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Abstract

Most language understanding models in task-
oriented dialog systems are trained on a small
amount of annotated training data, and evalu-
ated in a small set from the same distribution.
However, these models can lead to system fail-
ure or undesirable output when being exposed
to natural language perturbation or variation in
practice. In this paper, we conduct compre-
hensive evaluation and analysis with respect to
the robustness of natural language understand-
ing models, and introduce three important as-
pects related to language understanding in real-
world dialog systems, namely, language vari-
ety, speech characteristics, and noise pertur-
bation. We propose a model-agnostic toolkit
LAUG to approximate natural language pertur-
bations for testing the robustness issues in task-
oriented dialog. Four data augmentation ap-
proaches covering the three aspects are assem-
bled in LAUG, which reveals critical robust-
ness issues in state-of-the-art models. The aug-
mented dataset through LAUG can be used to
facilitate future research on the robustness test-
ing of language understanding in task-oriented
dialog.

1 Introduction

Recently task-oriented dialog systems have been at-
tracting more and more research efforts (Gao et al.,
2019; Zhang et al., 2020b), where understanding
user utterances is a critical precursor to the suc-
cess of such dialog systems. While modern neural
networks have achieved state-of-the-art results on
language understanding (LU) (Wang et al., 2018;
Zhao and Feng, 2018; Goo et al., 2018; Liu et al.,
2019; Shah et al., 2019), their robustness to changes
in the input distribution is still one of the biggest
challenges in practical use.
∗Equal contribution.
†Corresponding author.

Real dialogs between human participants in-
volve language phenomena that do not contribute
so much to the intent of communication. As shown
in Fig. 1, user expressions can be of high lexical
and syntactic diversity when a system is deployed
to users; typed texts may differ significantly from
those recognized from voice speech; interaction
environments may be full of chaos and even users
themselves may introduce irrelevant noises such
that the system can hardly get clean user input.

Unfortunately, neural LU models are vulnerable
to these natural perturbations that are legitimate
inputs but not observed in training data. For ex-
ample, Bickmore et al. (2018) found that popular
conversational assistants frequently failed to under-
stand real health-related scenarios and were unable
to deliver adequate responses on time. Although
many studies have discussed the LU robustness
(Ray et al., 2018; Zhu et al., 2018; Iyyer et al.,
2018; Yoo et al., 2019; Ren et al., 2019; Jin et al.,
2020; He et al., 2020), there is a lack of systematic
studies for real-life robustness issues and corre-
sponding benchmarks for evaluating task-oriented
dialog systems.

In order to study the real-world robustness is-
sues, we define the LU robustness from three as-
pects: language variety, speech characteristics and
noise perturbation. While collecting dialogs from
deployed systems could obtain realistic data distri-
bution, it is quite costly and not scalable since a
large number of conversational interactions with
real users are required. Therefore, we propose an
automatic method LAUG for Language understand-
ing AUGmentation in this paper to approximate the
natural perturbations to existing data. LAUG is a
black-box testing toolkit on LU robustness com-
posed of four data augmentation methods, includ-
ing word perturbation, text paraphrasing, speech
recognition, and speech disfluency.

We instantiate LAUG on two dialog corpora
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Frames (El Asri et al., 2017) and MultiWOZ
(Budzianowski et al., 2018) to demonstrate the
toolkit’s effectiveness. Quality evaluation by an-
notators indicates that the utterances augmented
by LAUG are reasonable and appropriate with re-
gards to each augmentation approach’s target. A
number of LU models with different categories and
training paradigms are tested as base models with
in-depth analysis. Experiments indicate a sharp
performance decline in most baselines in terms of
each robustness aspect. Real user evaluation further
verifies that LAUG well reflects real-world robust-
ness issues. Since our toolkit is model-agnostic and
does not require model parameters or gradients, the
augmented data can be easily obtained for both
training and testing to build a robust dialog system.

Our contributions can be summarized as follows:
(1) We classify the LU robustness systematically
into three aspects that occur in real-world dialog,
including linguistic variety, speech characteristics
and noise perturbation; (2) We propose a general
and model-agnostic toolkit, LAUG, which is an in-
tegration of four data augmentation methods on LU
that covers the three aspects. (3) We conduct an
in-depth analysis of LU robustness on two dialog
corpora with a variety of baselines and standardized
evaluation measures. (4) Quality and user evalua-
tion results demonstrate that the augmented data
are representative of real-world noisy data, there-
fore can be used for future research to test the LU
robustness in task-oriented dialog1.

2 Robustness Type

We summarize several common interleaved chal-
lenges in language understanding from three as-
pects, as shown in Fig. 1b:

Language Variety A modern dialog system in a
text form has to interact with a large variety of real
users. The user utterances can be characterized by
a series of linguistic phenomena with a long tail
of variations in terms of spelling, vocabulary, lex-
ical/syntactic/pragmatic choice (Ray et al., 2018;
Jin et al., 2020; He et al., 2020; Zhao et al., 2019;
Ganhotra et al., 2020).

Speech Characteristics The dialog system can
take voice input or typed text, but these two dif-
fer in many ways. For example, written language

1The data, toolkit, and codes are available at https:
//github.com/thu-coai/LAUG, and will be merged
into https://github.com/thu-coai/ConvLab-2
(Zhu et al., 2020).
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(b) Real-world application

Figure 1: Difference between dialogs collected for
training and those for real-world applications.

tends to be more complex and intricate with longer
sentences and many subordinate clauses, whereas
spoken language can contain repetitions, incom-
plete sentences, self-corrections and interruptions
(Wang et al., 2020a; Park et al., 2019; Wang et al.,
2020b; Honal and Schultz, 2003; Zhu et al., 2018).

