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Abstract

There is a growing interest in developing goal-

oriented dialog systems which serve users in

accomplishing complex tasks through multi-

turn conversations. Although many methods

are devised to evaluate and improve the perfor-

mance of individual dialog components, there

is a lack of comprehensive empirical study

on how different components contribute to the

overall performance of a dialog system. In

this paper, we perform a system-wise evalua-

tion and present an empirical analysis on dif-

ferent types of dialog systems which are com-

posed of different modules in different settings.

Our results show that (1) a pipeline dialog

system trained using fine-grained supervision

signals at different component levels often

obtains better performance than the systems

that use joint or end-to-end models trained

on coarse-grained labels, (2) component-wise,

single-turn evaluation results are not always

consistent with the overall performance of a di-

alog system, and (3) despite the discrepancy

between simulators and human users, simu-

lated evaluation is still a valid alternative to the

costly human evaluation especially in the early

stage of development.

1 Introduction

Many approaches and architectures have been pro-

posed to develop goal-oriented dialog systems to

help users accomplish various tasks (Gao et al.,

2019a; Zhang et al., 2020b). Unlike open-domain

dialog systems, which are designed to mimic hu-

man conversations rather than complete specific

tasks and are often implemented as end-to-end sys-

tems, a goal-oriented dialog system has access to an

external database on which to inquire about infor-

mation to accomplish tasks for users. Goal-oriented

dialog systems can be grouped into three classes

based on their architectures, as illustrated in Fig. 1.
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Figure 1: Different architectures of goal-oriented dia-

log systems. It can be constructed as a pipeline or end-

to-end system with different granularity.

The first class is the pipeline (or modular) systems

which typically consist of the four components:

Natural Language Understanding (NLU) (Goo

et al., 2018; Pentyala et al., 2019), Dialog State
Tracker (DST) (Xie et al., 2015; Lee and Stent,

2016), Dialog Policy (Peng et al., 2017; Takanobu

et al., 2019), and Natural Language Generation
(NLG) (Wen et al., 2015; Balakrishnan et al., 2019).

The second class is the end-to-end (or unitary) sys-

tems (Williams et al., 2017; Dhingra et al., 2017;

Liu et al., 2018; Lei et al., 2018; Qin et al., 2019;

Mehri et al., 2019), which use a machine-learned

neural model to generate a system response directly

from a dialog history. The third one lies in between

the above two types, where some systems use joint

models that combine some (but not all) of the four

dialog components. For example, a joint word-

level DST model combines NLU and DST (Zhong

et al., 2018; Wu et al., 2019; Gao et al., 2019b), and

a joint word-level policy model combines dialog

policy and NLG (Chen et al., 2019; Zhao et al.,

2019; Budzianowski and Vulić, 2019).

It is particularly challenging to properly evalu-

ate and compare the overall performance of goal-

oriented dialog systems due to the wide variety of

system configurations and evaluation settings. Nu-
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merous approaches have been proposed to tackle

different components in pipeline systems, whereas

these modules are merely evaluated separately.

Most studies only compare the proposed models

with baselines of the same module, assuming that

a set of good modules can always be assembled to

build a good dialog system, but rarely evaluate the

overall performance of a dialog system from the

system perspective. A dialog system can be con-

structed via different combinations of these mod-

ules, but few studies investigated the overall perfor-

mance of different combinations (Kim et al., 2019;

Li et al., 2020). Although end-to-end systems are

evaluated in a system-wise manner, none of such

systems is compared with its pipeline counterpart.

Furthermore, unlike the component-wise assess-

ment, system-wise evaluation requires simulated

users or human users to interact with the system to

be evaluated via multi-turn conversations to com-

plete tasks.

To this end, we conduct both simulated and hu-

man evaluations on dialog systems with a wide vari-

ety of configurations and settings using a standard-

ized dialog system platform, Convlab (Lee et al.,

2019b), on the MultiWOZ corpus (Budzianowski

et al., 2018). Our work attempts to shed light

on evaluating and comparing goal-oriented dialog

systems by conducting a system-wise evaluation

and a detailed empirical analysis. Specifically, we

strive to answer the following research questions:

(RQ1) Which configurations lead to better goal-

oriented dialog systems? (§3.1); (RQ2) Whether

the component-wise, single-turn metrics are consis-

tent with system-wise, multi-turn metrics for eval-

uation? (§3.2); (RQ3) How does the performance

vary when a system is evaluated using tasks of dif-

ferent complexities, e.g., from single-domain to

multi-domain tasks? (§3.3); (RQ4) Does simulated

evaluation correlate well with human evaluation?

(§3.4).

Our results show that (1) pipeline systems

trained using fine-grained supervision signals at dif-

ferent component levels often achieve better overall

performance than the joint models and end-to-end

systems, (2) the results of component-wise, single-

turn evaluation are not always consistent with that

of system-wise, multi-turn evaluation, (3) as ex-

pected, the performance of dialog systems of all

three types drops significantly with the increase of

task complexity, and (4) despite the discrepancy

between simulators and human users, simulated

Figure 2: Domain distribution of the user goals used

in the experiments. A goal with multiple domains is

counted repeatedly for each domain.

evaluation correlates moderately with human eval-

uation, indicating that simulated evaluation is still

a valid alternative to the costly human evaluation,

especially in the early stage of development.

