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Abstract

Most approaches to Open-Domain Question
Answering consist of a light-weight retriever
that selects a set of candidate passages, and
a computationally expensive reader that exam-
ines the passages to identify the correct answer.
Previous works have shown that as the num-
ber of retrieved passages increases, so does the
performance of the reader. However, they as-
sume all retrieved passages are of equal impor-
tance and allocate the same amount of com-
putation to them, leading to a substantial in-
crease in computational cost. To reduce this
cost, we propose the use of adaptive compu-
tation to control the computational budget al-
located for the passages to be read. We first
introduce a technique operating on individual
passages in isolation which relies on anytime
prediction and a per-layer estimation of an
early exit probability. We then introduce SKY-
LINEBUILDER, an approach for dynamically
deciding on which passage to allocate compu-
tation at each step, based on a resource alloca-
tion policy trained via reinforcement learning.
Our results on SQuAD-Open show that adap-
tive computation with global prioritisation im-
proves over several strong static and adaptive
methods, leading to a 4.3x reduction in compu-
tation while retaining 95% performance of the
full model.

1 Introduction

Open-Domain Question Answering (ODQA) re-
quires a system to answer questions using a large
collection of documents as the information source.
In contrast to context-based machine comprehen-
sion, where models are to extract answers from
single paragraphs or documents, it poses a funda-
mental technical challenge in machine reading at
scale (Chen et al., 2017) .

Most ODQA systems consist of two-stage
pipelines, where 1) a context retriever such as

BM25 (Robertson, 2004) or DPR (Karpukhin et al.,
2020) first selects a small subset of passages that
are likely to contain the answer to the question, and
2) a machine reader such as BERT (Devlin et al.,
2019) then examines the retrieved contexts to ex-
tract the answer. This two-stage process leads to a
computational trade-off that is indicated in Fig. 1.
We can run computationally expensive deep net-
works on a large number of passages to increase the
probability that we find the right answer (“All Lay-
ers, All Passages”), or cut the number of passages
and layers to reduce the computational footprint at
the possible cost of missing an answer (“6 Layers,
Top-2 Passages”).

We hypothesise that a better accuracy-efficiency
trade-off can be found if the computational budget
is not allocated statically, but based on the com-
plexity of each passage, see “Adaptive Computa-
tion” in Fig. 1. If a passage is likely to contain the
answer, allocate more computation. If it isn’t, allo-
cate less. The idea of conditioning neural network
computation based on inputs has been pursued in
previous work on Adaptive Computation (Bengio
et al., 2015; Graves, 2016; Elbayad et al., 2020),
however how to apply this idea to ODQA is still an
open research question.

In this work, we introduce two adaptive com-
putation methods for ODQA: TOWERBUILDER

and SKYLINEBUILDER. TOWERBUILDER builds
a tower, a composition of transformer layers on a
single passage, until an early stopping condition
is met—we find that this method already helps re-
ducing the computational cost required for reading
the retrieved passages. Then, for coordinating the
construction of multiple towers in parallel, we in-
troduce a global method, SKYLINEBUILDER, that
incrementally builds multiple towers one layer at a
time and learns a policy to decide which tower to
extend one more layer next. Rather than building
single transformer towers in isolation, it constructs
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All Layers, All Passages 6 Layers, Top-2 Passages Adaptive Computation

Passage 1 Passage 2 Passage 9 Passage 10 Passage 1 Passage 2 Passage 1 Passage 2 Passage 9 Passage 10 

Figure 1: Static and adaptive computation for Open-Domain QA. Each block represents one layer of transformer
computation on a passage. The solid arrows show how activations flow, and the dashed arrows indicate the order
of computation. Only passage 10 contains the actual answer. Using all layers on all passages can find the answer,
while processing only the top 2 retrieved passages with 6 layers is unable to find it. Adaptive computation can find
the right passage, and allocates most computation budget to reading it.

a skyline of towers with different heights, based on
which passages seem most promising to process
further.

