As there are no object annotations in practice, each visual
item now refers to only one region. Each linguistic item also
refers to only one token, even if it is a sub-word.

linguistic and visual attention weight, while the lat-
ter establishes a distributed mapping. Besides, we
design two losses L(s)

IAIS and L(d)
IAIS as a surrogate of

the ISDa to measure the semantic distance between
intra-modal self-attention matrices. Finally, we in-
corporate the surrogate loss minimization as a reg-
ularization to calibrate intra-modal self-attentions
mutually and achieve the relation-level alignment.

3.1 Singular Alignment
For every item in the anchor sequence, singular
alignment utilizes the inter-modal attention to find
its most relevant item from the opposite modality.
As the inter-modal attention score quantifies the
similarity between the items from two modalities,
the visual and the linguistic item with the highest
score can be aligned with each other. For example,
given the ith visual item vi and the inter-modal at-
tention matrix SVL, the similarities between vi and
all the linguistic items are depicted in SVL[i, :], i.e.,
the ith row of the matrix. Hence the most relevant
linguistic item for vi can be denoted as li∗ , where
i∗ = argmaxSVL[i, :]. Accordingly, for every
weight avi→vj in the original visual self-attention
matrix SVV , its corresponding weight ali∗→lj∗ in
the linguistic self-attention matrix SLL can be ex-
tracted by the following operation:6

ali∗→lj∗ = Ext (SLL, li∗ , lj∗) ,

i∗ = argmaxSVL[i, :],

j∗ = argmaxSVL[j, :],

(10)

as a singular alignment. After all the extractions,
we reconstruct a mirrored matrix S

(s)
VV such that

S
(s)
VV [i, j] = ali∗→lj∗ , which can be regarded as a

6Compared with Section 2.2, the Ext operation here ex-
tracts a singular attention weight instead of a patch.
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Algorithm 2: Singular Alignment
Input: Intra-modal self-attention matrices SLL, SVV
for i = 1 to NV do

i∗ ← argmaxSVL[i, :]
for j = 1 to NV do

j∗ ← argmaxSVL[j, :]

S
(s)
VV [i, j]← Ext (SLL, li∗ , lj∗)

for i = 1 to NL do
i∗ ← argmaxSLV [i, :]
for j = 1 to NL do

j∗ ← argmaxSLV [j, :]

S
(s)
LL[i, j]← Ext (SVV , vi∗ , vj∗)

L
(s)
IAIS = m-KL

(
σ(SVV) , σ(S

(s)
VV)
)
+

m-KL
(
σ(SLL) , σ(S

(s)
LL)
)

return L(s)
IAIS

representation of the original visual self-attention
SVV from the linguistic view. The surrogate loss of
ISDa between SVV and S

(s)
VV is denoted as L(s)

IAIS-V
when taking vision as the anchor modality. The
similar processing can also be performed when the
linguistic sequence is the anchor. We can gener-
ate the matrix S

(s)
LL as a visual representation of

the linguistic self-attention SLL and define a corre-
sponding loss L(s)

IAIS-L.
The detailed processing of singular alignment

is illustrated in Algorithm 2 and Figure 4. The
singular version of IAIS loss is defined as:

L
(s)
IAIS =L

(s)
IAIS-V + L

(s)
IAIS-L

=m-KL
(
σ(SVV) , σ(S

(s)
VV)
)
+

m-KL
(
σ(SLL) , σ(S

(s)
LL)
)
.

(11)

3.2 Distributed Alignment
As singular items from different modalities may not
be able to give a full representation for each other,
we further propose distributed alignment, which
utilizes a collection of linguistic items as a repre-
sentation of a visual item, and vice versa. Specifi-
cally, given two visual items vi and vj , we regard
the inter-modal attentions σ(SVL[i, :])7 from vi to
all linguistic items and σ(SLV [:, j])8 from all lin-
guistic items to vj as a kind of features. Hence the
original similarity SVV [i, j] = avi→vj between vi
and vj can also be modeled as a dot-product of their
distributed attention features from the cross-modal
view: σ(SVL[i, :]) · σ(SLV [:, j]). Such distributed

7The ith row of SVL.
8The jth column of SLV .

alignment leverages the language as a bridge to
draw implicit connections within the visual modal-
ity, which can be intuitively regarded as the back-
translation (Sennrich et al., 2016) for multimodal.
As shown in Figure 4, the distributed version of mir-
rored self-attention matrix can be constructed by a
matrix multiplication of two inter-modal attention
matrices:

S
(d)
VV = σ(SVL) σ(SLV),

S
(d)
LL = σ(SLV) σ(SVL).