2 Experimental Setting

2.1 Data

In order to conduct a system-wise evaluation and

an in-depth empirical analysis of various dialog

systems, we adopt the MultiWOZ (Budzianowski

et al., 2018) corpus in this paper. It is a multi-

domain, multi-intent task-oriented dialog corpus

that contains 3,406 single-domain dialogs and

7,032 multi-domain dialogs, with 13.18 tokens per

turn and 13.68 turns per dialog on average. The dia-

log states and system dialog acts are fully annotated.

The corpus also provides the domain ontology that

defines all the entities and attributes in the external

databases. We also use the augmented annotation

of user dialog acts from (Lee et al., 2019b).

2.2 User Goal

During evaluation, a dialog system interacts with

a simulated or human user to accomplish a task

according to a pre-defined user goal. A user goal

is the description of the state that a user wants

to reach in a conversation, containing indicated
constraints (e.g., a restaurant serving Japanese food

in the center of the city) and requested information
(e.g., the address, phone number of a restaurant).

A user goal is initialized to launch the dialog

session during evaluation. To ensure a fair compar-

ison, we apply a fixed set of 1,000 user goals for

both simulated and human evaluation. In the goal

sampling process, we first obtain the frequency of

each slot in the dataset and then sample a user goal

from the slot distribution. We also apply additional

rules to remove inappropriate combinations, e.g.,

a user cannot inform and inquire about the arrival

time of a train in the same session. In the case
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Figure 3: The framework of a user simulator and the

mechanism for simulated evaluation.

where no matching database entry exists based on

the sampled goal, we resample a new user goal

until there is an entity in the database that satisfies

the new constraints. In evaluation, the user first

communicates with the system based on the initial

constraints, and then can change the constraints

if the system informs the user that the requested

entity is not available. The detailed distribution of

these goals is shown in Fig. 2. Among the 1,000

user goals, the numbers of goals involving 1/2/3

domains are 328/549/123, respectively.

2.3 Platform and Simulator

We use the open-source end-to-end dialog system

platform, ConvLab (Lee et al., 2019b), as our ex-

perimental platform. ConvLab enables researchers

to develop a dialog system using preferred archi-

tectures and supports system-wise simulated eval-

uation. It also provides an integration of crowd-

sourcing platforms such as Amazon Mechanical

Turk for human evaluation.

To automatically evaluate a multi-turn dialog

system, Convlab implements an agenda-based user

simulator (Schatzmann et al., 2007). Given a user

goal, the simulator’s policy uses a stack-like struc-

ture with complex hand-crafted heuristics to inform

its goal and mimics complex user behaviors dur-

ing a conversation. Since the system interacts with

the simulator in natural language, the user simu-

lator directly takes system utterances as input and

outputs a user response. The overall architecture

of user simulator is presented in Fig. 3. It con-

sists of three modules: NLU, policy, and NLG. We

use the default configuration of the simulator in

Convlab: a RNN-based model MILU (Multi-Intent

Language Understanding, extended (Hakkani-Tür

et al., 2016)) for NLU, a hand-crafted policy, and a

retrieval model for NLG.

2.4 Evaluation Metrics

We use the number of dialog turns, averaging over

all dialog sessions, to measure the efficiency of

accomplishing a task. A user utterance and a subse-

quent system utterance are regarded as one dialog

turn. The system should help each user accomplish

his/her goal within 20 turns, otherwise the dialog

is regarded as failure. We utilize two other met-

rics: inform F1 and match rate to estimate the task

success. Both metrics are calculated based on the

dialog act (Stolcke et al., 2000), an abstract rep-

resentation that extracts the semantic information

of an utterance. The dialog act from the input and

output of the user simulator’s policy will be used

to calculate two scores, as shown in Fig. 3. Inform

F1 evaluates whether all the information requests
are fulfilled, and match rate assesses whether the

offered entity meets all the constraints specified in

a user goal. The dialog is marked as successful if

and only if both inform recall and match rate are 1.

2.5 System Configurations

To investigate how much system-wise and

component-wise evaluations differ, we compare

a set of dialog systems that are assembled us-

ing different state-of-the-art modules and settings

in our experiments. The full list of these sys-

tems are shown in Table 1, which includes 4

pipeline systems (SYSTEM-1∼4), 10 joint-model

systems (SYSTEM-5∼13) and 2 end-to-end sys-

tems (SYSTEM-15∼16). Note that some systems

(e.g. SYSTEM-4, SYSTEM-10) generate delexi-
calized responses where the slot values are replaced

with their slot names. We convert these responses

to natural language by filling the slot values based

on dialog acts and/or database query results.

In what follows, we briefly introduce these mod-

ules and the corresponding models1 used in our

experiments. The component-wise evaluation re-

sults of these modules are shown in Table 2. For

published works, we train all the models using the

open-source code with the training, validation and

test split offered in MultiWOZ, and replicate the

performance reported in the original papers or on

the leaderboard.