Our experiments on the SQuAD-Open dataset
show that our methods are very effective at reduc-
ing the computational footprint of ODQA models.
In particular, we find that SKYLINEBUILDER re-
tains 95% of the accuracy of a 24-layer model using
only 5.6 layers on average. In comparison, an adap-
tation of the method proposed by Schwartz et al.
(2020) requires 9 layers for achieving the same
results. Improvements are even more substantial
for smaller number of layers—for example, with
an average of 3 layers SKYLINEBUILDER reaches
89% of the full performance, whereas the approach
of Schwartz et al. (2020) yields 57% and a model
trained to use exactly 3 layers reaches 65%. Fi-
nally, SKYLINEBUILDER retains nearly the same
accuracy at full layer count.

To summarise, we make the following contri-
butions: 1) we are the first to explore adaptive
computation for ODQA by proposing two models:
TOWERBUILDER and SKYLINEBUILDER; 2) we
experimentally show that both methods can be used
for adaptively allocating computational resources
so to retain the predictive accuracy with a signifi-
cantly lower cost, and that coordinating the build-
ing of multiple towers via a learned policy yields
more accurate results; 3) when compared to their
non-adaptive counterparts, our proposed methods
can reduce the amount of computation by as much
as 4.3 times.

2 Background

We first give an overview of ODQA and the relevant
work in adaptive computation.

2.1 Open Domain Question Answering

In ODQA we are given a natural language query q
and a large number of passages C—for example,
all paragraphs in Wikipedia. The goal is to use
C to produce the answer y. In extractive ODQA
this answer corresponds to a span in one of the
documents of C. The corpus C can be very large,
and a common approach to reduce computational
costs is to first determine a smaller document set
Dq ⊆ C by retrieving the most relevant n passages
using an information retrieval module. Then we
run a neural reader model on this subset. In most
works, the reader model extracts answers by ap-
plying a per-passage reader to each input passage
x1, . . . ,xn ∈ Dq and then apply some form of
aggregation function on the per-passage answers
to produce a final answer. Note that the passage
reader can either produce an answer span as output,
or NoAnswer in case the passage does not contain
an answer for the given question.

2.2 Transformers for ODQA

Most current ODQA models rely on transformer-
based architectures (Vaswani et al., 2017), usually
pre-trained, to implement the PReader passage
reader interface. In such models, an input passage
is processed via a sequence of transformer layers;
in the following, we denote the i-th transformer
layer in the sequence as TransformerLayeri. Let
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hi be the input to the i-th transformer layer and
hi+1 = TransformerLayeri(hi) its output. We
set h1 = x to be the input passage. In standard
non-adaptive Transformer-based models, we incre-
mentally build a tower—a composition of Trans-
former layers—until we reach some pre-defined
height n and use an output layer to produces the
final output, y = OutputLayer(hn). In this work,
due to efficiency reasons, we restrict ourselves to
pre-trained ALBERT (Lan et al., 2020) models.
One critical property of these models is parame-
ter tying across layers: TransformerLayeri(h) =
TransformerLayerj(h) for any i, j.

2.3 Adaptive Computation

Our goal is to early-exit the iterative layer-by-layer
process in order to save computation. We assume
this can be happening adaptively, based on the in-
put, since some passages might require less compu-
tation to produce an answer than others. Schwartz
et al. (2020) show how this can be achieved for clas-
sification tasks. They first require internal layers to
be able to produce outputs too, yielding an anytime
algorithm. 1 This can be achieved with a suitable
training objective. Next, for each candidate layer
i, they calculate the exit probability given its hid-
den state hi, and use them for taking an early-exit
decision: if the highest exit probability is above a
global threshold τ , they return OutputLayer(hi)
otherwise they continue with the following layers.

The output layer probabilities are not calibrated
for exit decisions, and hence Schwartz et al. (2020)
tune them on an held-out validation set via tem-
perature calibration (Guo et al., 2017; Desai and
Durrett, 2020), where a temperature T is tuned
to adapt the softmax output probabilities at each
layer.

3 Adaptive Computation in ODQA

Our goal is to incrementally build up towers of
transformer layers for all passages in Dq in a
way that minimises unnecessary computation. Our
algorithms maintain a state, or skyline, S =
(H,A), consisting of current tower heights H =
(h1, . . . , hn), indicating how many layers have
been processed for each of the n towers, and the
last representations A = (a1, . . . ,an) computed
for each of the towers. We want to build up the

1In practice, Schwartz et al. (2020) choose a subset of lay-
ers to be candidate output layers, so strictly speaking we can-
not exit any time, but only when a candidate layer is reached.

skyline so that we reach an accurate solution fast
and then stop processing.

