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Abstract

Co-predication is one of the most frequently
used linguistic tests to tell apart shifts in po-
lysemic sense from changes in homonymic
meaning. It is increasingly coming under crit-
icism as evidence is accumulating that it tends
to mis-classify specific cases of polysemic
sense alteration as homonymy. In this paper,
we collect empirical data to investigate these
accusations. We asses how co-predication ac-
ceptability relates to explicit ratings of po-
lyseme word sense similarity, and how well
either measure can be predicted through the
distance between target words’ contextualised
word embeddings. We find that sense similar-
ity appears to be a major contributor in deter-
mining co-predication acceptability, but that
co-predication judgements tend to rate less
similar sense interpretations as being as un-
acceptable as homonym pairs, effectively mis-
classifying these instances. The tested contex-
tualised word embeddings fail to predict word
sense similarity consistently, but the similari-
ties between BERT embeddings show a sig-
nificant correlation with co-predication ratings.
We take this finding as evidence that BERT
embeddings might be better representations of
context than encodings of word meaning.

1 Introduction

Polysemy is a form of lexical ambiguity which
occupies a unique middle ground between mono-
semy –word forms with exactly one interpretation–
and homonymy –word forms associated with two
or more completely unrelated interpretations. Un-
like monosemes, polysemes can evoke different
interpretations, but unlike homonyms, polysemic
sense interpretations are thought to be closely re-
lated to each other (Lyons, 1977). It is commonly
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assumed that most words in natural language are
in fact polysemous to some degree (Falkum and
Vicente, 2015), and the question whether there in
fact are any proper monosemes has been the source
of ongoing debate (see for example Jackendoff,
1989; Fodor, 1998). Homonyms have been a driv-
ing factor in developing contextualised language
models (e.g. Peters et al., 2018; Devlin et al., 2018;
Radford et al., 2019) in order to account for the dif-
ferent unrelated meanings some words can evoke
in different contexts:

a. The match burned my fingers.
b. The match ended without a winner.

Comparing these uses of the word match to the
various closely related interpretations of canonical
polyseme school illuminates the conceptual differ-
ence between the two phenomena of lexical ambi-
guity:1

a. The school [building] is on fire.
b. The school [rules] has prohibited wearing hats

in the classroom.
c. I have talked to the school [director, staff]

about it already.
d. The school [participants] went for a visit to

the cathedral.

Although the distinction is clear in theory, distin-
guishing monosemy, polysemy and homonymy in
practice proves exceedingly difficult: At what point
are interpretation nuances pronounced enough to
speak of two different word senses? Is the coercion
of word sense a manifestation of polysemic sense
alteration or a context effect on a monosemic word
form? Do word senses related through metaphor
qualify as polysemes or are their interpretations
a form or homonymic ambiguity? Traditionally,
co-predication tests are used to provide a linguis-
tic means to answer these questions and attempt a

1Examples taken from Ortega-Andrés and Vicente (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


115

classification of word sense interpretations into one
of the three categories. In co-predication tests, two
interpretations of a word form are simultaneously
invoked by the context. If this renders a felicitous
construction (see Example 1), the two interpreta-
tions are considered to evoke the same sense or
meaning of the word; if the reading is infelicitous
(Example 2) they are considered to be derived from
two different word meanings.

(1) The newspaper wasn’t very interesting,
so she folded it and put it away. [con-
tent/object]

(2) # The match burned my fingers but ended
without a winner.