Noise Perturbation Most dialog systems are
trained only on noise-free interactions. However,
there are various noises in the real world, including
background noise, channel noise, misspelling, and
grammar mistakes (Xu and Sarikaya, 2014; Li and
Qiu, 2020; Yoo et al., 2019; Henderson et al., 2012;
Ren et al., 2019).

3 LAUG: Language Understanding
Augmentation

This section introduces commonly observed out-of-
distribution data in real-world dialog into existing
corpora. We approximate natural perturbations in
an automatic way instead of collecting real data by
asking users to converse with a dialog system.

To achieve our goals, we propose a toolkit LAUG,
for black-box evaluation of LU robustness. It is an
ensemble of four data augmentation approaches,
including Word Perturbation (WP), Text Paraphras-
ing (TP), Speech Recognition (SR), and Speech
Disfluency (SD). Noting that LAUG is model-
agnostic and can be applied to any LU dataset
theoretically. Each augmentation approach tests

https://github.com/thu-coai/LAUG
https://github.com/thu-coai/LAUG
https://github.com/thu-coai/ConvLab-2
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one or two proposed aspects of robustness as Table
1 shows. The intrinsic evaluation of the chosen
approaches will be given in Sec. 4.

Capacity LV SC NP
Word Perturbation (WP)

√ √

Text Paraphrasing (TP)
√

Speech Recognition (SR)
√ √

Speech Disfluency (SD)
√

Table 1: The capacity that each augmentation method
evaluates, including Language Variety (LV), Speech
Characteristics (SC) and Noise Perturbation (NP).

Task Formulation Given the dialog context
Xt = {x2t−m, . . . , x2t−1, x2t} at dialog turn t,
where each x is an utterance and m is the size
of sliding window that controls the length of uti-
lizing dialog history, the model should recognize
yt, the dialog act (DA) of x2t. Empirically, we
set m = 2 in the experiment. Let U ,S denote the
set of user/system utterances, respectively. Then,
we have x2t−2i ∈ U and x2t−2i−1 ∈ S. The
task of this paper is to examine different LU mod-
els whether they can predict yt correctly given a
perturbed input X̃t. The perturbation is only per-
formed on user utterances.

Word Perturbation Inspired by EDA (Easy
Data Augmentation) (Wei and Zou, 2019), we pro-
pose its semantically conditioned version, SC-EDA,
which considers task-specific augmentation oper-
ations in LU. SC-EDA injects word-level pertur-
bation into each utterance x′ and updates its corre-
sponding semantic label y′.

Original I want to go to Cambridge .
DA attraction { inform (dest = Cambridge) }

Syno. I wishing to go to Cambridge .
Insert I need want to go to Cambridge .
Swap I to want go to Cambridge .
Delete I want to go to Cambridge .
SVR I want to go to Liverpool .
DA attraction { inform (dest = Liverpool) }

Table 2: An SC-EDA example. Syno., Insert, Swap and
Delete are four operations described in EDA, of which
the dialog act is identical to the original one. SVR de-
notes slot value replacement.

Table 2 shows an example of SC-EDA. Original
EDA randomly performs one of the four operations,
including synonym replacement, random insertion,
random swap and random deletion2. Noting that,
to keep the label unchanged, words related to slot

2See the EDA paper for details of each operation.

values of dialog acts are not modified in these four
operations. Additionally, we design slot value re-
placement, which changes the utterance and label
at the same time to test model’s generalization to
unseen entities. Some randomly picked slot values
are replaced by unseen values with the same slot
name in the database or crawled from web sources.
For example in Table 2, “Cambridge” is replaced
by “Liverpool”, where both belong to the same slot
name “dest” (destination).

Synonym replacement and slot value replace-
ment aim at increasing the language variety, while
random word insertion/deletion/swap test the ro-
bustness of noise perturbation. From another per-
spective, four operations from EDA perform an
Invariance test, while slot value replacement con-
ducts a Directional Expectation test according to
CheckList (Ribeiro et al., 2020).

Text Paraphrasing The target of text paraphras-
ing is to generate a new utterance x′ 6= x while
maintaining its dialog act unchanged, i.e. y′ = y.
We applied SC-GPT (Peng et al., 2020), a fine-
tuned language model conditioned on the dialog
acts, to paraphrase the sentences as data augmenta-
tion. Specifically, it characterizes the conditional
probability pθ(x|y) =

∏K
k=1 pθ(xk|x<k, y),where

x<k denotes all the tokens before the k-th position.
The model parameters θ are trained by maximizing
the log-likelihood of pθ.

DA train * { inform ( dest = Cambridge ; arrive = 20:45 ) }
Text Hi, I’m looking for a train that is going to Cambridge

and arriving there by 20:45, is there anything like that?
DA train { inform ( dest = Cambridge ; arrive = 20:45 ) }
Text Yes, to Cambridge, and I would like to arrive by 20:45.

Table 3: A pair of examples that consider contextual
resolution or not. In the second example, the user omits
to claim that he wants a train in the second utterance
since he has mentioned this before.