(12)

Similar to the version of singular alignment, the
distributed IAIS loss can be written as:

L
(d)
IAIS =L

(d)
IAIS-V + L

(d)
IAIS-L

=m-KL
(
σ(SVV) , S

(d)
VV

)
+

m-KL
(
σ(SLL) , S

(d)
LL

)
.

(13)

3.3 Relation Alignment as Regularizer
With the IAIS loss, the surrogate of semantic dis-
tance between two intra-modal self-attentions, we
present a new regularized training method to en-
hance the relation alignment for image-text re-
trieval. Our final loss is two-fold. The first is the
task-orientated margin loss:

Lmargin =
∑Np

i=1

[∑Nn

j=1
Sj − Si + α

]
+
, (14)

where [x]+ = max(0, x) and α is a preset margin.
Np and Nn denote the number of positive and neg-
ative pairs. Si and Sj are the similarity scores of a
positive and negative image-text pair, respectively.
The second is the IAIS loss for all positive pairs
that quantifies their relation distance. The IAIS loss
is computed based on the attentions from the last
Transformer-layer, and it can be either the singu-
lar alignment version (Eq. (11)) or the distributed
alignment version (Eq. (13)). To summarize, our
final final loss can be formalized as:

L = Lmargin + λtLIAIS, (15)

where λt is a hyper-parameter w.r.t training steps t
to balance two loss items. Since our relation-level
alignment is based on mappings between linguistic
and visual items, it is beneficial to focus on the
item-level alignment at the previous training stage
via the task-orientated loss. Accordingly, we utilize
Training Signal Annealing (Xie et al., 2020) to
gradually incorporate the signal of the IAIS loss
and design the following exponential schedule:

λt = exp ((t/T − 1)× 5) . (16)
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Flickr30k MS COCO

Image Retrieval Text Retrieval Overall Image Retrieval Text Retrieval Overall

Model R@1 R@5 R@10 R@1 R@5 R@10 Meta-Sum R@1 R@5 R@10 R@1 R@5 R@10 Meta-Sum

UNITER-base∗ 72.52 92.36 96.08 85.90 97.10 98.80 542.76 50.33 78.52 87.16 64.40 87.40 93.08 460.89
UNITER-base† 72.70 92.60 96.14 85.50 97.30 98.60 542.84 50.41 78.33 86.94 65.16 87.60 93.14 461.58

+ IAIS-singular 73.54 93.14 96.32 86.10 98.10 99.10 546.30 50.99 78.85 87.41 66.98 89.10 94.02 467.35
+ IAIS-distributed 73.66 92.88 96.28 87.10 97.90 99.20 547.02 51.10 78.70 87.09 66.88 88.90 94.10 466.77

UNITER-large∗ 73.56 94.08 96.76 87.30 98.00 99.20 548.90 52.93 79.93 87.95 65.68 88.56 93.76 468.81
UNITER-large† 75.98 93.40 96.68 85.80 97.80 98.80 548.46 52.57 79.76 88.00 64.24 88.00 93.62 466.19

+ IAIS-singular 76.86 93.30 95.72 88.30 98.40 99.40 551.98 53.17 80.07 87.94 67.78 89.70 94.48 473.14
+ IAIS-distributed 76.28 93.32 95.58 88.30 98.60 99.30 551.38 53.18 79.99 88.18 67.68 89.34 94.02 472.39

Table 1: Results of image and text retrieval on Flickr30k and MS COCO. R@K corresponds to whether the ground
truth is recalled among top K results. ∗ denotes the results of UNITER taken from Chen et al. (2020) and † denotes
our reproduction. IAIS-singular and ISA-distributed denote the singular and distributed version of the proposed
relation-leve alignment, respectively.