Based on a range of experiments finding that
homonyms seem to be processed differently than
polysemes (Frazier and Rayner, 1990; Rodd et al.,
2002; Klepousniotou et al., 2008, 2012), the pre-
vailing understanding of co-predication is that it
is rendered felicitous if the different sense inter-
pretations are activated simultaneously and can
be shifted between without additional processing
costs. Co-predication is thought to lead to infelic-
itous sentences if the different activations are not
activated automatically, and cognitive effort is in-
volved in updating the assumed meaning of a word.
These hypotheses informed a number of linguistic
models to define different mental representations of
homonymic meaning and polysemic sense, respec-
tively. The Generative Lexicon (Pustejovsky, 1991;
Asher and Pustejovsky, 2006; Asher, 2011) for
example postulates individual lexicon entries for
different interpretations of a homonym, while all
sense interpretations of a polyseme are represented
by a single under-specified entry and therefore do
not require any processing cost for sense switching.
Recently, a growing body of work however came
to challenge a unified, under-specified representa-
tion of polysemic sense (see Klepousniotou, 2002;
Pylkkänen et al., 2006; Frisson, 2015). Klepous-
niotou et al. (2012) for example report that their ex-
periments indicate that the processing of irregular
polysemes resembles homonymic meaning alter-
ations more than the sense alterations in regular po-
lysemes, while an ongoing series of co-predication
studies (e.g. Antunes and Chaves, 2003; Traxler
et al., 2005; Schumacher, 2013; Filip and Sutton,
2017; Zobel, 2017; Sutton and Filip, 2018) show
that not all polysemic senses can be co-predicated
either, and that the co-predication of some poly-

semic interpretations can lead to infelicitous and
zeugmatic expressions:2

a. # The newspaper fired its editor in chief and
got wet from the rain. [publisher/publication]

b. # They took the door off its hinges and walked
through it. [object/opening]

A recent model of polyseme sense clustering
proposed by Ortega-Andrés and Vicente (2019)
tries to explain why certain polyseme senses lead
to infelicitous co-predication by suggesting that
polyseme senses might be grouped based on their
similarity. According to their grouping, closely
related senses are thought to form co-activation
packages that remain active for a while, allowing
for cost-free sense shifting and therefore felicitous
co-predication. Distantly related sense interpreta-
tions on the other hand would not co-activate and
therefore require cognitive effort to be changed,
much like homonynic meaning alterations.

The difficulty in assessing this hypothesis is
the unavailability of a ready reference of con-
textualised word sense similarity for polysemes.
To mitigate this, we collected human annotated
data on a number of different measures of poly-
semic sense similarity to empirically investigate
the correlation between sense similarity ratings and
co-predication acceptability judgements. Specif-
ically, we use crowdsourcing to collect i) graded
co-predication acceptability judgements, ii) explicit
(meta-linguistic) word sense similarity judgements,
iii) word class similarity ratings, and iv) determine
the similarity in a target word’s contextualised
embeddings derived from different models. If
word sense similarity indeed governs co-activation
and therefore co-predication acceptability, we ex-
pect similarity judgements to be a strong predictor
for acceptability judgements. Conversely, if co-
predication acceptability is a representative test of
the mental processing of lexically ambiguous items,
we expect acceptability judgements to be a strong
predictor of similarity judgements and reliably tell
apart homonyms from polysemes.

We find that sense similarity appears to be a
major contributor in determining co-predication ac-
ceptability, but that co-predication judgements tend
to rate less similar sense interpretations equally as
unacceptable as homonym pairs, effectively mis-
classifying these instances. We therefore argue

2Examples from Cruse (1995)
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that these findings provide both, a) support for
a more hierarchical representation of polysemic
sense based on sense similarity, and, b) an addi-
tional, empirically founded argument against co-
predication as a prevailing test for distinguishing
polysemy and homonymy. Finally, the tested con-
textualised word embeddings fail to predict word
sense similarity consistently, but the similarities
between BERT embeddings show a significant cor-
relation with co-predication ratings.

2 Method

In order to evaluate both, i) the hypothesis that
polysemic senses might form groupings based
on their similarity, and ii) the prevalence of co-
predication as a linguistic test for the distinction
between homonymy and polysemy, we collect three
human annotated measures of word sense similar-
ity together with five word sense similarity proxies
derived from computational methods. We investi-
gate how well these different metrics distinguish
homonyms from polysemes, and to what degree
they can predict one another. In order to achieve
a fair comparison of the different measures, we
defined a fixed set of target words, sense interpreta-
tions and contexts to be used in all experiments.

2.1 Samples
Since at least Apresjan (1974), polysemes are gen-
erally considered to be either regular or irregular,
depending on whether or not their sense patterns
are shared with other word forms. Irregular poly-
semes often demonstrate a metaphorical connection
between the different interpretations of their senses
that does not carry over for other uses (see Ex-
ample 3), regular, or systematic polysemes on the
other hand exhibit the same interpretation patterns
across a number of word forms (Example 4). See
Moldovan (2019) for a recent in-depth discussion
of this distinction.

