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Abstract
This paper presents the University of Al-
berta systems and results in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-
to-Phoneme Conversion. Following previous
SIGMORPHON shared tasks, we define a low-
resource setting with 100 training instances.
We experiment with three transduction ap-
proaches in both standard and low-resource
settings, as well as on the related task of
phoneme-to-grapheme conversion. We pro-
pose a method for synthesizing training data
using a combination of diverse models.

1 Introduction

In this system paper, we discuss the participation
of the University of Alberta team in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-to-
Phoneme Conversion (Gorman et al., 2020). This is
a sequence-to-sequence transduction task, in which
a word, represented by a sequence of graphemes,
must be converted into the sequence of phonemes
representing its pronunciation. For example, given
the French word connaissent the correct output is
the phoneme sequence [k O n E s].

Following previous SIGMORPHON shared
tasks, in addition to the standard setting with 3600
training examples for each language (which we
refer to as the high-resource setting), we define a
low-resource setting in which training data is lim-
ited to 100 examples. This emulates a plausible
scenario of working with a low-resource language
for which only a small quantity of reliable phono-
logical data is available. For example, a typical
IPA description of the phonological inventory of a
single language contains about a hundred phonetic
transcriptions of individual words (IPA, 1999). We
analyze the relative performance of different sys-
tems depending on the size of the training data.

The task of phoneme-to-grapheme (P2G) conver-
sion is the inverse of grapheme-to-phoneme Con-

version (G2P), in which the goal is to predict the
spelling of a word given its phonetic transcription
(Rentzepopoulos and Kokkinakis, 1996). While
G2P reflects the difficulty of reading, P2G may
indicate the complexity of writing in a given lan-
guage. Training instances for one of the two tasks
can easily be applied to the other one by simply re-
versing the input and output. We use the shared task
datasets to investigate how systems designed for
G2P perform on P2G. We also leverage raw text
corpora to improve the accuracy on P2G, which
indirectly leads to improvements on G2P as well.

We develop a novel method of mitigating re-
source limitations by synthesizing additional train-
ing data using a combination of multiple G2P and
P2G models. The underlying intuition is that a
P2G model should be the inverse of the correspond-
ing G2P model. Since models trained on a small
number of instances tend to have limited accuracy,
we attempt to distinguish between the correct and
incorrect predictions by ensuring that P2G model
output matches the corresponding G2P model input.
The precision of this approach is further improved
by comparing predictions of different systems. Fig-
ure 1 illustrates this idea.

The principal contributions of this paper include
a novel G2P data augmentation method that lever-
ages multiple systems and text corpora, as well as
a thorough comparison of several G2P and P2G
systems in both low-resource and high-resource
settings.

2 Prior Work

Our methods build upon the prior work of the Uni-
versity of Alberta teams on string transduction. Di-
recTL, a feature-based discriminative transducer,
was originally designed for the G2P task (Jiampo-
jamarn et al., 2008). In DirecTL+ (Jiampojamarn
et al., 2010), the feature set was augmented with
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Figure 1: Our approach to synthesizing additional G2P training data.

joint n-grams defined on both source and target
substrings. The system was applied to related tasks
such as transliteration (Jiampojamarn et al., 2009),
morphological inflection (Nicolai et al., 2015),
stemming (Nicolai and Kondrak, 2016), and cog-
nate projection (Hauer et al., 2019), proving to be
particularly competitive in low-resource settings.
DTLM (Nicolai et al., 2018), our principal tool in
this work, is a successor of DirecTL+, which in-
corporates target-side language models and a high-
precision alignment. DTLM achieved state-of-the-
art results on several tasks in which plain word
types constitute the transduction target strings. Fi-
nally, our data augmentation approach is inspired
by the self-training approach of Hauer et al. (2017).

3 Methods

In this section, we first describe DTLM, a multi-
purpose string discriminative transduction system
which we apply to both G2P and P2G tasks. We
then introduce our approach to synthesizing addi-
tional training data from unannotated texts.

3.1 Discriminative String Transduction

The core of DTLM, adapted from DirecTL+, is a
dynamic programming algorithm which uses a set
of feature templates to transduce multiple charac-
ters in a single operation. The feature set includes
context features (n-grams on the source side), tran-
sition features (target side bigrams), linear-chain
features (conjunction of context and transition fea-
tures), and joint n-gram features (on both source
and target).