We observe that co-reference and ellipsis fre-
quently occurs in user utterances. Therefore, we
propose different encoding strategies during para-
phrasing to further evaluate each model’s capacity
for context resolution. In particular, if the user
mentions a certain domain for the first time in a
dialog, we will insert a “*” mark into the sequen-
tial dialog act y′ to indicate that the user tends to
express without co-references or ellipsis, as shown
in Table 3. Then SC-GPT is finetuned on the pro-
cessed data so that it can be aware of dialog context
when generating paraphrases. As a result, we find
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that the average token length of generated utter-
ances with/without “*” is 15.96/12.67 respectively
after SC-GPT’s finetuning on MultiWOZ.

It should be noted that slot values of an utterance
can be paraphrased by models, resulting in a dif-
ferent semantic meaning y′. To prevent generating
irrelevant sentences, we apply automatic value de-
tection in paraphrases with original slot values by
fuzzy matching3 , and replace the detected values
in bad paraphrases with original values. In addi-
tion, we filter out paraphrases that have missing
or redundant information compared to the original
utterance.

Speech Recognition We simulate the speech
recognition (SR) process with a TTS-ASR pipeline
(Park et al., 2019). First we transfer textual user
utterance x to its audio form a using gTTS4 (Oord
et al., 2016), a Text-to-Speech system. Then audio
data is translated back into text x′ by DeepSpeech2
(Amodei et al., 2016), an Automatic Speech Recog-
nition (ASR) system. We directly use the released
models in the DeepSpeech2 repository5 with the
original configuration, where the speech model is
trained on Baidu Internal English Dataset, and the
language model is trained on CommonCrawl Data.

Type Original Augmented
Similar sounds leicester lester

Liaison for 3 people free people
Spoken numbers 13:45 thirteen forty five

Table 4: Examples of speech recognition perturbation.

Table 4 shows some typical examples of our SR
augmentation. ASR sometimes wrongly identifies
one word as another with similar pronunciation. Li-
aison constantly occurs between successive words.
Expressions with numbers including time and price
are written in numerical form but different in spo-
ken language.

Since SR may modify the slot values in the trans-
lated utterances, fuzzy value detection is employed
here to handle similar sounds and liaison problems
when it extracts slot values to obtain a semantic la-
bel y′. However, we do not replace the noisy value
with the original value as we encourage such mis-
recognition in SR, thus y′ 6= y is allowed. More-
over, numerical terms are normalized to deal with
the spoken number problem. Most slot values could

3https://pypi.org/project/fuzzywuzzy/
4https://pypi.org/project/gTTS/
5https://github.com/PaddlePaddle/

DeepSpeech

be relocated by our automatic value detection rules.
The remainder slot values which vary too much
to recognize are discarded along with their corre-
sponding labels.

Speech Disfluency Disfluency is a common fea-
ture of spoken language. We follow the catego-
rization of disfluency in previous works (Lickley,
1995; Wang et al., 2020b): filled pauses, repeats,
restarts, and repairs.

Original I want to go to Cambridge.
Pauses I want to um go to uh Cambridge.
Repeats I, I want to go to, go to Cambridge.
Restarts I just I want to go to Cambridge.
Repairs I want to go to Liverpool, sorry I mean Cambridge.

Table 5: Example of four types of speech disfluency.

We present some examples of SD in Table 5.
Filler words (“um”, “uh”) are injected into the sen-
tence to present pauses. Repeats are inserted by re-
peating the previous word. In order to approximate
the real distribution of disfluency, the interruption
points of filled pauses and repeats are predicted
by a Bi-LSTM+CRF model (Zayats et al., 2016)
trained on an annotated dataset SwitchBoard (God-
frey et al., 1992), which was collected from real
human talks. For restarts, we insert false start terms
(“I just”) as a prefix of the utterance to simulate
self-correction. In LU task, we apply repairs on slot
values to fool the models to predict wrong labels.
We take the original slot value as Repair (“Cam-
bridge”) and take another value with the same slot
name as Reparandum (“Liverpool”). An edit term
(“sorry, I mean”) is inserted between Repair and
Reparandum to construct a correction. The filler
words, restart terms, and edit terms and their occur-
rence frequency are all sampled from their distribu-
tion in SwitchBoard.

In order to keep the spans of slot values intact,
each span is regarded as one whole word. No inser-
tions are allowed to operate inside the span. There-
fore, SD augmentation do not change the original
semantic and labels of the utterance, i.e. y′ = y.

4 Experimental Setup

4.1 Data Preparation

In our experiments we adopt Frames6 (El Asri et al.,
2017) and MultiWOZ (Budzianowski et al., 2018),
which are two task-oriented dialog datasets where

6As data division was not defined in Frames, we split the
data into training/validation/test set with a ratio of 8:1:1.

https://pypi.org/project/fuzzywuzzy/
https://pypi.org/project/gTTS/
https://github.com/PaddlePaddle/DeepSpeech
https://github.com/PaddlePaddle/DeepSpeech
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(a) Classification-based language understanding
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(b) Generation-based language understanding

Figure 2: An illustration of two categories of language understanding models. Dialog history is first encoded as
conditions (not depicted here).

semantic labels of user utterances are annotated.
In particular, MultiWOZ is one of the most chal-
lenging datasets due to its multi-domain setting
and complex ontology, and we conduct our exper-
iments on the latest annotation-enhanced version
MultiWOZ 2.3 (Han et al., 2020), which provides
cleaned annotations of user dialog acts (i.e. seman-
tic labels). The dialog act consists of four parts:
domain, intent, slot names, and slot values. The
statistics of two datasets are shown in Table 6. Fol-
lowing Takanobu et al. (2020), we calculate overall
F1 scores as evaluation metrics due to the multi-
intent setting in LU.