(3) [cold] I got a cold/#hot/#tired after getting
caught in the rain last week.
The librarian gave me a cold/#hot/#tired
stare when my phone rang.

(4) [liquid-for-container] He took a sip and
put his beer/coffee/juice/gin/soup... back
on the kitchen table.

With growing evidence that irregular polysemes
might be processed differently than their regular
counterparts (e.g. Klepousniotou et al., 2012), we

decided to focus on regular polysemic nouns for
this study. Regular polysemes can be more clearly
distinguished from homonyms, maximising the im-
pact of our findings if metrics fail to classify them
correctly. With their canonical division of sense in-
terpretations, they also allow for a clear separation
of different sense interpretations, making it easier
to generate contexts that unequivocally evoke the
different senses. We selected ten of the systematic
polysemy types compiled in Dölling (Forthcom-
ing), with target expressions having between two
and four clearly distinct but related senses, and
picked one of the most frequently used expressions
representing each class from his compilation.

To create sample contexts invoking the different
interpretations, we followed a custom template de-
signed to guarantee that samples could be used in-
dividually to collect graded word sense judgements,
class ratings and context embedding similarity, but
could also be combined into a co-predication struc-
ture without invalidating acceptability due to repe-
titions or temporal or logical mis-matches. Follow-
ing this template, samples were created such that
i) the ambiguous target expression is the subject of
the sentence, ii) the context is kept as short as pos-
sible, and iii) the context invokes a certain sense as
clearly as possible without mentioning that sense
explicitly.3 Besides creating clear sample sentences
for our human participants, these guidelines also
minimise the impact of syntactic features and com-
pounding context effects for contextualised models,
which are shown to significantly impact embbed-
ings (see e.g. Wiedemann et al., 2019) and cloud
the accessibility of meaning representations.

Two sample contexts were created for every
sense interpretation of the ten polysemes, resulting
in a total of 54 sentences. As an example,
consider the six sample sentences of polyseme
newspaper, generated for its three senses (1)
organisation/institution, (2) physical object and (3)
information/data:

1a The newspaper fired its editor in chief.,
1b The newspaper was sued for defamation.
2a The newspaper lies on the kitchen table.,
2b The newspaper got wet from the rain.
3a The newspaper wasn’t very interesting.,
3b The newspaper is rather satirical today.

Besides the polyseme samples, we created an ad-
3As in “The school is an old building.” for sense building.

See Haber and Poesio (2020) for more details.
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ditional two samples sets. The first set is made up
of 15 common homonyms, with two sentences in-
voking their two most dominant senses each. While
our focus is on polysemes, comparing ratings for
the homonym samples to ratings assigned to po-
lyseme pairs, we will be able to test the differ-
ent similarity measures’ performance in predicting
whether an ambiguous target pair is polysemic or
homonymic. The second set contains 15 pairs of
synonyms meant to be used as quality control and
to calibrate the rating scale. All sample sentences
were rated to be acceptable by annotators recruited
from Amazon Mechanical Turk (AMT)4 in a vali-
dation experiment.

2.2 Graded Co-predication Acceptability

Traditionally, co-predication acceptability is
one of the most frequently used linguistic tests
for distinguishing homonyms from polysemes.
Acceptability usually is determined through
introspection, classifying a sentence invoking two
different interpretations of the same word form as
either acceptable or not. When assessed through
annotator judgements, co-predication acceptability
however appears to be a graded measure (Lau et al.,
2014). We therefore decided to collect empirical
data on graded annotator judgements, asking par-
ticipants to rate the acceptability of co-predication
structures combining different pairings of target
word samples through conjunction reduction
(Zwicky and Sadock, 1975). As an example, the
previously shown newspaper contexts 1a and 1b
where combined into co-predication sample 1ab
for data collection:

1ab The newspaper fired its editor in chief and was
sued for defamation.