The transduction quality of DTLM depends on
a high precision one-to-many alignment, which
is performed with M2M+ aligner (Jiampojamarn

et al., 2007) in a two-step process. In the first step,
M2M+ induces a one-to-one alignment in which
null symbols may be inserted on either side. In the
second step, the null links on the source side are
removed by merging adjacent target symbols.

The accuracy of DTLM can be enhanced by
leveraging target character and word language mod-
els. A 4-gram character languages model, which
is induced from a set of word types extracted
from a text corpus, encourages the prediction of
high-probability letter sequences. A unigram word
language model (which we also refer to as word
counts) biases DTLM toward the production of
known word-forms, with more common words and
prefixes being preferred. Thus, DTLM is able to
take advantage of existing multi-lingual text cor-
pora, such as Wikipedia, to improve its accuracy
on P2G. Since we have no access to any corpora of
phonetic transcriptions, the language model com-
ponent is not used for G2P.

3.2 Data Augmentation

Inspired by the data hallucination technique for
neural model training (Silfverberg et al., 2017;
Anastasopoulos and Neubig, 2019), we introduce a
method to synthesize additional training instances
from unannotated texts. For each language under
consideration, we train base transduction models
on the available training data, and extract a list of
words from a text corpus. A naive self-training ap-
proach would be to simply apply a base G2P model
to the words in the list to produce new training
instances. However, without some mechanism to
filter out incorrect predictions, a model trained on
the augmented data would learn to replicate many
of the errors made by the base model. Instead, we
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reduce the noise by cross-checking the predictions
of the independent base transduction systems ap-
plied in both directions.

Figure 1 illustrates the data augmentation pro-
cess. For each word in the word list, we perform
multiple sanity checks before accepting a new train-
ing instance. First, both G2P models (in this case,
DTLM and FST) must agree on their phoneme pre-
dictions. Second, when applied to the common
G2P prediction, the corresponding base P2G mod-
els must not only agree, but also output the original
orthographic word. If both G2P models predict
the same phoneme sequence, and both P2G mod-
els recover the original grapheme sequence, that
grapheme–phoneme pair is added to the synthetic
training data. The final augmented model is trained
on the combined original and synthetic data.

4 Development

In this section, we describe our development ex-
periments on both G2P and P2G with three differ-
ent transduction systems and the synthetic training
data.

4.1 Datasets

We created low-resource datasets of 100 instances
from each standard (high-resource) training set of
3600 instances (Lee et al., 2020). We extracted
every 36th instance, starting from the first instance,
in a deterministic manner, to ensure replicability.
The P2G datasets were created by swapping the
grapheme and phoneme strings in the task datasets.
The official development sets of 450 instances were
used for model tuning only.

4.2 Task Baselines

The task organizers provided implementations of
three baseline systems, which are referred to as
FST, LSTM, and TRANSFORMER. These are not
baselines in the traditional sense of “the simplest
possible algorithm” (Manning and Schutze, 2001,
page 234), but rather sophisticated systems capable
of achieving state-of-the-art results on related tasks.
Rather than develop a novel competitive approach,
our goal was to combine the unmodified baselines
and DTLM to achieve a relative improvement with
respect to the individual systems.

As our neural base system, we selected TRANS-
FORMER, an encoder-decoder architecture with
fully-connected layers and self-attention mecha-
nism, which was originally developed for machine

Language DTLM -LM -WC -LM -WC
Dutch 21.6 25.6 25.1 29.8
French 28.2 28.4 48.4 52.2
Greek 33.1 40.9 52.0 59.6

Table 1: WER for variants of DTLM on P2G develop-
ment sets in the standard (high-resource) setting.

translation (Vaswani et al., 2017). Our choice of
TRANSFORMER over LSTM was based on initial
development experiments.1 The system is imple-
mented using the Fairseq toolkit (Ott et al., 2019).