3.1 Early Exit with Local Exit Probabilities
Our first proposal is to extend the method from
Schwartz et al. (2020) in order to build up the sky-
line S. In particular, we will process each pas-
sage xi ∈ Dq in isolation, building up height
hi and representation ai until an exit probability
reaches a threshold. For Schwartz et al. (2020)
the exit probability is set to be the probability of
the most likely class. While ODQA is not a clas-
sification problem per se, it requires solving one
as a sub-step, either explicitly or implicitly: de-
ciding whether a passage contains the answer. In
turn, our first method TOWERBUILDER, uses the
probability 1−HasAnswer(ai) of the passage not
containing the answer to calculate the exit probabil-
ity at such given layer. In practice the probability
HasAnswer(ai) is calculated as the Sigmoid out-
put of an MLP applied the representation of the
CLS token in ai. Moreover, models are trained to
produce HasAnswer probabilities for each layer
using a per-layer loss. Following Schwartz et al.
(2020), we also conduct temperature calibration for
the HasAnswer modules using the development
set.

When building up the towers, TOWERBUILDER

produces early exit decisions for each tower in iso-
lation. Once all towers have been processed, the
method selects the highest m towers in the final
S∗ to produce the final answer, where m is a hy-
perparameter. Since some of the selected towers
in S∗ may not have full height, we will need to
continue unrolling them to full height to produce
an answer. We will call this the LastLayer strat-
egy. Alternatively, we can return the solution at
the current height, provided that we use an anytime
model not just for HasAnswer predictions but also
for answer extraction. We will refer to this strat-
egy as AnyLayer. By default we use LastLayer
but we will conduct ablation study of these two
approaches in Section 5.3.

3.2 Global Scheduling
We can apply TOWERBUILDER independently to
each passage xi ∈ Dq. However, if we have al-
ready found an answer after building up one tower
for a passage xi, we can avoid reading other pas-
sages. Generally, we imagine that towers that are
more likely to produce the answers should be pro-
cessed first and get more layers allocated to. To
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assess if one tower is more likely to contain an an-
swer, we need to compare them and decide which
tower has highest priority. This type of strategy
cannot be followed when processing passages in
isolation, and hence we consider a global multi-
passage view.

A simple approach for operating on multiple
passages is to re-use information provided to the
TOWERBUILDER method and select the next tower
to extend using the HasAnswer probabilities. In
particular, we can choose the next tower to build
up as j = argmaxiHasAnswer(ai), and then set
aj ← TransformerLayer(aj) and hj ← hj +1 in
the state S. To efficiently implement this strategy
we use a priority queue. Every time a tower is ex-
panded, its HasAnswer probability is re-calculated
and used in a priority queue we choose the next
tower from. Once we reach the limit of our com-
putation budget, we can stop the reading process
and return the results of the highest m towers S∗

as inputs to its Output phase. The two aforemen-
tioned answer extraction methods (i.e., AnyLayer
and LastLayer) also apply to this method.

3.3 Learning a Global Scheduler

Using HasAnswer probabilities to prioritise towers
is a sensible first step, but not necessarily optimal.
First, while the probabilities are calibrated, they are
tuned for optimising the negative log-likelihood,
not the actual performance of the method. Second,
the HasAnswer probability might not capture ev-
erything we need to know about the towers in order
to make decisions. For example, it might be im-
portant to understand what the rank of the tower’s
passage is in the retrieval result, as higher ranked
passages might be more fruitful to expand. Finally,
the HasAnswer probabilities are not learnt with
the global competition of priorities across all tow-
ers, so they are not optimal for comparing priorities
between towers that have different heights.

To overcome the above issues, we frame the
tower selection process as a reinforcement learn-
ing (RL) problem: we consider each tower i ∈
{1, . . . , n} as a candidate action, and learn a pol-
icy π(i|S) that determines which tower to expand
next based on the current skyline. We present the
corresponding details below.