Co-predication samples were generated for all
combinations of sense interpretations, resulting in
four samples for polysemes with two senses, nine
for polysemes with three senses, and 16 for those
with four, and a grand total of 75. We manually
inspected the co-predication structures for any in-
consistencies that might have emerged through the
conjunction, and corrected issues with the least in-
vasive measures possible. The samples were then
distributed over 15 questionnaires so that no tar-
get expression appeared twice in any questionnaire.
We added one of the homonym and synonym val-

4https://www.mturk.com/

idation samples to each questionnaire, and filled
all questionnaires to a total of ten items with co-
predication structures generated from random sen-
tence pairs to obfuscate the focus on polysemes.
Item order was then randomised per questionnaire.

We used AMT to collect graded co-predication
acceptability judgements by asking workers to rate
a given sentence using a slider labelled with “The
sentence is absolutely unacceptable” on the left
hand side and “The sentence is absolutely accept-
able” on the right. The submitted slider positions
were translated to a 100-point acceptability score
ranging between 0 and 1, and stored in combination
with a worker’s unique ID. To improve judgement
quality, we required workers to have obtained a US
high school degree and reached the “AMT Master”
qualification.5 Workers were paid 0.35 USD for
every completed questionnaire.

We collected between 20 and 40 judgements for
each item. A total of 43 individual workers con-
tributed to the study, with HITs taking an average
of 146 seconds (median of 93). Through filtering
out any submissions that rated at least two filler
samples higher than 0.66 or the synonym sample
lower than 0.33,6 we excluded a total of 44 judge-
ments. The resulting dataset features an average of
28 judgements per item.

2.3 Graded Word Sense Similarity

As a first measure of sense similarity, we collected
graded annotator judgements explicitly rating the
similarity of word sense interpretations as invoked
by different pairings of sample sentences. In con-
trast to co-predication judgements, these pairwise
similarity ratings are less influenced by factors
like sentence order and compound consistency, but
do provide a meta-linguistic signal rather than the
more ecological acceptability rating derived from
co-predication. Still, if word sense similarity is the
driving factor in determining the mental represen-
tation of polysemic sense, we should find a strong
correlation between these judgements and the pre-
viously measured co-predication judgements.

We collected word sense similarity judgements
using our custom polyseme sample set, this time
combining samples into sentence pairs invoking

5According to AMT’s website, “[T]hese Workers have con-
sistently demonstrated a high degree of success in performing
a wide range of HITs across a large number of Requesters,”
https://www.mturk.com/worker/help

6Note that in co-predication the synonymity effect is lost
as only one subject noun phrase remains in the conjunction.

https://www.mturk.com/
https://www.mturk.com/worker/help
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different combinations of sense interpretations in-
stead of joining them into a single co-predication
structure. The same method as in the first experi-
ment was used for distributing test items over ques-
tionnaires, with the distinction that now homonym,
synonym and filler samples were presented as sen-
tence pairs rather than co-predication structures as
well. We highlighted target expressions in bold
font and asked workers to rate the highlighted ex-
pressions using a slider labelled with “The high-
lighted words have a completely different meaning”
on the left hand side and “The highlighted words
have completely the same meaning” on the right.
Qualification requirements and payment remained
identical.

We collected 20 judgements for each question-
naire. 65 individual workers in total contributed
to the study, with HITs taking an average of 133
seconds (median = 90). Applying the same filtering
as with the co-predication samples, we removed
9 submissions and retained at least 18 judgements
per item.

2.4 Word Sense Class Ratings

As a second judgement of word sense similarity,
we collected categorical sense class labels. If the
determining factor in whether or not word senses
can be co-predicated is not specifically their dis-
tance, but whether or not both interpretations refer
to the same type or class of object, the agreement
in assigned sense class should be a good predictor
of co-predication acceptability - and valid proxy of
word sense similarity.