NLU A natural language understanding module

identifies user intents and extracts associated infor-

mation from users’ raw utterances. We consider

1All state-of-the-art models mentioned in this paper are
based on the open-source code that is available and executable
as of February 29, 2020.
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two approaches that can handle multi-intents as ref-

erence: a RNN-based model MILU which extends

(Hakkani-Tür et al., 2016) and is fine-tuned on mul-

tiple domains, intents and slots; and a fine-tuned

BERT model (Devlin et al., 2019). Following the

joint tagging scheme (Zheng et al., 2017), the labels

of intent detection and slot filling are annotated for

domain classification during training. Both mod-

els use dialog history up to the last dialog turn as

context. Note that there can be multiple intents or

slots in one sentence, we calculate two F1 scores

for intents and slots, respectively.

DST A dialog state tracker encodes the extracted

information as a compact set of dialog state that

contains a set of informable slots and their corre-

sponding values (user constraints), and a set of re-

quested slots2. We have implemented a rule-based

DST to update the slot values in the dialog state

based on the output of NLU. We then compare four

word-level DST: a multi-domain classifier MDBT

(Ramadan et al., 2018) which enumerates all pos-

sible candidate slots and values, SUMBT (Lee

et al., 2019a) that uses a BERT encoder and a slot-

utterance matching architecture for classification,

TRADE (Wu et al., 2019) that shares knowledge

among domains to directly generate slot values, and

COMER (Ren et al., 2019) which applies a hierar-

chical encoder-decoder model for state generation.

We use two metrics for evaluation. The joint goal

accuracy compares the predicted dialog states to

the ground truth at each dialog turn, and the output

is considered correct if and only if all the predicted

values exactly match the ground truth. The slot

accuracy individually compares each (domain, slot,

value) triplet to its ground truth label.

Policy A dialog policy relies on the dialog state

provided by DST to select a system action. We

compare two dialog policies: a hand-crafted pol-

icy, and a reinforcement learning policy GDPL

(Takanobu et al., 2019) that jointly learns a reward

function. We also include in our comparison three

joint models, known as word-level policies, which

combine the policy and the NLG module to pro-

duce natural language responses from dialog states.

They are MDRG (Wen et al., 2017) where an at-

2Dialog state can include everything a system must know
in order to make a decision about what to do next, e.g., DSTC2
corpus (Henderson et al., 2014) contains search method rep-
resenting user intents in the dialog state, but only aforemen-
tioned items are taken into account as our experiments are
conducted on MultiWOZ in this paper.

tention mechanism is conditioned on the dialog

states, HDSA (Chen et al., 2019) that decodes re-

sponse from predicted hierarchical dialog acts, and

LaRL (Zhao et al., 2019) which uses a latent action

framework. We use BLEU score (Papineni et al.,

2002), inform rate and task success rate as met-

rics for evaluation. Note that the inform rate and

task success for evaluating policies are computed at

the turn level, while the ones used in system-wise

evaluation are computed at the dialog level.

NLG A natural language generation module

generates a natural language response from a di-

alog act representation. We experiment with two

models: a retrieval-based model that samples a

sentence randomly from the corpus using dialog

acts, and a generation-based model SCLSTM (Wen

et al., 2015) which appends a sentence planning

cell in RNN. To evaluate the performance of NLG,

we adopt BLEU score to evaluate the quality of the

generated text, and slot error rate (SER) to measure

whether the generated response contains missing

or redundant slot values.

E2E An end-to-end model takes user utterances

as input and directly output system responses in

natural language. We experiment with two models:

TSCP (Lei et al., 2018) that uses belief spans to

represent dialog states, and DAMD (Zhang et al.,

2020a) that further uses action spans to represent

dialog acts as additional information. For single-

turn evaluation, BLEU, inform rate and success

rate are provided.

3 Empirical Analysis

3.1 Performance under Different Settings
(RQ1)

We compare the performance of three types of sys-

tems, pipeline, joint-model and end-to-end. Results

in Table 1 show that pipeline systems often achieve

better overall performance than the joint models

and end-to-end systems because using fine-grained

labels at the component level can help pipeline

systems improve the task success rate.

NLU with DST or joint DST It is essential to

predict dialog states to determine what a user has

expressed and wants to inquire. The dialog state

is used to query the database, predict the system

dialog act, and generate a dialog response. Al-

though many studies have focused on the word-

level DST that directly predicts the state using the
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ID
Configuration