Here T is the total training steps during fine-tuning
phase and t is the current step. As a pluggable
regularizer, our IAIS method does NOT incorporate
any extra parameters and additional data collection
yet empowers the models to capture the higher-
level semantics of relation consistency efficiently.

4 Experimental Settings

4.1 Benchmark Datasets

We conduct experiments on the Flickr30k (Young
et al., 2014) and MS COCO (Lin et al., 2014)
datasets. Flickr30K contains 31K images col-
lected from the Flickr website, with five textual
descriptions per image. We follow Karpathy and
Li (2015) to split the data into 30K/1K/1K train-
ing/validation/test splits. MS COCO consists of
123K images, each accompanied with five human-
written captions. Following Karpathy and Li
(2015), the data is divided into 82K/5K/5K train-
ing/validation/test images.

4.2 Fine-tuning Settings

Due to the limitation of computing resource, we
only incorporate IAIS regularization in the phase
of fine-tuning instead of pre-training. We use the
base (12 layers) and the large (24 layers) version
of UNITER (Chen et al., 2020), one of the most
prevailing large-scale pre-trained models, as our
baseline and backbone for IAIS. We follow the
fine-tuning setting and hyper-parameter configura-
tion of the original paper.9 The margin in Eq. (14)
is 0.2. For each positive instance, 31 hard negative
instances are sampled on the text and image side,
respectively, and as each batch contains 8 different

9https://github.com/ChenRocks/UNITER

positive instances, the batch size is 512. The learn-
ing rate is 5e-5 and the training steps are 5000 for
both base and large models. All experiments are
run on 8 NVIDIA V100 GPUs.

5 Results and Analysis

5.1 Main Results

The main results of the UNITER performance with
and without our IAIS regularization are reported
in Table 1. Our methods of both singular and dis-
tributed version surpass the baseline by a consid-
erable margin. The average improvement over all
datasets and models is 4.49.

There are also some interesting findings: (1)
Compared with image retrieval, the model perfor-
mance on text retrieval is boosted by IAIS more
remarkably with an average improvement of 3.50.
Note that each image in both datasets is paired
with five ground-truth sentences, and our IAIS reg-
ularizer helps the model capture the common re-
lations for the image and the corresponding texts
so that more ground-truth texts can be successfully
retrieved. (2) The improvement on UNITER-base
is 17.2% higher than that on UNITER-large. A
consistent result can be found in Table 2, which
demonstrates various relation distance metrics of
fine-tuned models. The ISDa of UNITER-large
is smaller than that of UNITER-base, indicating
UNITER-large learns more about the relation con-
sistency due to its large capability while there is
still room to improve the relation alignment with
our IAIS method. (3) The relative improvement
brought by the singular version of IAIS is 7.0%,
higher than that of the distributed version. The
ISDa and L(s)

IAIS are correlated with a Pearson’s cor-

https://github.com/ChenRocks/UNITER
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Model ISDa L
(s)
IAIS L

(d)
IAIS

UNITER-base 0.26 0.59 0.36
+ IAIS-singular 0.18 1.31e-3 2.58e-3
+ IAIS-distributed 0.17 2.80e-3 2.72e-3

UNITER-large 0.23 0.40 0.16
+ IAIS-singular 0.18 2.27e-3 3.22e-3
+ IAIS-distributed 0.18 3.15e-3 3.70e-3

Table 2: Different relation distance metrics of each
model after fine-tuning. Lower is better.
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Figure 5: The singular and distributed version of IAIS
loss with respect to the training steps.

relation coefficient of 0.779, which is also higher
compared to L(d)

IAIS with 0.774. Besides, our em-
pirical analysis in Figure 5 shows that it is slightly
easier to optimize the L(s)

IAIS, indicating it is a better
surrogate of ISDa.