To collect sense class labels, AMT Workers
were presented with individual sample sentences
together with a list of 16 sense class labels. Class
labels were derived from the descriptions of the
ten polyseme’s different interpretations as used in
Dölling (Forthcoming) and included an “other” cat-
egory label. We used the same set of polyseme sam-
ples as before, with target expression highlighted
like in the second experiment. Designed to vali-
date the other two annotation metrics, we did not
include any homonym, synonym or filler items in
this experiment. Workers were asked to classify
the highlighted target expression by selecting all
applicable labels. Submissions were stored in 16-
dimensional multi-hot vectors indicating the selec-
tion of labels together with the worker’s ID. We
kept the same worker qualification requirements
and payment regime as before and collected 15 la-

bels for each item, incidentally provided by exactly
15 individual workers, i.e. each individual worker
completed all 15 questionnaires. HIT’s took an
average of 178 seconds (median of 107). Classi-
fication results were not filtered, but averaged per
item in order to create word sense class vectors.
Pairwise sense class similarity was then calculated
through the cosine between the different combina-
tions of sense interpretations, i.e. the overlap in
their averaged multi-class assignments.

The resulting dataset containing all three types
of human annotations is publicly available.7

2.5 Word Embedding Similarity

Because the three previously described measures
of word sense similarity are based on costly human-
annotated labels, we were also interested in investi-
gating how well sense similarity estimates derived
from computational models would correlate with
these metrics. Models of polysemy have previously
been proposed in distributional semantics (see for
example Boleda et al., 2012), but for the most part,
such models found limited application in compu-
tational linguistics. With the recent development
of context-sensitive models of word embeddings
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018), the field however obtained a new
tool to capture polysemic sense alterations, leading
to a demonstrated improvement in various NLP
systems. While ELMo was developed explicitly
to capture a target word’s context, BERT is a lan-
guage model based on the encoder architecture of
the Transformer model (Vaswani et al., 2017), an
attention mechanism for learning the contextual
relations between words. While BERT’s output is
usually fed to a downstream model, our aim is to
see whether it is able to capture differences in word
sense by using its outputs directly.

To obtain ELMo embeddings we used a pre-
trained model available on TensorFlow Hub8 and
extracted target word vectors from the LSTM’s sec-
ond layer hidden state, which has previously been
shown to encode more semantic information than
the character-level first layer or the LSTM’s first
layer (Ethayarajh, 2019; Haber and Poesio, 2020).
For the investigation of BERT’s embeddings we
used the output of a pretrained cased model as pro-
vided by Huggingface9 with 12 layers, a hidden

7https://github.com/dali-ambiguity/
Word-Sense-Dataset-v1

8https://tfhub.dev/google/ELMo/3
9https://huggingface.co/transformers/

https://github.com/dali-ambiguity/Word-Sense-Dataset-v1
https://github.com/dali-ambiguity/Word-Sense-Dataset-v1
https://tfhub.dev/google/ELMo/3
https://huggingface.co/transformers/model_doc/bert.html
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Figure 1: Distribution of human annotation ratings and
computational similarity ratings for homonymic (blue)
and polysemic (orange) sentence pairs, together with
their means.

state size of 768 and 12 attention heads. We i)
extracted and averaged sub-word vectors before
pooling, ii) extracted the embedding of the [CLS]
token, and iii) used the pooled sentence embed-
ding. Lastly, we also determined a primitive con-
textualised sentence embedding by averaging over
the sentence’s token embeddings as derived from
Word2Vec (Mikolov et al., 2013) pretrained on the
Google News Dataset.10

3 Results

We report the collected data in four steps: Firstly,
we inspect to what degree the different metrics
and combinations thereof can predict whether a
pair of target sense interpretations is polysemic or
homonymic. We then investigate the correlation
between the three collected annotation metrics, and

model_doc/bert.html
10https://code.google.com/archive/p/

word2vec/
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Figure 2: Classification of homonym (blue) and poly-
seme (orange) sample pairs based on pairwise similar-
ity annotations and co-predication acceptability judge-
ments.

report how well the computational measures predict
the human annotations. Finally, we move to a more
qualitative analysis, investigating in more detail
the distribution of ratings over the different sense
interpretations of a polyseme.