3.3.1 Policy
Our policy calculates π(i|S) using a priority vec-
tor p(S) ∈ Rn. The priority pi(S) of each tower
i is calculated using a linear combination of the

HasAnswer probability of that tower and the out-
put of a multi-layer perceptron MLPθ. The per-
ceptron is parametrised by θ and uses a feature
representation fi(S) of tower i in state S as input.
Concretely, we have:

pi(S) = αHasAnswer(ai) +MLPθ(fi(S))

where α is a learnable mixture weight.
As feature representation we use fi(S) =
[HeightEmb(hi), IndexEmb(i),HasAnswer(ai)]
where the tower height hi and index i
are represented using embedding matrices
HeightEmb ∈ Rl×d and IndexEmb ∈ Rn×d
respectively. When a tower is currently empty, an
initial priority p0i will be provided: it can either
be a fixed value or a learnable parameter, and its
impact is analysed in Section 5.2. Given the above
priority vector, the policy simply maps per tower
priorities to the probability simplex:

π(i|S) = Softmaxi(p(S)).

The parameters (α, θ) introduced by this policy do
not introduce much computational overhead: with
embedding size d = 8 and using 32-dimensional
hidden representations in the MLP, this model only
introduces 1,039 new parameters, a small amount
compared to ALBERT (≈ 18M).

3.3.2 Training

While executing a policy, the scheduler needs to
make discrete decisions as which tower to pur-
sue. These discrete decisions mean we cannot sim-
ply frame learning as optimising a differentiable
loss function. Instead we use the REINFORCE
algorithm (Williams, 1992) for training our pol-
icy, by maximising the expected cumulative re-
ward. For us, this reward is defined as follows.
Let im1 = i1, . . . , im and Sm1 = S1, . . . , Sm be a
trajectory of (tower selection) actions and states,
respectively. We then set the cumulative reward to
R(imt ,S

m
t ) = r(it, St) + γR(imt+1,S

m
t+1) where

r(it, St) is a immediate per-step reward we de-
scribe below, and γ is a discounting factor.

We define an immediate per-step reward r(i, S)
of choosing tower i in state S as r(i, S) = r −
c where r = 1 if the selected tower contains an
answer and r = 0 otherwise. c ∈ R+ is a penalty
cost of taking a step. In our experiments, we set
c = 0.1.
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4 Related Work

Adaptive Computation One strategy to reduce
a model’s complexity consists in dynamically
deciding which layers to execute during infer-
ence (Bengio et al., 2015; Graves, 2016). Universal
transformers (Dehghani et al., 2019) can learn after
how many layers to emit an output conditioned on
the input. Elbayad et al. (2020) generalise universal
transformers by also learning which layer to exe-
cute at each step. Schwartz et al. (2020); Liu et al.
(2020) propose methods that can adaptively decide
when to early stop the computation in sentence
classification tasks. To the best of our knowledge,
previous work has focused adaptive computation
for a single input. We are the first to learn how
to prioritise computation across instances in the
context of ODQA.

Smaller Networks Another strategy consists in
training smaller and more efficient models. In
layer-wise dropout (Liu et al., 2018), during train-
ing, layers are randomly removed, making the
model robust to layer removal operations. This
idea was expanded Fan et al. (2020) to modern
Transformer-based models. Other methods include
Distillation (Hinton et al., 2015) of a teacher model
into a student model, Pruning of architectures af-
ter training (LeCun et al., 1989) and Quantisation
of the parameter space (Wróbel et al., 2018; Shen
et al., 2019; Zafrir et al., 2019). These methods are
not adaptive, but could be used in concert with the
methods proposed here.

Open Domain Question Answering Most mod-
ern ODQA systems adopt a two-stage approach
that consists of a retriever and a reader, such as
DrQA (Chen et al., 2017), HardEM (Min et al.,
2019), BERTserini (Yang et al., 2019), Multi-
passage BERT (Wang et al., 2019), and PathRe-
triever (Asai et al., 2020). As observed by Chen
et al. (2017); Yang et al. (2019); Karpukhin et al.
(2020); Wang et al. (2019), the accuracy of such
two-stage models increases with more passages re-
trieved. But it remains a challenge to efficiently
read a large number of passages as the reader mod-
els are usually quite computationally costly.

5 Experiments

Dataset SQuAD-Open (Chen et al., 2017) is a
popular open-domain question answering dataset
based on SQuAD. We partition the dataset into
four subsets: training set, two development sets

SQuAD-Open train dev0 dev1 test

Size 78,839 4,379 4,379 10,570
Hits@30 71.2% 72.7% 72.1% 77.9%

Table 1: Dataset sizes and retriever performances.