Turn
Inform

Match Succ.
NLU DST Policy NLG Prec. Rec. F1

1 BERT rule rule retrieval 6.79 0.79 0.91 0.83 90.54 80.9

2 MILU rule rule retrieval 7.24 0.76 0.88 0.80 87.93 77.6

3 BERT rule GDPL retrieval 10.86 0.72 0.69 0.69 68.34 54.1

4 BERT rule rule SCLSTM 13.38 0.64 0.58 0.58 51.41 43.0

5 MDBT rule retrieval 16.55 0.47 0.35 0.37 39.76 18.8

6 SUMBT rule retrieval 13.71 0.51 0.44 0.44 46.44 27.8

7 TRADE rule retrieval 9.56 0.39 0.41 0.37 38.37 22.4

8 COMER rule retrieval 16.79 0.30 0.28 0.28 29.06 17.3

9 BERT rule MDRG 17.90 0.35 0.34 0.32 29.07 19.2

10 BERT rule HDSA 15.91 0.47 0.62 0.50 39.21 34.3

11 BERT rule LaRL 13.08 0.40 0.68 0.48 68.95 47.7

12 SUMBT HDSA 18.67 0.27 0.32 0.26 14.78 13.7

13 SUMBT LaRL 13.92 0.36 0.64 0.44 57.63 40.4

14 TRADE LaRL 14.44 0.35 0.57 0.40 36.07 30.8

15 TSCP 18.20 0.37 0.32 0.31 13.68 11.8

16 DAMD 11.27 0.64 0.69 0.64 59.67 48.5

Table 1: System-wise simulated evaluation with different configurations and models. We use SYSTEM-<ID> to

represent the configuration’s abbreviation throughout the paper.

user query, we also investigate the cascaded con-

figuration where an NLU model is followed by a

rule-based DST. As shown in Table 1, the success

rate has a sharp decline when using word-level

DST, compared to using an NLU model followed

by a rule-based DST (17.3%∼27.8% in SYSTEM-
(5∼8) vs. 80.9% in SYSTEM-1). The main reason

is that the dialog act predicted by NLU contains

both slot-value pairs and user intents, whereas

the dialog state predicted by the word-level DST

only records the user constraints in the current turn,

causing information loss for action selection (via

dialog policy) as shown in Fig. 4. For example,

a user may want to confirm the booking time of

the restaurant, but such an intent cannot be repre-

sented in the slot values. However, we can observe

that word-level DST achieves better overall perfor-

mance by combining with word-level policy, e.g.,

40.4% success rate in SYSTEM-13 vs. 27.8% in

SYSTEM-6. This is because word-level policy im-

plicitly detects user intents by encoding the user
utterance as additional input, as presented in Fig.

5. Neverthsless, all those joint approaches still

under-perform traditional pipeline systems.

NLG from dialog act or state We compare two

strategies for generating responses. One is based

on an ordinary NLG module that generates a re-

sponse according to dialog act predicted by dialog

policy. The other uses the word-level policy to di-

NLU Dialog ActUtterance

Domain
restaurant

Intent
confirm

Slot
time

Value
18:30

DSTStatePolicy

Database

QueryResult

Figure 4: Illustration of NLU and DST in the dialog

system. The intent information (red arrow) is missing

in the dialog state on MultiWOZ if the system merges

a word-level DST with a dialog policy.

Utterance State

Database
QueryResult

DST

PolicyUtterance

Figure 5: The common architecture of a system using

word-level or end-to-end models. User utterances are

encoded again (red arrow) for response generation.

rectly generates a natural language response based

on dialog state and user query. As we can see in Ta-

ble 1 that the performance drops substantially when

we replace the retrieval NLG module with a joint

model such as MDRG or HDSA. This indicates that
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the dialog act has encoded sufficient semantic infor-

mation so that a simple retrieval NLG module can

give high-quality replies. However, the fact, that

SYSTEM-11 which uses word-level policy LaRL
even outperforms SYSTEM-4 which uses the NLG

model SCLSTM in task success (47.7% vs. 43.0%),

indicates that response generation can be improved

by jointly training policy and NLG modules.

Database query As part of dialog management,

it is crucial to identify the correct entity that satis-

fies the user goal. MultiWOZ contains a large num-

ber of entities across multiple domains, making it

impossible to explicitly learn the representations

of all the entities in the database as previous work

did (Dhingra et al., 2017; Madotto et al., 2018).

This requires the designed system to deal with a

large-scale external database, which is closer to

reality. It can be seen in Table 1 that most joint

models have a lower match rate than the pipeline

systems. In particular, SYSTEM-15 rarely selects

an appropriate entity during the dialog (13.68%

match rate) since the proposed belief spans only

copy the values from utterances without knowing

which domain or slot type the values belong to.

Due to the poor performance in dialog state pre-

diction, it cannot consider the external database

selectively, thereby failing to satisfy the user’s con-

straints. In comparison, SYSTEM-16 has achieved

the highest success rate (48.5%) and the second-

highest match rate (59.67%) among all the systems

using joint models (SYSTEM-5∼14). This is be-

cause DAMD utilizes action spans to predict both

user and system dialog acts in addition to belief

spans, which behaves like a pipeline system. This

indicates that an explicit dialog act supervision can

improve dialog state tracking.

3.2 Component-wise vs. System-wise
Evaluation (RQ2)

It is important to verify whether the component-

wise evaluation is consistent with system-wise eval-

uation. By comparing the results in Table 1 and

Table 2, we can observe that sometimes they are

consistent (e.g., BERT > MILU in Table 2a, and

SYSTEM-1 > SYSTEM-2), but not always (e.g.,

TRADE > SUMBT in Table 2b, but SYSTEM-6 >
SYSTEM-7).