3.1 Predicting Ambiguity Types

The top two graphs in Figure 1 show the distribu-
tion of human annotations for homonymic (blue)
and polysemic (orange) target words based on
their explicit word sense similarity ratings or co-
predication acceptability, respectively. Both an-
notation measures clearly separate the modes of
the distributions, but while co-predication accept-
ability judgements for the tested polyseme pairs
occupy the entire rating scale, explicit word sense
similarity ratings only span the upper half (the low-
est score is 0.48). Conversely, co-predication ac-
ceptability ratings for homonym pairs reach up to
0.67, while the highest-scoring homonym pair only
reaches a similarity score of 0.44. This impacts
the distribution means, which are closer to each
other in the co-predication metric than in the simi-
larity scores. The computational approaches to rat-
ing word sense similarities overall return relatively
high scores for both, homonym and polyseme pairs,
often only occupying the top 20% of the scale. As
a result, the means of their distributions are signif-
icantly closer, as exemplified by the distributions
of BERT word embedding similarity ratings for
polyseme and homonym pairs in the third graph of
Figure 1. The primitive Word2Vec sentence embed-
dings lastly assign a higher mean similarity score
to homonym pairs than to polysemes (last graph).

Because co-predication acceptability judge-

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
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https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://code.google.com/archive/p/word2vec/
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Combination Correlation Ordinary Least Squares (OLS) Regression Analysis Prediction
First Measure Second Measure r p Coef. R2 F-stat. Prob. Omnib. Prob. MSE R2

Similarity Acceptability 0.529 2.08E-06 0.910 0.280 26.855 2.08E-06 3.756 0.153 0.040 0.208
Similarity Classification 0.539 1.21E-06 1.091 0.291 28.320 1.21E-06 6.587 0.037 0.057 0.162
Acceptability Similarity 0.529 2.08E-06 0.308 0.280 26.855 2.08E-06 22.297 0.000 0.014 0.149
Acceptability Classification 0.563 3.21E-07 0.662 0.317 32.015 3.21E-07 11.321 0.003 0.050 0.301
Classification Similarity 0.539 1.21E-06 0.267 0.291 28.320 1.21E-06 29.957 0.000 0.014 0.175
Classification Acceptability 0.563 3.21E-07 0.479 0.317 32.015 3.21E-07 6.101 0.047 0.037 0.258
BERT WE Similarity 0.211 0.077 0.762 0.045 3.226 0.077 14.001 0.001 0.018 -0.214
BERT WE Acceptability 0.482 0.000 2.991 0.233 20.936 0.000 21.974 0.000 0.041 0.204
BERT WE Classification 0.221 0.064 1.614 0.049 3.553 0.064 15.446 0.000 0.069 -0.007
BERT CLS Similarity -0.038 0.756 -0.390 0.001 0.097 0.756 12.775 0.002 0.019 -0.298
BERT CLS Acceptability 0.271 0.023 4.832 0.073 5.448 0.023 13.459 0.001 0.049 0.033
BERT CLS Classification 0.051 0.672 1.075 0.003 0.181 0.672 17.604 0.000 0.073 -0.051
BERT SE Similarity -0.007 0.955 -0.067 0.000 0.003 0.955 13.383 0.001 0.020 -0.322
BERT SE Acceptability 0.011 0.929 0.181 0.000 0.008 0.929 14.479 0.001 0.058 -0.162
BERT SE Classification -0.016 0.895 -0.317 0.000 0.018 0.895 17.751 0.000 0.073 -0.067
ELMo WE Similarity 0.295 0.012 1.191 0.087 6.600 0.012 10.325 0.006 0.018 -0.188
ELMo WE Acceptability 0.178 0.138 1.233 0.032 2.257 0.138 13.644 0.001 0.051 -0.015
ELMo WE Classification 0.323 0.006 2.630 0.104 8.022 0.006 14.382 0.001 0.065 0.063
Word2Vec SE Similarity 0.053 0.662 0.085 0.003 0.193 0.662 13.484 0.001 0.020 -0.305
Word2Vec SE Acceptability 0.245 0.039 0.681 0.060 4.423 0.039 16.732 0.000 0.051 -0.006
Word2Vec SE Classification 0.249 0.036 0.813 0.062 4.555 0.036 15.828 0.000 0.070 -0.026