Datasets Frames MultiWOZ
# Training Dialogs 1,095 8,438
# Validation / Test Dialogs 137 / 137 1,000 / 1,000
# Domains / # Intents 2 / 12 7 / 5
Avg. # Turns per Dialog 7.60 6.85
Avg. # Tokens per Turn 11.67 13.55
Avg. # DAs per Turn 1.87 1.66

Table 6: Statistics of Frames and MultiWOZ 2.3. Only
user turns U are counted here.

The data are augmented with the inclusion of its
copies, leading to a composite of all 4 augmenta-
tion types with equal proportion. Other setups are
described in each experiment7.

Method Change Rate/% Human Annot./%
Char Word Slot Utter. DA

WP 17.9 16.0 36.3 95.2 97.0
TP 60.3 74.4 13.3 97.1 97.7
SR 7.9 14.5 40.8 95.1 96.7
SD 22.7 30.4 0.4 98.8 99.2

Table 7: Statistics of augmented MultiWOZ data and
their results of quality annotation. Automatic metrics
include change rate of characters, words and slot val-
ues. Quality evaluation includes appropriateness at ut-
terance level (Utter.) and at dialog act level (DA).

Table 7 shows the change rates in different as-
7See appendix for the hyperparameter setting of LAUG.

pects by comparing our augmented utterances with
the original counterparts. We could find each aug-
mentation method has a distinct effect on the data.
For instance, TP rewrites the text without changing
the original meaning, thus lexical and syntactic rep-
resentations dramatically change, while most slot
values remain unchanged. In contrast, SR makes
the lowest change rate in characters and words but
modifies the most slot values due to the speech
misrecognition.

4.2 Quality Evaluation
To ensure the quality of our augmented test set,
we conduct human annotation on 1,000 sampled
utterances in each augmented test set of Multi-
WOZ. We ask annotators to check whether our
augmented utterances are reasonable and our auto-
detected value annotations are correct (two true-or-
false questions). According to the feature of each
augmentation method, different evaluation proto-
cols are used. For TP and SD, annotators check
whether the meaning of utterances and dialog acts
are unchanged. For WP, changing slot values is
allowed due to slot value replacement, but the slot
name should be the same. For SR, annotators are
asked to judge on the similarity of pronunciation
rather than semantics. In summary, all the high
scores in Table 7 demonstrate that LAUG makes
reasonable augmented examples.

4.3 Baselines
LU models roughly fall into two categories:
classification-based and generation-based models.
Classification based models (Hakkani-Tür et al.,
2016; Goo et al., 2018) extract semantics by intent
detection and slot tagging. Intent detection is com-
monly regarded as a multi-label classification task,
and slot tagging is often treated as a sequence label-
ing task with BIO format (Ramshaw and Marcus,
1999), as shown in Fig. 2a. Generation-based mod-
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Model Train Ori. WP TP SR SD Avg. Drop Recov.

MILU Original 74.15 71.05 69.58 61.53 65.27 66.86 -7.29 /
Augmented 75.78 72.49 71.96 64.76 70.92 70.03 -5.75 +3.17

BERT Original 78.82 75.92 74.57 70.31 70.31 72.78 -6.04 /
Augmented 78.21 76.70 75.63 72.04 77.34 75.43 -2.78 +2.65

ToD-BERT Original 80.61 77.30 76.19 70.88 71.94 74.08 -6.53 /
Augmented 80.37 77.32 77.26 72.54 79.04 76.54 -3.83 +2.46

CopyNet Original 67.84 63.90 61.41 56.11 59.26 60.17 -7.67 /
Augmented 69.35 67.10 65.90 60.98 67.71 65.42 -3.93 +5.25

GPT-2 Original 78.78 74.96 72.85 69.00 69.19 71.50 -7.28 /
Augmented 79.15 75.25 73.86 71.37 74.19 73.67 -5.48 +2.17

(a) Frames
Model Train Ori. WP TP SR SD Avg. Drop Recov.

MILU Original 91.33 88.26 87.20 77.98 83.67 84.28 -7.05 /
Augmented 91.39 90.01 88.04 86.97 89.54 88.64 -2.75 +4.36

BERT Original 93.40 90.96 88.51 82.35 85.98 86.95 -6.45 /
Augmented 93.32 92.23 89.45 89.86 92.71 91.06 -2.26 +4.11

ToD-BERT Original 93.28 91.27 88.95 81.16 87.18 87.14 -6.14 /
Augmented 93.29 92.40 89.71 90.06 92.85 91.26 -2.03 +4.12

CopyNet Original 90.97 85.25 87.40 71.06 77.66 80.34 -10.63 /
Augmented 90.49 89.19 89.53 85.69 89.83 88.56 -1.93 +8.22

GPT-2 Original 91.53 85.35 88.23 80.74 84.33 84.66 -6.87 /
Augmented 91.59 90.26 89.92 86.55 90.55 89.32 -2.27 +4.66

(b) MultiWOZ

Table 8: Robustness test results. Ori. stands for the original test set, WP, TP, SR, SD for 4 augmented test sets
and Avg. for the average performance on 4 augmented test sets. The additional data in augmented training set has
the same utterance amount as the original training set and is composed of 4 types of augmented data with equal
proportion. Drop shows the performance decline between Avg. and Ori. while Recov. denotes the performance
recovery of Avg. between training on augmented/original data (e.g., 88.64%-84.28% for MILU on MultiWOZ).

els (Liu and Lane, 2016; Zhao and Feng, 2018) gen-
erate a dialog act containing intent and slot values.
They treat LU as a sequence-to-sequence problem
and transform a dialog act into a sequential struc-
ture as shown in Fig. 2b. Five base models with
different categories are used in the experiments, as
shown in Table 9.