In general, a better NLU model leads to a bet-

ter multi-turn conversation, and SYSTEM-1 out-

performs all other configurations in completing

user goals. With respect to DST, though word-

Model Slot Intent Overall

MILU 81.90 85.82 83.27

BERT 84.25 89.84 86.21

(a) NLU

Model Slot Acc. Joint Acc.

MDBT† 89.53 15.57

SUMBT† 96.44 46.65

TRADE† 96.92 48.62

COMER 95.52 48.79

(b) Word-level DST

Model BLEU Inform Succ.

MDRG† 18.8 71.3 61.0

HDSA† 23.6 82.9 68.9

LaRL† 12.8 82.8 79.2

(c) Word-level Policy

Model BLEU SER

Retrieval 33.1 –

SCLSTM 51.6 3.10

(d) NLG

Model BLEU Inform Succ.

TSCP 15.5 66.4 45.3

DAMD 16.6 76.3 60.4

(e) E2E

Table 2: Component-wise performance of each module.

†: results from the MultiWOZ leaderboard.

level DST models directly predict dialog states

without explicitly detecting user intents, most of

them perform poorly in terms of joint accuracy

as shown in Table 2b. This severely harms the

overall performance because the downstream tasks

strongly rely on the predicted dialog states. Inter-

estingly, TRADE has higher accuracy than SUMBT
on DST. But TRADE performs worse than SUMBT
in system-wise evaluation (22.4% in SYSTEM-7 vs.

27.8% in SYSTEM-6). The observation is similar

to COMER vs. TRADE. This indicates that the re-

sults of component-wise evaluation in DST are not

consistent with those of system-wise evaluation,

which may be attributed to the noisy dialog state

annotations (Eric et al., 2019).

As for word-level policy, HDSA that uses ex-

plicit dialog acts in supervision has higher BLEU

than LaRL that uses latent dialog acts, but LaRL
that is finetuned with reinforcement learning has

much higher match rate than HDSA in system-wise

evaluation (68.95% vs. 39.21%). Although there

is small difference between MDRG and HDSA in

component-wise evaluation (61.0% vs. 68.9% in
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ID
Restaurant Train Attraction

Turn Info. Match Succ. Turn Info. Match Succ. Turn Info. Succ.
1 2.82 0.94 96.9 98 3.06 1.0 100 100 3.12 0.69 63
2 2.84 0.92 100 98 2.99 1.0 94.2 97 3.70 0.73 65
3 8.68 0.70 69.4 70 6.07 0.80 67.3 75 5.61 0.67 62
4 6.00 0.77 68.8 78 11.53 0.71 67.3 55 12.57 0.57 46
6 9.41 0.64 72.7 60 5.13 0.97 90.4 93 14.79 0.23 9
11 9.91 0.39 66.7 61 4.02 0.86 88.5 97 4.73 0.68 80
13 8.35 0.40 65.6 60 4.19 0.85 94.2 96 6.06 0.60 73
15 14.72 0.37 11.5 27 16.02 0.46 11.5 25 16.12 0.51 24
16 6.36 0.80 92.2 90 10.21 0.61 55.8 58 8.32 0.69 67

Table 3: Performance with different single domain. Most systems achieve better performance in Restaurant and

Train than Attraction.

ID
Single Two Three

Turn Info. Match Succ. Turn Info. Match Succ. Turn Info. Match Succ.
1 3.22 0.84 84.7 87 6.96 0.81 94.9 78 8.15 0.82 88.4 69
2 3.90 0.78 79.7 82 6.74 0.76 95.3 72 10.54 0.79 85.0 66
3 9.18 0.67 66.7 60 12.38 0.60 42.9 42 13.55 0.50 44.6 21
4 8.65 0.66 58.3 62 17.24 0.38 28.0 14 18.03 0.46 24.4 13
6 10.35 0.44 60.4 41 14.74 0.44 50.9 17 15.97 0.25 20.9 0
11 8.79 0.45 72.2 55 13.37 0.52 74.0 59 19.30 0.39 50.4 0
13 8.48 0.45 62.5 61 14.08 0.45 61.0 47 18.95 0.36 40.7 0
15 15.09 0.33 10.0 26 19.10 0.25 17.8 8 20.00 0.19 0.0 1
16 8.89 0.66 68.1 65 13.48 0.52 57.1 34 18.59 0.58 45.5 12

Table 4: Performance with different number of domains. All systems have performance drop as the number of

domains increases.

Table 2c), the gap is increased (19.2% in SYSTEM-
9 vs. 34.3% in SYSTEM-10) in system-wise evalu-

ation. In addition, even SCLSTM achieves a higher

BLEU score than the retrieval-based model (51.6%

vs. 33.1% in Table 2d), it only obtains a lower

success rate (43.0% in SYSTEM-4 vs. 80.9% in

SYSTEM-1) when assembled with other modules.