5.2 Effect of Anchor Modality
In Section 3.3, we leverage both the linguistic and
the visual input as the anchor sequence to recon-
struct the mirrored sequence from the opposite
modalities. To study the impact of the anchor
modality, we conduct an ablation study and the
results are listed in Table 3. Compared to using lan-
guage as the anchor modality, i.e., only LIAIS-L is
incorporated, the overall model performance is 2.1
higher when vision is taken as the anchor. An ex-
planation is that the description capability of visual
regions is more concrete and powerful. However,
introducing both LIAIS-V + LIAIS-L to the final loss
can achieve a further improvement of 2.22, which
indicates the necessity of such combination.

5.3 Effect of Annealing Schedule
Besides the exp schedule in Eq. (16) for training
signal annealing, we also try other schedules:

• log schedule: λt = 1− exp (−t/T × γ);

• linear schedule: λt = t/T ;

• exp schedule: λt = exp ((t/T − 1)× γ),

where γ is chosen from {5, 10}. All the schedules
are shown in Figure 6.

Image Retrieval Text Retrieval

Model R@1 R@5 R@10 R@1 R@5 R@10

UNITER-base∗ 72.52 92.36 96.08 85.90 97.10 98.80
UNITER-base† 72.70 92.60 96.14 85.50 97.30 98.60

+ IAIS-singular-L 72.74 92.74 96.12 86.90 96.70 99.00
+ IAIS-singular-V 73.44 92.76 95.96 87.00 97.50 99.10

+ IAIS-distributed-L 72.48 92.96 96.26 86.90 97.10 99.10
+ IAIS-distributed-V 73.14 92.44 96.06 87.10 97.40 99.20

Table 3: Ablation study on the Flickr30k dataset. “-L”
denotes that only LIAIS-L is incorporated, which regards
language as the anchor modality. Similar for “-V”.
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Figure 6: Schedules for IAIS signal annealing.

We compare the results of five schedules for
IAIS signal annealing. The results in Figure 8 show
that the exp schedule with scale γ = 5 achieves the
best performance.

5.4 Effect of Layer to Apply IAIS
We also apply IAIS on different layers of UNITER-
base. As illustrated in Figure 9, the optimal way is
to apply IAIS on the last layer. We speculate that it
is more important to learn relation alignment in the
deeper layers because the attention in the deeper
layers has a bigger impact on the final output, while
the effect of the attention in shallow layers might
fade away due to the normalization.

5.5 Case Study
We further discuss the advantage of our proposed
relation-level alignment. Figure 7 shows two
visualization examples of the intra-modal self-
attentions from the Flickr30k Entities dataset. With
IAIS regularization, the model is instructed to con-
centrate on the common relations within the linguis-
tic and visual sequence, yielding more calibrated
and consistent self-attention distributions.

6 Related Work

In this section, we introduce the task of image-text
retrieval and review the representative studies of
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Figure 7: Visualization of intra-modal self-attentions with and without our IAIS method.
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Figure 8: Comparison of the different hyper-
parameters in training signal annealing. The exp sched-
ule with scale γ = 5 achieves the best performance.

large-scale multimodal pre-trained models.

Image-Text Retrieval Image-Text Retrieval
(ITR, Barnard et al., 2003; Barnard and Forsyth,
2001), also known as Image-Text Matching, is
one of the popular and challenging Language-
and-Vision (V+L) tasks. Given image-text pairs,
the prevailing approaches project them into a
joint representation space, on which cosine or
dot-product similarities are defined, and recall the
most relevant one according to the similarity.