Model Cls. Gen. PLM
MILU (Hakkani-Tür et al., 2016)

√

BERT (Devlin et al., 2019)
√ √

ToD-BERT (Wu et al., 2020)
√ √

CopyNet (Gu et al., 2016)
√

GPT-2 (Radford et al., 2019)
√ √

Table 9: Features of base models. Cls./Gen. denotes
classification/generation-based models. PLM stands
for pre-trained language models.

To support a multi-intent setting in classification-
based models, we decouple the LU process as fol-
lows: first perform domain classification and in-
tent detection, then concatenate two special tokens
which indicate the detected domain and intent (e.g.
[restaurant][inform]) at the beginning of the in-
put sequence, and last encode the new sequence to
predict slot tags. In this way, the model can address
overlapping slot values when values are shared in

different dialog acts.

5 Evaluation Results

5.1 Main Results

We conduct robustness testing on all three capaci-
ties for five base models using four augmentation
methods in LAUG. All baselines are first trained
on the original datasets, then finetuned on the aug-
mented datasets. Overall F1-measure performance
on Frames and MultiWOZ is shown in Table 8.
All experiments are conducted over 5 runs, and
averaged results are reported.

Robustness for each capacity can be measured
by performance drops on the corresponding aug-
mented test sets. All models achieve some perfor-
mance recovery on augmented test sets after trained
on the augmented data, while keeping a compara-
ble result on the original test set. This indicates the
effectiveness of LAUG in improving the model’s
robustness.

We observe that pre-trained models outperform
non-pre-trained ones on both original and aug-
mented test sets. Classification-based models
have better performance and are more robust than
generation-based models. ToD-BERT, the state-
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Figure 3: Performance on MultiWOZ with different ratios of augmented training data amount to the original one.
The total amount of training data varies but they are always composed of 4 types of augmented data with even
proportion. Different test sets are shown with different colored lines.

of-the-art model which was further pre-trained on
task-oriented dialog data, has comparable perfor-
mance with BERT. With most augmentation meth-
ods, ToD-BERT shows slightly better robustness
than BERT.

Since the data volume of Frames is far less than
that of MultiWOZ, the performance improvement
of pre-trained models on Frames is larger than that
on MultiWOZ. Due to the same reason, augmented
training data benefits the non-pre-trained models
performance of on Ori. test set more remarkably in
Frames where data is not sufficient.

Among the four augmentation methods, SR has
the largest impact on the models’ performance, and
SD comes the second. The dramatic performance
drop when testing on SR and SD data indicates that
robustness for speech characteristics may be the
most challenging issue.

Fig. 3 shows how the performance of BERT and
GPT-2 changes on MultiWOZ when the ratio of
augmented training data to the original data varies
from 0.1 to 4.0. F1 scores on augmented test sets
increase when there are more augmented data for
training. The performance of BERT on augmented
test sets is improved when augmentation ratio is
less than 0.5 but becomes almost unchanged af-
ter 0.5 while GPT-2 keeps increasing stably. This
result shows the different characteristics between
classification-based models and generation-based
models when finetuned with augmented data.

5.2 Ablation Study

Between augmentation approaches In order to
study the influence of each augmentation approach

in LAUG, we test the performance changes when
one augmentation approach is removed from con-
structing augmented training data. Results on Mul-
tiWOZ are shown in Table 10.

Train Ori. WP TP SR SD Avg.
Aug. 91.39 90.01 88.04 86.97 89.54 88.64
-WP 91.29 88.42 88.43 86.98 89.20 88.26
-TP 91.55 90.15 87.81 86.82 89.42 88.55
-SR 91.23 90.13 88.30 77.90 89.51 86.46
-SD 91.56 90.24 88.60 86.78 83.96 87.40
Ori. 91.33 88.26 87.20 77.98 83.67 84.28

(a) MILU
Train Ori. WP TP SR SD Avg.
Aug. 93.32 92.23 89.45 89.86 92.71 91.06
-WP 93.23 90.94 89.42 89.93 92.82 90.78
-TP 93.08 92.24 88.62 89.80 92.62 90.82
-SR 93.43 92.30 89.50 83.48 93.07 89.59
-SD 93.11 92.15 89.44 90.00 85.22 89.20
Ori. 93.40 90.96 88.51 82.35 85.98 86.95

(b) BERT

Table 10: Ablation study between augmentation ap-
proaches for two models on MultiWOZ. Highlighted
numbers denote the most sharp decline for each aug-
mented test set.

Large performance decline on each augmented
test set is observed when the corresponding aug-
mentation approach is removed in constructing
training data. The performance after removing
an augmentation method is comparable to the
one without augmented training data. Only slight
changes are observed without other approaches.
These results indicate that our four augmentation
approaches are relatively orthogonal.

Within augmentation approach Our imple-
mentation of WP and SD consist of several func-
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tional components. Ablation experiments here
show how much performance is affected by each
component in augmented test sets.

Test MILU Diff. BERT Diff.
WP 88.26 / 90.96 /
-Syno. 88.90 0.64 91.27 0.48
-Insert 88.90 0.64 91.30 0.51
-Delete 88.97 0.71 91.20 0.41
-Swap 89.15 0.89 91.33 0.54
-Slot 89.45 1.19 91.30 0.51
Ori. 91.33 3.05 93.40 2.61

(a) Word Perturbation
Test MILU Diff. BERT Diff.
SD 83.67 / 85.98 /
-Repair 89.47 5.80 91.05 5.07
-Pause 85.21 1.54 88.06 2.08
-Restart 84.03 0.36 86.22 0.24
-Repeat 83.64 -0.03 85.68 -0.30
Ori. 91.33 7.66 93.40 7.42

(b) Speech Disfluency

Table 11: Ablation study within two augmentation ap-
proaches. Models are trained on original training set.
Highlight stands for the component with the most influ-
ence on model performance.