These results show again the discrepancy between

component-wise and system-wise evaluation. The

superiority of the systems using retrieval models

may imply that lower SER in NLG is more critical

than higher BLEU in goal-oriented dialog systems.

Error in multi-turn interactions Most exist-

ing work only evaluates the model with single-

turn interactions. For instance, inform rate and

task success at each dialog turn are computed

given the current user utterance, dialog state and

database query results for context-to-context gener-

ation (Wen et al., 2017; Budzianowski and Vulić,

2019). A strong assumption is that the model would

be fed with the ground truth from the upstream

modules or the last dialog turn. However, this as-

sumption does not hold since a goal-oriented dialog

consists of a sequence of associated inquiries and

responses between the system and its user, and the

system may produce erroneous output at any time.

The errors may propagate to the downstream mod-

ules and affect the following turns. For instance,

end-to-end models get worse success rate in multi-

turn interactions than in single-turn evaluation in

Table 2e. A sample dialog from SYSTEM-1 and

SYSTEM-6 is provided in Table 6. SYSTEM-6 does

not extract the pricerange slot (highlighted in red

color) correctly. The incorrect dialog state further

harms the performance of dialog policy, and the

conversation gets stuck where the user (simulator)

is always asking for the postcode, thereby failing

to complete the task.

To summarize, the component-wise, single-turn

evaluation results do not reflect the real perfor-

mance of the system well, and it is essential to

evaluate a dialog system in an end-to-end, interac-

tive setting.

3.3 Performance of Task with Different
Complexities (RQ3)

With the increasing demands to address various

situations in multi-domain dialog, we choose 9 rep-

resentative systems across different configurations

and approaches to further investigate how their per-

formance varies with the complexities of the tasks.

100 user goals are randomly sampled under each

domain setting. Results in Table 3 and 4 show

that the overall performance of all systems varies

with different task domains and drops significantly



304

with the increase of task complexity, while pipeline

systems are relatively robust to task complexity.

Performance with different single domains
Table 3 shows the performance with respect to

different single domains. Restaurant is a com-

mon domain where users inquiry some information

about a restaurant and make reservations. Train
has more entities and its domain constraints can

be more complex, e.g., the preferred train should

arrive before 5 p.m. Attraction is an easier one

where users do not make reservations. There are

7/6/3 informable slots that need to be tracked in

Restaurant/Train/Attraction respectively. Surpris-

ingly, most systems perform better in Restaurant
or Train than Attraction. This may result from

the noise database in Attraction where pricerange
information is missing sometimes, and from the un-

even data distribution where Restaurant and Train
appear more frequently in the training set. In gen-

eral, pipeline systems perform more stably across

multiple domains than joint models and end-to-end

systems.

Performance with different number of domains
Table 4 demonstrates how the performance varies

with the number of domains in a task. We can

observe that most systems fall short to deal with

multi-domain tasks. Though some systems such

as SYSTEM-13 and SYSTEM-16 can achieve a rel-

atively high inform F1 or match rate for a single

domain, the overall success rate drops substantially

on two-domain tasks, and most systems fail to com-

plete three-domain tasks. The number of dialog

turns also increases remarkably when the number

of domains increases. Among all these configu-

rations, only the pipeline systems SYSTEM-2 and

SYSTEM-1 can keep a high success rate when there

are three domains in a task. These results show

that current dialog systems are still insufficient to

deal with complex tasks, and that pipeline systems

outperform joint models and end-to-end systems.

3.4 Simulated vs. Human Evaluation (RQ4)
Since the ultimate goal of a task-oriented dialog

system is to help users accomplish real-world tasks,

it is essential to justify the correlation between

simulated and human evaluation. For human evalu-

ation, 100 Amazon Mechanical Turk workers are

hired to interact with each system and then give

their judgement on task success. The ability of

Language Understanding (LU) and Response Ap-

propriateness (RA) of the systems are assessed at

ID Turn LU RA Succ. Corr.

1 18.58 3.62 3.69 62 0.57

6 20.63 2.85 2.91 27 0.72

11 19.98 2.36 2.41 23 0.53

13 19.26 2.17 2.49 14 0.46

16 16.33 2.61 2.65 23 0.55

Table 5: System-wise evaluation with human users.

Correlation coefficient between simulated and human

evaluation is presented in the last column.

the same time, and each worker gives a score on

these two metrics with a five-point scale. We com-

pare 5 systems that achieve the best performance

in the simulated evaluation under different settings.

Table 5 shows the human evaluation results of

5 dialog systems. Comparing with the simulated

evaluation in Table 1, we can see that Pearson’s

correlation coefficient lies around 0.5 to 0.6 for

most systems, indicating that simulated evaluation

correlates moderately well with human evaluation.

Similar to simulated evaluation, the pipeline sys-

tem SYSTEM-1 obtains the highest task success rate

in human evaluation. A sample human-machine

dialog from SYSTEM-1 and SYSTEM-6 is provided

in Table 7. The result is similar to the simulated

session in Table 6 but SYSTEM-6 fails to respond

with the phone number in Table 7 instead (high-

lighted in red color). All these imply the reliability

of the simulated evaluation in goal-oriented dialog

systems, showing that simulated evaluation can be

a valid alternative to the costly human evaluation

for system developers.