Multimodal Pre-trained Models The develop-
ment of the transformer-based large-scale pre-
training paradigm sweeps across the area of multi-
modal learning and achieves many state-of-the-art
results on V+L tasks like Image Captioning, Vi-
sual Question Answering, Visual Commonsense
Reasoning, etc. Recent prevailing multimodal
pre-trained models can be categorized into single-
stream (Chen et al., 2020; Gan et al., 2020; Lin
et al., 2020; Li et al., 2020; Su et al., 2020; Lin
et al., 2021) and two-stream (Yu et al., 2020; Tan
and Bansal, 2019; Lu et al., 2019) models. Given a
piece of text and an image, the former architecture
concatenates the features of tokens and regions and
learns their joint representations with one trans-
former model, while the latter embeds the textual
and the visual input separately with two indepen-
dent intra-modal transformers and then utilizes an
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Figure 9: Comparison of the different layers to apply
IAIS on the Flickr30k dataset. The IAIS applied on the
last layer achieves the best performance.

inter-modal transformer to reinforce cross-modal
interactions via cross-modal attention modules.

7 Conclusion

In this paper, we promote the semantic alignment
for cross-modal retrieval from the object level to
the relation level. We propose a surrogate metric
to quantify the relation consistency by measuring
the semantic distance between linguistic and visual
relations. Furthermore, we present a regularized
training method IAIS to calibrate intra-modal self-
attentions mutually by minimizing the ISD metric.
Our method improves both the performance and the
interpretability of large-scale pre-trained models.
Note that, without object annotation in practice, the
singular and distributed version of the IAIS loss
only provides a coarse-grained attention distribu-
tion alignment. We leave the elaborate design of
ISDa proxy function for future work.
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Marchand-Maillet. 2020. Fine-grained visual tex-
tual alignment for cross-modal retrieval using trans-
former encoders. CoRR, abs/2008.05231.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santi-
ago, Chile, December 7-13, 2015, pages 2641–2649.
IEEE Computer Society.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and
Jian Sun. 2015. Faster R-CNN: towards real-time
object detection with region proposal networks. In
Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 91–99.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: pre-
training of generic visual-linguistic representations.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Hao Tan and Mohit Bansal. 2019. LXMERT: learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages
5099–5110. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Zihao Wang, Xihui Liu, Hongsheng Li, Lu Sheng,
Junjie Yan, Xiaogang Wang, and Jing Shao. 2019.
CAMP: cross-modal adaptive message passing for
text-image retrieval. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2,
2019, pages 5763–5772. IEEE.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Pengcheng Yang, Boxing Chen, Pei Zhang, and
Xu Sun. 2020. Visual agreement regularized train-
ing for multi-modal machine translation. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 9418–
9425. AAAI Press.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Trans. Assoc. Com-
put. Linguistics, 2:67–78.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian,
Hua Wu, and Haifeng Wang. 2020. Ernie-vil:
Knowledge enhanced vision-language representa-
tions through scene graph. CoRR, abs/2006.16934.

Bowen Zhang, Hexiang Hu, Vihan Jain, Eugene Ie,
and Fei Sha. 2020a. Learning to represent image
and text with denotation graph. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 823–839. Association
for Computational Linguistics.

Zhihan Zhang, Zhiyi Yin, Shuhuai Ren, Xinhang Li,
and Shicheng Li. 2020b. DCA: diversified co-
attention towards informative live video comment-
ing. In Natural Language Processing and Chi-
nese Computing - 9th CCF International Confer-
ence, NLPCC 2020, Zhengzhou, China, October
14-18, 2020, Proceedings, Part II, volume 12431
of Lecture Notes in Computer Science, pages 3–15.
Springer.

http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks
http://arxiv.org/abs/2008.05231
http://arxiv.org/abs/2008.05231
http://arxiv.org/abs/2008.05231
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.1109/ICCV.2019.00586
https://doi.org/10.1109/ICCV.2019.00586
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/6484
https://aaai.org/ojs/index.php/AAAI/article/view/6484
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
http://arxiv.org/abs/2006.16934
http://arxiv.org/abs/2006.16934
http://arxiv.org/abs/2006.16934
https://doi.org/10.18653/v1/2020.emnlp-main.60
https://doi.org/10.18653/v1/2020.emnlp-main.60
https://doi.org/10.1007/978-3-030-60457-8_1
https://doi.org/10.1007/978-3-030-60457-8_1
https://doi.org/10.1007/978-3-030-60457-8_1

