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Abstract

We introduce the TMUOU1 submission for the
WMT20 Quality Estimation Shared Task 1:
Sentence-Level Direct Assessment. Our sys-
tem is an ensemble model of four regression
models based on XLM-RoBERTa with lan-
guage tags. We ranked 4th in Pearson and 2nd
in MAE and RMSE on a multilingual track.

1 Introduction

Quality Estimation (QE) is a task of estimating
translation quality without reference sentences
(Gandrabur and Foster, 2003; Blatz et al., 2004;
Specia et al., 2018). Automatic evaluation metrics
based on reference sentences, such as BLEU (Pap-
ineni et al., 2002), have contributed to improving
translation quality on benchmark datasets. How-
ever, in situations where machine translation (MT)
is actually used, these metrics are sometimes un-
able to assess the translation quality owing to the
lack of reference sentences. The development of
QE methods that are well correlated with manual
evaluations enable users to decide whether to use
the translation results as is, post-edit the results, or
employ other machine translations.

At the Conference on Machine Translation
(WMT), there have been conducted several QE-
related competitions such as the QE task (Fonseca
et al., 2019) for estimating post-edit rate HTER
(Snover et al., 2006) and the QE as a Metric task
(Ma et al., 2019) for relative evaluations of trans-
lation quality. This year, the WMT QE task held a
new competition (Specia et al., 2020) on absolute
evaluations of translation quality. In task 1, sen-
tences are annotated with direct assessment (DA)
scores as in the metrics task (Bojar et al., 2017).

1Tokyo Metropolitan University and Osaka University

We have been working on the metrics task with
an approach that uses pre-trained sentence encoders
(Shimanaka et al., 2018, 2019). Shimanaka et al.
(2018) employed InferSent (Conneau et al., 2017),
Quick-Thought (Logeswaran and Lee, 2018), and
Universal Sentence Encoder (Cer et al., 2018) as
encoders, and achieved the highest performance in
all to-English language pairs of WMT18 metrics
shared task (Ma et al., 2018). Subsequently, Shi-
manaka et al. (2019) employed BERT (Devlin et al.,
2019) as an encoder to further improve the corre-
lation with manual evaluations. In this study, we
apply similar approaches to the QE task. However,
to support both source and target languages, we
employ XLM-RoBERTa2 (Conneau et al., 2020), a
pre-trained multilingual sentence encoder.

2 WMT20 QE Shared Task 1

In the WMT20 QE task 1 (Sentence-Level Direct
Assessment), participants predict translation qual-
ity at the sentence level from pairs of source and
MT output sentences. This task provides datasets
for seven language pairs and sets up a multilingual
track for a language-independent approach.

2.1 Datasets
Source sentences have been collected from
Wikipedia for six language pairs: English–
German (En-De), English–Chinese (Eh-Zh),
Romanian–English (Ro-En), Estonian–English (Et-
En), Nepalese–English (Ne-En), and Sinhala–
English(Si-En). In addition, a combination of
75% Reddit data and 25% Wikipedia data for the
Russian–English (Ru-En) language pair is provided.
Organizers trained state-of-the-art neural MT mod-
els on each dataset using the fairseq toolkit (Ott
et al., 2019) and generated MT output sentences.

2https://github.com/facebookresearch/XLM
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Source MT output QE score

Its ferocious winds defoliated nearly all
vegetation, splintering or uprooting thou-
sands of trees and decimating the is-
land’s lush rainforests.

Seine wilden Winde entblätterten fast die
gesamte Vegetation, zersplitterten oder en-
twurzelten Tausende von Bäumen und dez-
imierten die üppigen Regenwälder der Insel.

1.267

The Cubs tied it in the third on a triple by
Ben Zobrist to knock in Daniel Murphy.

Die Cubs band es in der dritten auf einem Triple
von Ben Zobrist in Daniel Murphy klopfen.

−3.760

Table 1: Examples of English-German dataset.

Three or more professional translators annotated
DA scores in the range of 0-100 points for each pair
of source and MT output sentences. These anno-
tations are following the FLORES setup (Guzmán
et al., 2019). The dataset consists of pairs of
source and MT output sentences, z-standardized
DA scores, and MT model score (log probabilities
for words). Table 1 shows examples of the dataset.
For each language pair, 7,000 training sets, 1,000
development sets, and 1,000 test sets are provided.

2.2 Baseline and Evaluation

The baseline system is a Predictor-Estimator model
(Kim et al., 2017) implemented in OpenKiwi3 (Ke-
pler et al., 2019). The predictor is trained on a
parallel corpus used to train the MT model, and
predicts each target token from source and target
contexts. And the estimator predicts the QE score
from features produced by the predictor.

Participants are evaluated by Pearson’s cor-
relation metric (Pearson), mean absolute error
(MAE), and root mean squared error (RMSE). A
z-standardized DA score is used as a gold label.

3 TMUOU System

Our system is an ensemble model of four regression
models based on XLM-RoBERTa (Conneau et al.,
2020) with language tags. We first explain each
base model in Section 3.1, and then introduce the
ensemble model in Section 3.2. Finally, Section
3.3 describes the implementation details.