(dev0 and dev1), and test set, and their details are
summarised in Table 1.

Experimental Setup We follow the preprocess-
ing approached proposed by Wang et al. (2019)
and split passages into 100-word long chunks with
50-word long strides. We use a BM25 retriever
to retrieve the top n passages for each question
as inputs to the reader and the Wikipedia dump
provided by Chen et al. (2017) as source corpus.
Following Wang et al. (2019), we set n = 5 for
training and n = 30 for test evaluations. Table 1
shows the Hits@30 results of our BM25 retriever
on the dataset and they are comparable with previ-
ous works (Yang et al., 2019; Wang et al., 2019).

Reader Model For all our experiments, we
fine-tune a pre-trained ALBERT model (Lan
et al., 2020), consisting of 24 transformer lay-
ers and cross-layer parameter sharing. We do
not use global normalisation (Clark and Gardner,
2018) in our implementation, but our full system
(without adaptive computation) achieves an EM
score of 52.6 and is comparable to Multi-passage
BERT (Wang et al., 2019) which uses global nor-
malisation.

Training Pipeline The anytime reader models
are first trained on training set and validated on
dev0. Then we conduct temperature calibration
on dev0. For SKYLINEBUILDER, the scheduler
model is trained on dev0 with the calibrated any-
time model, and validated with dev1.

Baselines Following Schwartz et al. (2020), we
use three types of baselines: 1) the standard base-
line that reads all passages and outputs predictions
at the final layer, 2) the efficient baseline that al-
ways exits at a given intermediate layer for all pas-
sages, and is optimised to do so, 3) the top-k base-
line that only reads the k top ranked passages and
predicts the answer at their final layers.

Evaluation protocol Our goal is to assess the
computational efficiency of a given method in
terms of accuracy vs. computational budget used.
We follow Fan et al. (2020) and consider the com-
putation of one layer as a unit of computational
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(a) SKYLINEBUILDER vs. baselines
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(b) Local vs. Global Models
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(c) AnyLayer vs. LastLayer
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(d) Learnt vs. Fixed Initial Priorities

Figure 2: Evaluation results on the SQuAD-Open test set with 30 passages.

cost. In particular, we will assess how many lay-
ers, on average, each method builds up for each
passage. Similarly to Schwartz et al. (2020), we
show the accuracy-efficiency trade-off for different
strategies by showing the computation cost on the
x-axis, and the Exact Match (EM) 2 score on the
y-axis.

5.1 Static vs. Adaptive Computation
We first investigate how adaptive computation com-
pares to the static baselines. We will focus on a
single adaptive method, SKYLINEBUILDER, and
assess different adaptive variants later.

Fig. 2a shows the accuracy of SKYLINEB-
UILDER at different budgets when compared to
the standard, efficient, and top-k baselines. We
note that it reaches the similar results of the static
baselines with much fewer layers. In particular, it
yields substantially higher performance than static
methods when the computational budget is smaller
than ten layers. For example, when given four lay-
ers on average, SKYLINEBUILDER achieves EM

2The evaluation script can be found at this address:
https://github.com/facebookresearch/DrQA.

Method Avg. #layers Reduction

Standard baseline 24 1.0x
Efficient baseline 9.5 2.5x
Top-k baseline 14.4 1.7x

TOWERBUILDER 9.0 2.7x
SKYLINEBUILDER(-RL) 6.1 3.9x
SKYLINEBUILDER 5.6 4.3x

Table 2: Reduction in layer computations while achiev-
ing 95% of the accuracy of the standard baseline.

score 48.0, significantly outperforming EM score
44.2 of the top-k baseline.

In Table 2 we consider a setting where SKY-
LINEBUILDER and the static baseline reach com-
parable (95%) performance of the full 24-layer
model. We see that simply reducing the number
of passages to process is giving a poor accuracy-
efficiency trade-off, requiring 14.4 layers (or 18
passages) to achieve this accuracy. The efficient
baseline fares better with 9.5 layers, but it is still
outperformed by SKYLINEBUILDER, that only
needs 5.6 layers on average to reach the desired
accuracy.

https://github.com/facebookresearch/DrQA
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Var(h) Avg(rank) Flips h+ − h− HAP Exact Match

Efficient Baselines 0.00 14.50 - 0.00 6.1% 23.47

TOWERBUILDER 11.05 13.38 - 3.68 22.0% 17.10

SKYLINEBUILDER(-RL) 7.46 13.06 13.37 3.46 27.4% 27.95
SKYLINEBUILDER 12.71 8.78 6.48 5.99 40.5% 33.60

Table 3: Quantitative analysis on SQuAD Open dev1 set with top 30 passages and two layers of computation per
passage on average.