Unlike FST, which only needs to be tuned on the
size of n-grams, TRANSFORMER requires exten-
sive tuning which may take several days to com-
plete. We attempted to follow the tuning guidelines
as they became available. We kept the hyperparam-
eters as specified in the source code, with the max-
imum number of training epochs set to 400. The
tuning was performed separately for each language
in terms of word error rate (WER). We trained the
models on two Nvidia Titan RTX GPUs, using
Adam optimizer. We varied dropout probability be-
tween 0.1, 0.2, and 0.3. and batch size between 256,
512, and 1024 in the high-resource setting, and 64
in the low-resource setting. Due to the underspec-
ification in the guidelines, instead of tuning the
number of epochs, we took the model checkpoint
of the last epoch.

Unfortunately, we were ultimately unsuccessful
in replicating the official results of TRANSFORMER.
The implementation used for producing the official
results was not available at the system submission
time, and used different hyperparameter settings.2

4.3 DTLM and P2G

DTLM was our principal system for both G2P and
P2G. The models were tuned on the official de-
velopment sets separately for each task (G2P and
P2G), language, and setting (high-resource and
low-resource). The context size was varied from
1 to 3 in low-resource, and from 2 to 7 in high-
resource settings. We also varied joint n-gram fea-
tures from 1 to 6, and Markov order from 0 to 2,
with and without linear chain features.

For P2G models, we extracted word frequency
lists for each language from the first one million

1However, the official baseline results, show LSTM as
more accurate than TRANSFORMER on most languages. The
model results and predictions were not available at the system
submission time.

2Unlike the earlier implementation that we used, it tuned
the number of training epochs without a fixed maximum.
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lines of Wikipedia3, excluding words with fre-
quency less than 10, shorter than 4 characters, or
containing non-alphabetic characters. From the
word lists, we generated 4-gram character language
models using the CMU Toolkit4. Target language
models are not used for the G2P task because of
the lack of phonetic transcription corpora.

Table 1 demonstrates the impact of word counts
(WC) and character language models (LM) on P2G
accuracy. The results on three challenging lan-
guages suggest that most of the DTLM advantage
comes from leveraging monolingual text corpora.
Furthermore, word counts help more than charac-
ter LMs. Without those two components, DTLM
results on P2G in the standard (high-resource) set-
ting were in the same range as FST and TRANS-
FORMER.

4.4 Synthetic Training Data

For our data augmentation approach outlined in
Section 3.2, we required base G2P and P2G trans-
duction systems. We preferred FST and DTLM
over TRANSFORMER, as they performed better on
small training datasets in terms of both accuracy
and speed. Although data augmentation could also
be applied to P2G, we used it exclusively for G2P,
which is the primary focus of this shared task.

The starting point for generating the synthetic
training data were the word lists extracted from
Wikipedia, as described in Section 4.3. We applied
the base models to the lists, and filtered out the
instances on which the models disagreed or failed
to recover the original spelling from their own pho-
netic predictions. We further limited the number of
synthetic training instances to 20,000 per language.
This process failed to produce a substantial num-
ber of new instances for Vietnamese and Korean,
which we attribute to the unusual characteristics of
the two scripts.

The data augmentation approach was successful
in our development experiments on the standard
high-resource datasets, reducing the average WER
with respect to base TRANSFORMER from 17.0%
to 16.0%, We obtained improvements on 13 out of
15 languages, with the exception of Bulgarian and
Korean.5

3https://dumps.wikimedia.org
4http://www.speech.cs.cmu.edu/SLM
5Only 36% of the graphemes in the Korean test set are

observed in the low-resource train set. The corresponding
number in Japanese is 90%.

High Resource Low Resource
Language DTLM FST TF DTLM FST TF
Adyghe 18.2 16.7 21.3 53.1 56.0 87.8
Armenian 4.9 5.1 8.0 14.0 27.3 80.7
Bulgarian 6.0 6.4 8.4 20.9 28.7 83.8
Dutch 23.8 27.3 21.1 34.0 66.7 90.4
French 28.7 50.4 51.3 51.6 72.4 94.0
Georgian 1.1 0.7 1.1 4.4 6.4 74.7
Greek 32.9 59.6 56.9 41.3 89.1 97.6
Hindi 3.8 12.0 15.1 18.0 45.8 86.9
Hungarian 4.0 6.9 8.0 14.9 28.7 81.8
Icelandic 13.6 12.0 15.6 28.0 45.6 82.4
Japanese 4.4 9.8 3.6 61.1 59.3 97.8
Korean 39.1 50.0 32.7 96.7 97.3 100
Lithuanian 4.0 3.6 3.3 15.1 25.8 75.1
Romanian 1.8 1.3 2.9 17.8 15.6 57.3
Vietnamese 16.2 18.4 16.2 71.8 85.6 96.9
Average 13.5 18.7 17.7 36.2 50.0 85.8

Table 2: WER on P2G test sets.