Table 1: Correlations between the three different metrics of word sense similarity based on annotation judgements,
and correlation between computational proxies of word sense similarity as compared to the human judgements.
The first set of columns displays pairwise correlation based on Pearson’s r, the second set shows the key statistics
obtained from their OLS regression, and the third set contains the mean regression scores based on 5-fold cross
validation.

ments show a higher overlap between the distri-
butions of homonym and polyseme ratings than
the similarity ratings, we expect similarity to be
a stronger predictor in classifying target pairs as
either homonyms or polysemes. To validate this
intuition, we classified items through a support
vector machine (SVM) with linear kernel under
five-fold cross-validation. As our dataset is skewed
towards polysemy samples, baseline performance
is an accuracy of 0.825, achieved by assigning all
samples to the polyseme class. Both classification
based on similarity ratings and co-predication rat-
ings outperform this baseline, with an accuracy
of 0.988 for similarity ratings, and 0.895 for co-
predication ratings, respectively. Figure 2 shows
the optimal decision boundary between homonym
samples (blue) and polyseme pairs (orange) calcu-
lated for the two annotation metrics. The higher
overlap in homonym and polyseme ratings indeed
prevents a clear delineation between the two am-
biguity types. None of the computational metrics
manages to outperform the baseline, and consis-
tently apply max-class labels. Neither combining
the two human annotated metrics, nor combining
any of the computational metrics improves their
respective classification performance over the best
individual score.

3.2 Relation Between Different Annotations
of Sense Similarity

In order to establish a measure of correlation be-
tween the three human annotation metrics, we con-
sider all six combinations of metrics and i) calcu-
late their Pearson’s r, ii) perform an ordinary least
squares (OLS) regression, and iii) calculate the
mean squared error (MSE) of OLS predictions un-
der five-fold cross validation. The results of these
calculations are displayed in Table 1, and visualised
in Figure 3. We find a moderate but significant
correlation between the three human annotation
metrics. Similarity judgements and co-predication
acceptability judgements show the lowest corre-
lation in the set (Pearson’s r of 0.529), while ac-
ceptability judgements and categorical class simi-
larity achieve the highest correlation (Pearson’s r
of 0.563). These results indicate that categorical
class boundaries between referent interpretations
might have a more direct influence on whether two
different senses can felicitously be co-predicated
than their graded similarity score. The correlation
graphs in Figure 3 again display the coverage of
judgements obtained for the three human annota-
tion metrics, indicating that class similarity ratings,
like co-predication acceptability, span over the full
scale, while similarity judgements only cover the
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Figure 3: Correlations between polysemic target word pairs based on the three collected judgements of word sense
similarity, together with their best linear fit.

top half. Here however this means that predict-
ing co-predication ratings from similarity scores is
more difficult than the inverse, leading to a higher
error rate in the prediction of low-similarity items,
and an overall higher mean squared error (MSE;
0.014 to 0.04). The same holds for predicting
similarity class labels from similarity judgements,
which is more difficult than predicting similarity
judgements based on class similarity.

3.3 Relation between Computational
Estimates and Human Judgements

The bottom part of Table 1 displays the results of
predicting human judgements of polyseme sense
similarity based on the different computational
proxies. Only seven of the pairwise correlations
are significant, and only the correlation between
BERT contextualised word embeddings and co-
predication acceptability ratings approaches a mod-
erate degree (Pearson’s r of 0.48). We argue that it
was to be expected that the correlation between the
similarity of BERT’s contextualised embeddings
and co-predication acceptability should be higher
than between BERT scores and explicit similarity
ratings, as BERT does not specifically capture the
sense of a target word, but rather the diversity and

type of context it appears in. This way it is easier
to predict whether a combined context as created
by co-predication is natural to occur (and therefore
more felicitous) than to directly predict the targets’
sense similarity. Other notable significant pairs are
ELMo word embeddings and classification simi-
larity (Pearson’s r of 0.32), ELMo and similarity
ratings (r = 0.3), as well as BERT classification
token similarity and co-predication acceptability
(r = 0.27), indicating that BERT and ELMo might
capture slightly different facets of word sense - but,
as indicate above - not in such a way that com-
bining them would improve their performance in
predicting the ambiguity type of a target word pair.