Original EDA consists of four functions as de-
scribed in Table 2. Performance differences (Diff.)
can reflect the influences of those components in
Table 11a. The additional function of our SC-EDA
is slot value replacement. We can also observe
an increase in performance when it is removed,
especially for MILU. This implies a lack of LU
robustness in detecting unseen entities.

Table 11b shows the results of ablation study
on SD. Among the four types of disfluencies de-
scribed in Table 5, repairs has the largest impact on
models’ performance. The performance is also af-
fected by pauses but to a less extent. The influences
of repeats and restarts are small, which indicates
that neural models are robust to handle these two
problems.

5.3 User Evaluation

In order to test whether the data automatically aug-
mented by LAUG can reflect and alleviate practical
robustness problems, we conduct a real user evalua-
tion. We collected 240 speech utterances from real
humans as follows: First, we sampled 120 com-
binations of DA from the test set of MultiWOZ.
Given a combination, each user was asked to speak
two utterances with different expressions, in their
own language habits. Then the audio signals were
recognized into text using DeepSpeech2, thereby

constructing a new test set in real scenarios8. Re-
sults on this real test set are shown in Table 12.

Model Train Ori. Avg. Real

MILU Original 91.33 84.28 63.55
Augmented 91.39 88.64 66.77

BERT Original 93.40 86.95 65.22
Augmented 93.32 91.06 69.12

Table 12: User evaluation results on MultiWOZ. Ori.
and Avg. have the same meaning as the ones in Table
8, and Real is the real user evaluation set.

The performance on the real test set is substan-
tially lower than that on Ori. and Avg., indicating
that real user evaluation is much more challenging.
This is because multiple robustness issues may be
included in one real case, while each augmenta-
tion method in LAUG evaluates them separately.
Despite the difference, model performance on the
real data is remarkably improved after every model
is finetuned on the augmented data, verifying that
LAUG effectively enhances the model’s real-world
robustness.

5.4 Error Analysis

Error Type BERT Ori. BERT Aug.
Num % Num %

Language Variety 21 43.8 20 45.5
Speech Characteristics 14 29.2 11 25.0

Noise Perturbation 12 25.0 10 22.7
Others 14 29.2 14 31.8

Multiple Issues 12 25.0 11 25.0

Table 13: Error analysis of BERT in user evaluation.

Table 13 investigates which error type the model
has made on the real test set by manually checking
all the error outputs of BERT Ori. “Others” are
the error cases which are not caused by robustness
issues, for example, because of the model’s poor
performance. It can be observed that the model
seriously suffers to LU robustness (over 70%), and
that almost half of the error is due to Language
Variety. We find that this is because there are more
diverse expressions in real user evaluation than in
the original data. After augmented training, we can
observe that the number of error cases of Speech
Characteristics and Noise Perturbation is relatively
decreased. This shows that BERT Aug. can solve
these two kinds of problems better. Noting that
the sum of four percentages is over 100% since
25% error cases involve multiple robustness issues.

8See appendix for details on real data collection.
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This again demonstrates that real user evaluation is
more challenging than the original test set9.

6 Related Work

Robustness in LU has always been a challenge in
task-oriented dialog. Several studies have investi-
gated the model’s sensitivity to the collected data
distribution, in order to prevent models from over-
fitting to the training data and improve robustness
in the real world. Kang et al. (2018) collected di-
alogs with templates and paraphrased with crowd-
sourcing to achieve high coverage and diversity in
training data. Dinan et al. (2019) proposed a train-
ing schema that involves human in the loop in dia-
log systems to enhance the model’s defense against
human attack in an iterative way. Ganhotra et al.
(2020) injected natural perturbation into the dialog
history manually to refine over-controlled data gen-
erated through crowd-sourcing. All these methods
require laborious human intervention. This paper
aims to provide an automatic way to test the LU
robustness in task-oriented dialog.

Various textual adversarial attacks (Zhang et al.,
2020a) have been proposed and received increasing
attentions these years to measure the robustness of a
victim model. Most attack methods perform white-
box attacks (Papernot et al., 2016; Li et al., 2019;
Ebrahimi et al., 2018) based on the model’s internal
structure or gradient signals. Even some black-box
attack models are not purely “black-box”, which
require the prediction scores (classification proba-
bilities) of the victim model (Jin et al., 2020; Ren
et al., 2019; Alzantot et al., 2018). However, all
these methods address random perturbation but do
not consider linguistic phenomena to evaluate the
real-life generalization of LU models.