5 Test Results

Table 2 shows the P2G results on the test sets. All
models are trained on the same training sets, with-
out any synthesized instances. TRANSFORMER

(TF) completely fails with only 100 training in-
stances (low resource), but outperforms FST with
3600 training instances (high resource).6 DTLM
is substantially more accurate on average than
the other two systems in both settings. Although
DTLM benefits from information extracted from
freely-available unannotated text corpora, the re-
sults of the three systems are directly comparable
because they all use the same annotated training
material. This further confirms the claim of Nicolai
et al. (2018) that DTLM achieves state-of-the-art
results on the task of phoneme-to-grapheme con-
version.

Table 3 shows the G2P results on the test sets.
The DTLM models were trained without any syn-
thetic data or target language models. Although
DTLM results are generally lower than on P2G,
it outperforms FST in both settings.7 TRANS-
FORMER again fails in the low resource setting,
In the standard (high resource) setting, DTLM is
about 6% worse on average than TRANSFORMER

in terms of WER, but 10% better in terms of PER
(3.9% vs 4.3% according to the official results). In
addition, DTLM is much easier and faster to train.

The TRANSFORMER models trained on the data
6We note that the P2G accuracy is particularly high on

Georgian, which, unlike French, seems to be easier to write
than to read.

7 FST, which is not included in Table 3, obtains 22.0%
WER average in the standard setting according to the official
results, and 58.1% WER average in the low-resource setting,
as our submission with RunID=5.
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High Resource Low Resource
Language DTLM TF TF+ DTLM TF TF+
RunID 1 2 3 4 6 -
Adyghe 29.8 28.9 28.2 54.4 92.9 58.4
Armenian 16.9 13.1 16.0 36.4 82.9 36.2
Bulgarian 35.8 30.0 36.7 67.6 93.3 66.4
Dutch 19.6 19.3 16.9 58.7 93.6 57.6
French 7.6 6.4 6.4 53.3 94.9 44.9
Georgian 28.2 25.8 27.1 39.6 84.4 42.2
Greek 15.8 17.1 17.3 39.1 88.0 44.0
Hindi 12.2 10.7 8.7 48.2 89.8 43.1
Hungarian 5.3 6.0 5.3 27.6 87.6 22.7
Icelandic 13.1 10.2 11.3 61.6 90.9 62.0
Japanese 8.7 6.7 6.7 57.8 98.0 53.1
Korean 45.3 45.1 45.1 95.1 100 100
Lithuanian 21.8 22.7 24.4 62.7 90.7 64.0
Romanian 11.3 12.7 10.7 30.2 69.3 28.9
Vietnamese 7.8 7.3 8.7 75.3 95.3 87.3
Average 18.6 17.5 18.0 53.8 90.1 54.1

Table 3: WER on G2P test sets.

augmented with synthesized instances (labeled as
TF+ in Table 3) achieved consistently higher results
in our development experiments in the standard
(high resource) setting (Section 4.4). Unfortunately,
a corresponding improvement is not seen in the
official test results. Possible explanations include
the limit of 400 on the number of epochs made
by the task organizers, as well as the suboptimal
tuning procedure, which might have accidentally
resulted in the overfitting of the augmented model.
This is also suggested by the fact that the results of
our TRANSFORMER models are often better than
the official results on the test datasets.

On the other hand, the data augmentation ap-
proach is remarkably successful in the low-resource
setting, yielding an average WER improvement
over 35% with respect to base TRANSFORMER. We
interpret these results as a strong proof-of-concept
of the validity of our data augmentation approach;
when training data is limited, it can dramatically
improve the accuracy of neural models, without
any change to their architecture.

6 Conclusion

We have presented a novel data augmentation
method that combines the strengths of multiple
string transduction methods. We have also explored
both G2P and P2G tasks in both the standard high-
resource setting, and a low-resource setting of our
own design. The results demonstrate that the weak-
ness of neural systems in low-resource settings can
be mitigated through the application of data aug-
mentation.
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