5.2 Local vs. Global Models

What is the impact of globally selecting which tow-
ers to extend, rather than taking early-exit deci-
sions on a per-tower basis? To answer this ques-
tion, we consider two global methods: SKYLINEB-
UILDER and SKYLINEBUILDER(-RL), the method
in Section 3.2 that uses HasAnswer probabilities
as priorities without any RL-based selection pol-
icy. We compare both to the local method TOWER-
BUILDER.

Fig. 2b shows that, while for very low
budgets TOWERBUILDER outperforms
SKYLINEBUILDER(-RL), with a budget larger
than 4 layers it is not the case anymore. This
may be due to a tendency of SKYLINEBUILDER(-
RL) spending an initial computation budget
on exploring many towers—in Fig. 3 we show
examples of this behaviour. It is also shown that
SKYLINEBUILDER considerably outperforms both
TOWERBUILDER and SKYLINEBUILDER(-RL).
Along with the results in Table 2, the comparisons
above indicate that 1) global scheduling across
multiple towers is crucial for improving efficiency,
and 2) optimising the adaptive policy with RL
manage to exploit global features for tower
selection, leading to further improvements.

5.3 Ablation Studies

Any Layer vs. Last Layer Model For compar-
ing the LastLayer and the AnyLayer strategies in-
troduced in Section 3.1, we show the behaviour of
these methods for the SKYLINEBUILDER schedul-
ing algorithm in Fig. 2c. Using an anytime an-
swer extraction model has a negative effect on ac-
curacy. We see this clearly at 24 layers where
AnyLayer lags substantially behind the standard
baseline while LastLayer almost reaches it. We
see this gap across the whole budget spectrum, lead-
ing to less accurate results except for very small
budgets.

Learning Initial Priorities SKYLINEBUILDER

uses a learnt initial priority for each tower. This
not only enables it learn which towers to process
first at the beginning, but also how long to wait
until other towers are visited. Fig. 2d shows the
benefit gained from adopting this strategy: with-
out training the initialisation priorities, SKYLINEB-
UILDER spend more computation on passages that
are likely not needed. Once an average of 4 layers
have been added, the benefit disappears as SKY-
LINEBUILDER with learnt initial priorities will try
to visit more candidates itself.

5.4 Quantitative Analysis

This section aims at understanding where and how
our adaptive strategies behave differently, and what
contributes to the gain in the accuracy-efficiency
trade-off. We propose the following quantitative
metrics: 1) Var(h): variance of the heights of
the towers. 2) Avg(rank): average rank of the
tower when the method chooses which tower to
build on. 3) Flips: how often does the strategy
switch between towers, measuring the exploration-
exploitation trade-off of a method. 4) h+ − h−:
h+ (resp. h−) is the average height of towers with
(resp. without) an answer. Their difference mea-
sures the difference in amount of computation be-
tween passages with the answer and the ones with-
out an answer. 5) HasAnswer Precision (HAP):
how often a tower selection action selects a tower
whose passage contains the answer.

We analyse our proposed methods along with
static baselines on the SQuAD development set;
results are outlined in Table 3. Overall, the higher
the HasAnswer Precision, the more accurate the
method. This finding matches with our intuition
that, if a tower selection strategy can focus its com-
putation on passages that contain the answer, it
yields more accurate results with smaller computa-
tion budgets.
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(a) Example 1

(b) Example 2

(c) Example 3

Figure 3: Examples of the skylines built by
SKYLINEBUILDER(-RL) (left) and SKYLINEB-
UILDER (right), with two layers per passage on
average. The green blocks indicate towers that contain
the answer.