While data augmentation can be an efficient
method to address data sparsity, it can improve the
generalization abilities and measure the model ro-
bustness as well (Eshghi et al., 2017). Paraphrasing
that rewrites the utterances in dialog has been used
to get diverse representation and thus enhancing ro-
bustness (Ray et al., 2018; Zhao et al., 2019; Iyyer
et al., 2018). Word-level operations (Kolomiyets
et al., 2011; Li and Qiu, 2020; Wei and Zou, 2019)
including replacement, insertion, and deletion were
also proposed to increase language variety. Other
studies (Shah et al., 2019; Xu and Sarikaya, 2014)
worked on the out-of-vocabulary problem when fac-
ing unseen user expression. Some other research

9See appendix for case study.

focused on building robust spoken language under-
standing (Zhu et al., 2018; Henderson et al., 2012;
Huang and Chen, 2019) from audio signals beyond
text transcripts. Simulating ASR errors (Schatz-
mann et al., 2007; Park et al., 2019; Wang et al.,
2020a) and speaker disfluency (Wang et al., 2020b;
Qader et al., 2018) can be promising solutions to
enhance robustness to voice input when only tex-
tual data are provided. As most work tackles LU
robustness from only one perspective, we present
a comprehensive study to reveal three critical is-
sues in this paper, and shed light on a thorough
robustness evaluation of LU in dialog systems.

7 Conclusion and Discussion

In this paper, we present a systematic robustness
evaluation of language understanding (LU) in task-
oriented dialog from three aspects: language va-
riety, speech characteristics, and noise perturba-
tion. Accordingly, we develop four data augmenta-
tion methods to approximate these language phe-
nomena. In-depth experiments and analysis are
conducted on MultiWOZ and Frames, with both
classification- and generation-based LU models.
The performance drop of all models on augmented
test data indicates that these robustness issues are
challenging and critical, while pre-trained models
are relatively more robust to LU. Ablation studies
are carried out to show the effect and orthogonality
of each augmentation approach. We also conduct a
real user evaluation and verifies that our augmen-
tation methods can reflect and help alleviate real
robustness problems.

Existing and future dialog models can be eval-
uated in terms of robustness with our toolkit and
data, as our augmentation model does not depend
on any particular LU models. Moreover, our pro-
posed robustness evaluation scheme is extensible.
In addition to the four approaches in LAUG, more
methods to evaluate LU robustness can be consid-
ered in the future.

Acknowledgments

This work was partly supported by the NSFC
projects (Key project with No. 61936010 and reg-
ular project with No. 61876096). This work was
also supported by the Guoqiang Institute of Ts-
inghua University, with Grant No. 2019GQG1 and
2020GQG0005. We would like to thank colleagues
from HUAWEI for their constant support and valu-
able discussion.



2476

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896.

Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-
liang Chen, et al. 2016. Deep speech 2: End-to-end
speech recognition in english and mandarin. In In-
ternational conference on machine learning, pages
173–182.

Timothy W Bickmore, Ha Trinh, Stefan Olafsson,
Teresa K O’Leary, Reza Asadi, Nathaniel M Rick-
les, and Ricardo Cruz. 2018. Patient and consumer
safety risks when using conversational assistants for
medical information: an observational study of siri,
alexa, and google assistant. Journal of medical In-
ternet research, 20(9):e11510.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
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A Experimental Setup

A.1 Hyperparameters

As for hyperparameters in LAUG, we set the ratio
of perturbation number to text length α = n/l =
0.1 in EDA . The learning rate used to finetune
SC-GPT in TP is 1e-4, the number of training
epoch is 5, and the beam size during inference
is 5. In SR, the beam size of the language model
in DeepSpeech2 is set to 50. The learning rate of
Bi-LSTM+CRF in SD is 1e-3. The threshold of
fuzzy matching in automatic value detection is set
to 0.9 in TP and 0.7 in SR.

For hyperparameters of base models. The learn-
ing rate is set to 1e-4 for BERT, 1e-5 for GPT2,
and 1e-3 for MILU and CopyNet. The beam-size
of GPT2 and CopyNet is 5 during the decoding
step.

A.2 Real Data Collection

Among the 120 sampled DA combinations, each
combination contains 1 to 3 DAs. Users can or-
ganize the DAs in any order provided that they
describe DAs with the correct meaning so as to
imitate diverse user expressions in real scenarios.
Users are also asked to keep natural in both into-
nation and expression, and communication noise
caused by users in speech and language is included
during collection. The audios are recorded by users’
PCs under their real environmental noises. We use
the same settings of DeepSpeech2 in SR to rec-
ognize the collected audios. After automatic span
detection (also the same as SR’s) are applied, we
conduct human check and annotation to ensure the
quality of labels.

B Evaluation Results

B.1 Prediction Schemes

Model Train Scheme Ori. Avg. Drop

MILU
Ori. coupled 85.52 82.91 -2.61

decoupled 91.33 84.28 -7.05

Aug. coupled 90.00 88.15 -1.85
decoupled 91.39 88.64 -2.75

BERT
Ori. coupled 88.94 80.33 -8.61

decoupled 93.40 86.95 -6.45

Aug. coupled 88.84 88.63 -0.21
decoupled 93.32 91.06 -2.26

Table 14: Robustness on different schemes on Multi-
WOZ. The coupled scheme predicts dialog acts with
a joint tagging scheme; the decoupled scheme first de-
tects domains and intents, then recognizes the slot tags.

In this section, we study the influence of train-
ing/prediction schemes on LU robustness. As de-
scribed in Sec. 4.3 of the main paper, the process
of classification-based LU models is decoupled
into two steps to handle multiple labels: one for
domain/intent classification and the other for slot
tagging. Another strategy is to use the cartesian
product of all the components of dialog acts, which
yields a joint tagging scheme as presented in Con-
vLab (Lee et al., 2019). To give an intuitive illus-
tration, the slot tag of the token “Los” becomes
“Train-Inform-Depart-B” in the example described
in Fig. 2 of the main paper. The classification-
based models can predict the dialog acts within a
single step in this way.