However, compared to simulated evaluation, we

can observe that humans converse more naturally

than the simulator, e.g., the user confirms with

SYSTEM-1 whether it has booked 7 seats in Ta-

ble 7, and most systems have worse performance in

human evaluation. This indicates that there is still a

gap between simulated and human evaluation. This

is due to the discrepancy between the corpus and

human conversations. The dataset only contains

limited human dialog data, on which the user simu-

lator is built. Both the system and the simulator are

hence limited by the training corpus. As a result,

the task success rate of most systems decreases sig-

nificantly in human evaluation, e.g., from 40.4% to

14% in SYSTEM-13. This indicates that existing

dialog systems are vulnerable to the variation of

human language (e.g., the sentence highlighted in

brown in Table 7), which demonstrates a lack of ro-



305

bustness in dealing with real human conversations.

4 Related Work

Developers have been facing many problems when

evaluating a goal-oriented dialog system. A range

of well-defined automatic metrics have been de-

signed for different components in the system, e.g.,

joint goal accuracy in DST and task success rate in

policy optimization introduced in Table 2b and 2c.

A broadly accepted evaluation scheme for the goal-

oriented dialog was first proposed by PARADISE

(Walker et al., 1997). It estimates the user satis-

faction by measuring two types of aspects, namely

dialog cost and task success. Paek (2001) sug-

gests that a useful dialog metric should provide

an estimate of how well the goal is met and allow

for a comparative judgement of different systems.

Though a model can be optimized against these

metrics via supervised learning, each component

is trained or evaluated separately, thus difficult to

reflect real user satisfaction.

As human evaluation by asking crowd-sourcing

workers to interact with a dialog system is much

expensive (Ultes et al., 2013; Su et al., 2016) and

prone to be affected by subjective factors (Hi-

gashinaka et al., 2010; Schmitt and Ultes, 2015), re-

searchers have tried to realize automatic evaluation

of dialog systems. Simulated evaluation (Araki and

Doshita, 1996; Eckert et al., 1997) is widely used

in recent works (Williams et al., 2017; Peng et al.,

2017; Takanobu et al., 2019, 2020) and platforms

(Ultes et al., 2017; Lee et al., 2019b; Papangelis

et al., 2020; Zhu et al., 2020), where the system in-

teracts with a user simulator which mimics human

behaviors. Such evaluation can be conducted at the

dialog act or natural language level. The advan-

tages of using simulated evaluation are that it can

support multi-turn language interaction in a full

end-to-end fashion and generate dialogs unseen in

the original corpus.

5 Conclusion and Discussion

In this paper, we have presented the system-wise

evaluation result and empirical analysis to estimate

the practicality of goal-oriented dialog systems

with a number of configurations and approaches.

Though our experiments are only conducted on

MultiWOZ, we believe that such results can be

generalized to all goal-oriented scenarios in dialog

systems. We have the following observations:

1) We find that rule-based pipeline systems gen-

erally outperform state-of-the-art joint systems and

end-to-end systems, in terms of both overall perfor-

mance and robustness to task complexity. The main

reason is that fine-grained supervision on dialog

acts would remarkably help the system plan and

make decisions, because the system should predict

the user intent and take proper actions during the

conversation. This supports that good pragmatic

parsing (e.g. dialog acts) is essential to build a

dialog system.

2) Results show that component-wise, single-

turn evaluation results are not always consistent

with the overall performance of dialog systems. In

order to accurately assess the effectiveness of each

module, system-wise, multi-turn evaluation should

be used from the practical perspective. We advo-

cate assembling the proposed model of a specific

module into a complete system, and evaluating the

system with simulated or human users via a stan-

dardized dialog platform, such as Rasa (Bocklisch

et al., 2017) or ConvLab. Undoubtedly, this will

realize a full assessment of the module’s contribu-

tion to the overall performance, and facilitate fair

comparison with other approaches.

3) Simulated evaluation can have a good assess-

ment of goal-oriented dialog systems and show a

moderate correlation with human evaluation, but it

remarkably overestimates the system performance

in human interactions. Thus, there is a need to de-

vise better user simulators that resemble humans

more closely. A simulator should be able to gener-

ate a natural and diverse response, and may change

goals in complex dialog, etc. In addition, the sim-

ulator itself may make mistakes which derive the

wrong estimation of the performance. However

even with human evaluation a dialog system needs

to deal with more complicated and uncertain situ-

ations. Therefore, it is vital to enhance the robust-

ness of the dialog systems. Despite the discrepancy

between simulators and human users, simulated

evaluation is still a valid alternative to the costly

human evaluation especially in the early stage of

development.
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Hotel Restaurant
Info Reqt Book Info Book

parking=yes postcode stay=2 food=british day=sunday

pricerange=moderate address day=sunday pricerange=moderate time=16:30

area=centre people=8

SYSTEM-1 SYSTEM-6
U: I would prefer it in the centre area . Actually I

need a moderately priced restaurant . Are there

any fitting that description ? This restaurant

should serve british food too .