Comparing SKYLINEBUILDER(-RL) and SKY-
LINEBUILDER gives more insights regarding what
the RL training scheme learns. SKYLINEBUILDER

learns a policy with the highest Var(h), the lowest
Avg(rank), and the lowest number of tower flips,
suggesting that 1) it focuses on a few towers rather
than distributing its computation over all passages,
2) it is more likely to select top-ranked passages,
and 3) it switches less between towers, and tends to
build one tower before switching to another. SKY-
LINEBUILDER also yields the highest HasAnswer
Precision and h+ − h−, meaning that tends to pri-
oritise the passages containing the answer.

5.5 Qualitative Analysis and Visualisation

Here we analyse how different methods build the
skyline. Fig. 3 shows some examples of skylines
built by SKYLINEBUILDER(-RL) and SKYLINEB-

Figure 4: Heatmap of the tower selections by
SKYLINEBUILDER(-RL) (left) and SKYLINEB-
UILDER (right). The colour gradient of the blues
blocks reflects their selection frequencies.

UILDER. The towers are ordered by the rank of
their associated passages in the retrieval results
from left to right, and are built bottom-up. The
colour gradient of the blues blocks reflects the or-
der in which the layers are built: darker cells corre-
spond to layers created later in the process.

In Fig. 3a and Fig. 3b we can see that SKY-
LINEBUILDER tends to focus on one or two towers,
whereas SKYLINEBUILDER(-RL) has a more even
distribution of computation across different towers.
In Fig. 3b, even when only one tower contains the
answer, SKYLINEBUILDER manages to locate it
and build a full-height tower on it.

Fig. 3c shows a case where none of the top 4
passages contains the answer. SKYLINEBUILDER

goes over these irrelevant towers quickly and start
exploring later towers, until it reaches the tower
with rank 27 and becomes confident enough to
keep building on it. These examples shows how
SKYLINEBUILDER learns an efficient scheduling
algorithm to locate passages containing the answer
with very limited budgets.

To understand how our proposed methods work
at macro level, we use heat-maps (Fig. 4) for
showing how frequently each block is selected.
The green row at the bottom indicates the fre-
quency of each passage containing the answer.
SKYLINEBUILDER(-RL) explores all passages
quite evenly, whereas SKYLINEBUILDER learns
to prioritise top-ranked towers. This preference
is reasonable because, as shown by the green row
at the bottom, top-ranked towers are more likely
to contain the answer. Also note that SKYLINEB-
UILDER does not naively process towers from left
to right like the top-k baseline does, but instead it
learns a trade-off between exploration and exploita-
tion, leading to the significant improvement over
the top-k baseline shown in Fig. 2a.
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Models Num. layers EM

DistilBERT (Sanh et al., 2019) 6 40.5
SKYLINEBUILDER 1.6 41.1
SKYLINEBUILDER 3 46.4
SKYLINEBUILDER 6 49.7

Table 4: Comparing adaptive computation with distilla-
tion on SQuAD-Open test set.

5.6 Adaptive Computation vs. Distillation

Distillation is another orthogonal approach to re-
duce computational cost. We compare our adap-
tive computation method SKYLINEBUILDER with
a static DistilBERT (Sanh et al., 2019) baseline,
and the results are shown in Table 4. Our method
significantly outperforms DistilBERT while com-
puting much fewer layers.

6 Discussions and Future Works

In this paper, we focus on reducing the number
of layers and operations of ODQA models, but
the actual latency improvement also depends on
the hardware specifications. On GPUs we cannot
expect a reduction in the number of operations to
translate 1:1 to lower execution times, since they
are highly optimised for parallelism. 3 We leave the
parallelism enhancements of SKYLINEBUILDER

for future work.
We also notice that the distillation technique is

complementary to the adaptive computation meth-
ods. It will be interesting to integrate these two
approaches to achieve further computation reduc-
tion for ODQA models.

7 Conclusions

In this work we show that adaptive computation
can lead to substantial efficiency improvements for
ODQA. In particular, we find that it is important
to allocate budget dynamically across a large num-
ber of passages and prioritise different passages
according to various features such as the probabil-
ity that the passage has an answer. Our best results
emerge when we learn prioritisation policies using
reinforcement learning that can switch between ex-
ploration and exploitation. On our benchmark, our
method achieves 95% of the accuracy of a 24-layer
model while only needing 5.6 layers on average.

3When evaluated on an NVIDIA TITAN X GPU, our pro-
posed SKYLINEBUILDER achieves approximately 2.6x la-
tency reduction while retaining 95% of the performance.
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