3.4 Qualitative Analysis

While the correlation between explicit similarity
judgements and co-predication acceptability is im-
perfect, our analysis reveals that judgements are
more similar towards the upper end of the rating
scale than at the lower end. To investigate this
observation in more detail, we here analyse poly-
seme newspaper, which provides two samples to
the low-similarity cluster. As mentioned before,
in our experiments we assume that newspaper has
three distinct but related sense interpretations: (1)
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Figure 4: Mean similarity ratings (left, ascending
hatch) and co-predication acceptability ratings (right,
descending hatch) for the nine sense interpretation
pairs of polyseme newspaper. The first three bars repre-
sent same-sense pairs, the other three groups the differ-
ent combinations of cross-sense readings, respectively.

organisation/institution, (2) physical object, and
(3) information/data. Figure 4 shows the mean sim-
ilarity and acceptability ratings for the nine com-
binations of sense interpretations: The first three
bars represent same-sense pairs 11, 22 and 33, the
other three groups the different combinations of
cross-sense pairs. The figure reveals that the three
same-sense pairs receive equally high similarity
and acceptability ratings, but while similarity rat-
ings show a gradual decrease in scores assigned
to cross-sense pairs, the co-predication acceptabil-
ity scores are only gradual for more similar cross-
sense pairs, and drop significantly for less similar
ones. These results indicate that similarity ratings
appear to be a more nuanced, continuous measure
than co-predication acceptability, which can as-
signs extremely low scores for readings deemed to
be infelicitous. A more detailed investigation of the
grouping of polyseme senses and its implications
for the hypothesis of hierarchical sense representa-
tion can be found in Haber and Poesio (2020).

4 Conclusion

The data collected in this study allows for a num-
ber of observations about the role of word sense
similarity in the processing of homonyms and po-
lysemes. On the one hand, graded co-predication
acceptability ratings are shown to be less able to
tell apart samples of homonymic and polysemic
sense pairs than explicit sense similarity ratings.
This supports the growing collection of studies in-
dicating that co-predication might not be as suited
a tool to distinguish different types of lexical ambi-
guity as traditionally assumed. On the other hand,
the collected judgements of word sense similarity

indicate that polyseme sense pairs mis-classified by
co-predication acceptability are overall less similar
to each other than other sense pairs, and signifi-
cantly so than same-sense interpretations. This to
some degree vindicates co-predication as a linguis-
tic test, suggesting that rather than distinguishing
homonyms form polysemes per se, it might be a
coarse indication of the underlying word sense sim-
ilarity.

Our results also provide support for recent
hypotheses suggesting that polyseme representa-
tion in the mental lexicon cannot be fully under-
specified. During data collection, annotators rated
some polysemic sense interpretations to be sig-
nificantly less similar to each other than other
sense pairs, and even rated some of the polyseme
cross-sense co-predication samples as unaccept-
able. This indicates that the interpretations of po-
lysemic words might be grouped based on their
similarity, and only grouped interpretations are
available for cost-free sense shifting and felicitous
co-predication. Because only a single target word
per type of systematic polysemy was tested here,
we cannot ascertain whether sense groupings are
idiosyncratic or systematic across target words of
a certain polysemy type. Data for an analysis of
this question can however easily be obtained by re-
peating our experiments with a larger set of target
words. In a similar vain, we also recommend an
in-depth analysis of irregular or metaphorical poly-
semes, which were omitted in this data collection
effort.

Lastly, investigating the suitability of contex-
tualised language models as proxies for human
word sense similarity judgements, we find that the
tested contextualised embeddings fail to predict
word sense similarity consistently, but that the sim-
ilarities between BERT embeddings show a sig-
nificant correlation with co-predication acceptabil-
ity ratings. We take this finding as evidence that
BERT might create better encodings of complex
contexts than encodings of actual word meaning,
as it seems to perform well in determining whether
contexts can be felicitously combined without con-
sistently determining the similarity of word senses
from these contexts first. We strongly encourage
further research into determining the exact lexical
semantic information available in BERT encodings
in order to shed more light on this issue.
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