U: I would prefer it in the centre area . Actually I

need a moderately priced restaurant . Are there

any fitting that description ? This restaurant

should serve british food too .

D: restaurant-food:british, restaurant-
pricerange:moderate, restaurant-area:centre

D: restaurant-food:british, restaurant-
pricerange:moderate, restaurant-area:centre

S: I have 4 options for you ! How about the

copper kettle ? It is located in the centre .

S: I have 4 options for you ! It is in the centre

area . That is a british restaurant . the copper

kettle is just your thing . It is in the centre area

.

U: I need a table for 8 people . Can you try to

book it at 16:30 . We will be there sunday

night .

U: It will be for 8 people . Can you try for 16:30

? I am also looking for a restaurant to book for

sunday.

D: restaurant-people:8, restaurant-day:sunday,
restaurant-time:16:30

D: restaurant-people:8, restaurant-day:sunday,
restaurant-time:16:30

S: Your reference number is 00000013 . S: All set . Your reference number is 00000013 .

U: I would like to keep it in the moderate range ,

please . Oh , i need parking.

U: Hello , I would like to find a hotel that includes

free parking . I also need a moderate place to

stay .

D: hotel-parking:yes, hotel-pricerange:moderate D: hotel-parking:yes
S: I have 14 different options for you ! How about

hamilton lodge ? Fits your request perfectly .

It has free wifi .

S: Reference number is : 00000013 .

U: That sounds fine , I just need the postcode

though .

U: What is the postcode ?

D: D:

S: The postal code for that hotel is cb41da . S: Thank you for using our services .

U: I need a room starting on sunday . There is

going to be 8 of us. How about only 2 nights .

U: That sounds fine , I just need the postcode

though .

D: hotel-day:sunday, hotel-people:8, hotel-stay:2 D:

S: Here is the booking information : Booking was

successful . Reference number is : 00000001.

S: Glad to have been of help . Thank you for

using the service . Enjoy the rest of your day !

U: Thank you very much , goodbye . U: I just need the postcode .

D: D:

S: You are very welcome. Goodbye. S: Ok , thank you . Have a good day .

Success Failure:
System fails to track the value of price

range in the dialog state and does not an-

swer the postcode.

Table 6: A sample dialog session comparison between SYSTEM-1 and SYSTEM-6 in simulated evaluation. For

simplicity, we only present the updated slots and values at each turn, instead of the entire dialog state (lines start

with D).
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Train Attraction
Info Reqt Book Info Reqt

destination=peterborough duration people=7 area=centre phone

day=saturday trainID postcode

departure=cambridge

leaveAt=13:00

SYSTEM-1 SYSTEM-6
U: I am looking for a train that leaves at 13:00 U: Hi! I’m looking for a train departing from

Cambridge after 13:00

S: What day would you like ? Where would you

like your train to take you ? Where did you

want to depart from ?

S: What day did you have in mind ? Where are

you heading to ?

U: I would like to leave on Saturday and depart

from Cambridge

U: Saturday and heading to peterborough

S: What is your destination ? S: There is a train arriving at 13:00 would you

like me to book tickets for that one ? I can

book you on saturday. Would you like me to

book a train to peterborough for you ? Would

you like me to book a train from cambridge

for you ?

U: I need to go to Peterborough U: Yes, please book for 7 people

S: We can book you for the train leaving at 13:00

. I can book you on Saturday. Would you like

me to book a train to peterborough for you

? Would you like me to book a train from

cambridge for you ?

S: All set . Your reference number is 00000066 .

U: Yes. I need the train ID and booking for 7

people

U: Thanks! I’m looking forward to seeing local

tourist attractions

S: Reference number is : 00000054 . S: Thank you for using our services

U: I want to see the tourist attractions so it should

be near the Centre

U: Do you know of any attractions in the centre?

S: There are 44 . Would you like me to recom-

mend one for you ? Would you like vue cin-

ema ?

S: We have 44 options , can i recommend for you

? I would suggest sheep’s green and lammas

land park fen causeway .

U: Yes. I also want the phone number and post-

code for the cinema

U: Can I get the phone number for Sheep’s

Green?

S: The phone number is 08712240240 and post-

code is cb11ps . They are located within the

centre .

S: What time would you like to leave ?

U: Do you have me booked for a party of 7 peo-

ple?

U: Around noon

S: Here is the booking information : Booking was

successful . Reference number is : 00000054.

S: Have a good day .

U: Are there 7 seats booked? U: Can you give me the phone number of the

tourist attraction?

S: Reference number is : 00000054 . S: Thank you for contacting the help desk . Have

a great day .

U: Thank You for your help and Goodbye! U: Can you give me a list of attractions?

S: You are welcome . Have a good day ! S: Have a good day .

Success Failure: System does not answer the phone number

of the requested tourist attraction.

Table 7: A sample dialog session comparison between SYSTEM-1 and SYSTEM-6 in human evaluation.