Table 14 shows that MILU and BERT gain
from the decoupled scheme on the original test
set. This indicates that the decoupled scheme de-
creases the model complexity by decomposing the
output space. Interestingly, there is no consis-
tency between two models in terms of robustness.
MILU via the coupled scheme behaves more ro-
bustly than the decoupled counterpart (-2.61 vs.
-7.05), while BERT with the decoupled scheme out-
performs its coupled version in robustness (-6.45
vs. -8.61). Meanwhile, BERT benefits from the
decoupled scheme and still achieves 86.95% accu-
racy, but BERT training with the coupled scheme
seems more susceptible. In addition, both MILU
and BERT recover more performance by the pro-
posed decoupled scheme. All these results demon-
strate the superiority of the decoupled scheme in
classification-based LU models.

B.2 Case Study

In Table 15, we present some examples of aug-
mented utterances in MultiWOZ. In terms of model
performance, MILU, BERT and GPT-2 perform
well on WP and TP in the example while Copy-
Net misses some dialog acts. For the SR utterance,
only BERT obtains all the correct labels. MILU
and Copynet both fail to find the changed value
spans “lester” and “thirteen forty five”. Copynet’s
copy mechanism is fully confused by recognition
error and even predicts discontinuous slot values.
GPT-2 successfully finds the non-numerical time
but misses “leseter”. In the SD utterance, the repair
term fools all the models. Overall, in this example,
BERT performs quite well while MILU and Copy-
Net expose some of their defects in robustness.

Table 16 shows some examples from real user
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Ori. I ’m leaving from Leicester and should arrive in Cambridge by 13:45.
Golden train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }

WP I ’m leaving from Leicester and {in}swap arrive {should}swap Cambridge by {06:54}replace.
Golden train { inform ( dest = cambridge ; arrive = 06:54 ; depart = leicester ) }
MILU train { inform ( dest = cambridge ; arrive = 06:54 ; depart = leicester ) }
BERT train { inform ( dest = cambridge ; arrive = 06:54 ; depart = leicester ) }
Copy train { inform ( dest = cambridge ; depart = leicester ) }
GPT-2 train { inform ( dest = cambridge ; arrive = 06:54 ; depart = leicester ) }

TP Departing from Leicester and going to Cambridge. I need to arrive by 13:45.
Golden train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }
MILU train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }
BERT train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }
Copy train { inform ( arrive = 13:45 ; depart = leicester ) }
GPT-2 train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }

SR I’m leaving from {lester}similar and should arrive in Cambridge by {thirteen forty five}spoken.
Golden train { inform ( dest = cambridge ; arrive = thirteen forty five ; depart = lester ) }
MILU train { inform ( dest = cambridge ) }
BERT train { inform ( dest = cambridge ; arrive = thirteen forty five ; depart = lester ) }
Copy train { inform ( dest = cambridge forty ; depart = lester ) }
GPT-2 train { inform ( dest = cambridge ; arrive = thirteen forty five ) }

SD {Well, you know,}restart I ’m leaving from Leicester and should arrive in {King’s College sorry, i mean}repair
Cambridge by 13:45.

Golden train { inform ( dest = cambridge ; arrive = 13:45 ; depart = leicester ) }
MILU train { inform ( dest = king ; arrive = 13:45 ; depart = leicester ) }
BERT train { inform ( dest = king ’s college ; arrive = 13:45 ; depart = leicester ) }
Copy train { inform ( arrive = 13:45 ; depart = leicester ) }
GPT-2 train { inform ( dest = king ’s college ; arrive = 13:45 ; depart = leicester ) }

Table 15: Augmented examples and corresponding model outputs. All models are trained on the original data only.
Wrong values are colored in blue.

Case-1 The train from Cambridge arrives at seventeen o’clock.
Golden train { inform ( dest = Cambridge ; arrive = seventeen o’clock ) }

MILU Ori. train { inform ( dest = Cambridge ) }
MILU Aug. train { inform ( dest = Cambridge ; arrive = seventeen o’clock ) }
BERT Ori. train { inform ( dest = Cambridge ; arrive = seventeen ) }
BERT Aug. train { inform ( dest = Cambridge ; arrive = seventeen o’clock ) }

Case-2 A ticket departs from Cambridge and arrives at Bishops Stortford the police.
Golden train { inform ( depart = Cambridge ; dest= Bishops Stortford ) }

MILU Ori. train { inform ( depart = Cambridge ; dest= Bishops Stortford ; dest= police) }
MILU Aug. train { inform ( depart = Cambridge ; dest= Bishops Stortford ) }
BERT Ori. train { inform ( depart = Cambridge ; dest= Bishops Stortford ) }
BERT Aug. train { inform ( depart = Cambridge ; dest= Bishops Stortford ) }

Case-3 How much should I pay for the train ticket?
Golden train { request ( ticket = ? ) }

MILU Ori. None
MILU Aug. train { request ( ticket = ? ) }
BERT Ori. None
BERT Aug. None

Table 16: User evaluation examples and corresponding model outputs. Ori. and Aug. stand for model before/after
augmented training.

evaluation. In case-1, the user says “seventeen
o’clock” while time is always represented in nu-
meric formats (e.g. “17:00”) in the dataset, which
is a typical Speech Characteristics problem. Case-
2 could be regarded as a Speech Characteristics
or Noise Perturbation case because “please” is
wrongly recognized as “police” by ASR models.
Case-3 is an example of Language Variety, the user
expresses the request of getting ticket price in a

different way comparing to the dataset. MILU and
BERT failed in most of these cases but fixed some
error after augmented training.