3.1 Base Models

Recently, the fine-tuning approach for masked lan-
guage models (Devlin et al., 2019) has achieved
the highest performance for many language under-
standing tasks (Wang et al., 2019). The BERT-
based regression model (Shimanaka et al., 2019)

3https://github.com/Unbabel/OpenKiwi

also achieves high performance in the WMT met-
ric task that estimates the DA score of translation
quality (Bojar et al., 2017). We employ XLM-
RoBERTa (Conneau et al., 2020), a multilingual
masked language model, for this task to estimate
the DA score of translation quality from pairs of
source and MT output sentences.

E0 Model In this model, we fine-tune the XLM-
RoBERTa in the normal way. We input sentence
pairs into the model in the following format and use
the special token <s> at the beginning of the first
sentence to estimate the QE score: <s> source
</s> <s> MT output </s>.

E0+LangTag Model To make it clear to the
XLM-RoBERTa which language each sentence
is in, we add a special token (LangTag) for lan-
guage identification, such as <en>, at the begin-
ning of each sentence. We have expanded the to-
kenizer and vocabulary and added the following
eight LangTags: <en> <et> <de> <ne> <ro>
<ru> <si> <zh>. An example of input to the
model is as follows: <s> <en> source </s>
<s> <de> MT output </s>.

E0+AVG Model Averaged token vector is as
fruitful as the <s> vector at the beginning of the
first sentence (Reimers and Gurevych, 2019). We
concatenate the averaged token vector and the <s>
vector to get richer information from sentence
pairs.

E0+AVG+LangTag Model This model is a com-
bination of the above models. As shown in Figure 1,
we add LangTag at the beginning of each sentence
and concatenate the <s> vector with the averaged
token vector to estimate the QE score.

3.2 Ensemble Model

We ensemble four models described above to make
prediction stable. A Gradient Boosting Tree (Fried-
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Figure 1: Overview of the TMUOU system.

En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En Multilingual

E0 0.455 0.490 0.860 0.747 0.742 0.646 0.693 0.662
E0+LangTag 0.419 0.465 0.874 0.744 0.763 0.648 0.701 0.652
E0+AVG 0.461 0.440 0.873 0.738 0.751 0.658 0.689 0.659
E0+AVG+LangTag 0.410 0.465 0.885 0.764 0.769 0.646 0.699 0.663

Ensemble 0.485 0.506 0.897 0.783 0.801 0.691 0.726 0.698

Table 2: Pearson’s correlation on the development sets.

man, 2001) is trained using k-fold cross-validation
on the development set with the QE scores esti-
mated by each base model as the features. In addi-
tion to the QE scores estimated by each base model,
the features of the ensemble model also include the
sum of MT model scores for each output word and
a one-hot vector representing the language pair.

3.3 Implementation Details

We implemented all models based on the Hug-
ging Face (Wolf et al., 2019) XLM-RoBERTa-large
model.4 The hyper parameters are as follows: batch
size is 16, weight decay is 0.01, gradient clipping
norm is 5.0, dropout for the attention layers and
regression layer are 0.1, max epoch is 100. We use
early stopping by Pearson metric on the dev sets
with patience 5. We use Adam optimizer (Kingma
and Ba, 2015) with warm up. The learning rate for
the optimizer is 2e−5, and we gradually decrease
the learning rate by a linear scheduler.

For the ensemble model, we trained gradient
boosting regressor with least square loss imple-
mented in scikit-learn (Pedregosa et al., 2011) with
10 folds cross-validation. The hyper parameters are
as follows: the initial learning rate is 0.1, the num-
ber of estimators are 100, the subsample ratio is 1.0,
the criterion is mean squared error with improve-
ment score by Friedman, the minimum amount of
sample split is 2, max depth of the tree is 3.

4https://huggingface.co/xlm-roberta-large

MAE RMSE Pearson

Bergamot-LATTE 0.408 0.527 0.718
TMUOU 0.418 0.543 0.686
IST and Unbabel 0.433 0.569 0.673
TransQuest 0.480 0.596 0.722
NiuTrans 0.529 0.653 0.732
WL Research 0.538 0.683 0.546
IST and Unbabel 0.547 0.719 0.583
Baseline 0.788 0.999 0.376
Bergamot-LATTE 0.895 1.062 0.489
nc 0.918 1.141 0.462

Table 3: Official results in ascending order of MAE.

4 Results

Table 2 shows the Pearson’s correlation of each
model on the development sets. Although there
is no significant difference in the performance of
the base models, the E0+AVG+LangTag model
achieves higher performance in the majority of lan-
guage pairs. The ensemble model achieves the
highest performance in all language pairs. QE per-
formance of to-English language pairs tends to be
higher than that of from-English language pairs.

Table 3 presents the official results for a multi-
lingual track. Participants are listed in ascending
order of MAE. We submitted the ensemble model
and ranked 4th in Pearson and 2nd in MAE and
RMSE on a multilingual track.
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5 Conclusions

We describe the TMUOU submission for the
WMT20 Shared Task on Quality Estimation. Our
system is an ensemble model based on XLM-
RoBERTa, which takes into account averaged to-
ken vectors and language identifiers to improve
performance. In the official evaluation, we ranked
4th in Pearson and 2nd in MAE and RMSE on a
multilingual track.
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