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Abstract

Code switching is a linguistic phenomenon that may occur within a multilingual setting where
speakers share more than one language. With the increasing communication between groups with
different languages, this phenomenon is more and more popular. However, there are little research
and data in this area, especially in code-mixing sentiment classification. In this work, the domain
transfer learning from state-of-the-art uni-language model ERNIE is tested on the code-mixing
dataset, and surprisingly, a strong baseline is achieved. Furthermore, the adversarial training
with a multi-lingual model is used to achieve 1st place of SemEval-2020 Task 9 Hindi-English
sentiment classification competition.

1 Introduction

In today’s society, the use of social media has become a necessary daily activity. As a result, a large
amount of text content has been produced. Among those corpora, there are many code-mixed texts.
Code-mixing is a common phenomenon in societies in which two or more languages are used. It is the
change of one language to another within the same utterance or in the same oral/written text (Ho and
others, 2007). Code-mixing poses several unseen difficulties in NLP tasks on lexical/syntax/semantic
levels.

In recent years, a lot of models based on Transformer (Vaswani et al., 2017) have been proposed such
as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 2019). Those
models take advantage of both available large corpora and computational power and have outperformed
the traditional techniques in various sentiment analysis tasks (Kim, 2014; Hochreiter and Schmidhuber,
1997). Meanwhile, many multi-lingual models are proposed, e.g. (Ma et al., 1999; Conneau et al., 2019).
(Sarkar et al., 2019) have tested the multilingual BERT with Hierarchical Attentive Network, Shakeel and
Karim (2020) have tested BERT for code-mixing informal short text classification.

However, the code-mixed corpus is small. Large models like BERT (Devlin et al., 2019) and ERNIE
(Sun et al., 2019) have millions of parameters, and are prone to overfit. To tackle this problem, adversarial
training can be used as a regularizer in the training phase (Szegedy et al., 2013; Goodfellow et al., 2014).
Adversarial examples are a way of fooling a neural network to behave incorrectly (Szegedy et al., 2013).
They are created by applying a small perturbation to the original inputs. The original algorithm was
designed for use in the image field, and the perturbation added to the image was deliberately designed to
be invisible to the naked eye, but causing neural networks to output a completely different response from
the true one. By introducing those adversarial examples, which the neural nets make mistakes on, to the
network during training, the performance can be improved. This is called “adversarial training” which
acts as a regularizer to help the network generalize better (Goodfellow et al., 2014). For natural language,
it is not feasible to produce perturbed examples due to the nature of the text. As a solution, Miyato et
al. (2016) apply this perturbation to the embedding space and design a new loss for semi-supervised
adversarial training.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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Our contributions are twofold. First, the domain transfer learning method is applied for code-mixing
classification, which surprisingly shows promising efficacy. And furthermore, the adversarial training
is applied during the training process with a multilingual model. Finally, this method has achieved the
state-of-the-art score and rank 1st in SemEval-2020 Task 9 for code-mixing Hindi-English sentiment
classification.

2 Related Work

In this section, the existing research on multi-lingual sentiment classification and adversarial learning is
discussed, which are closely related to this work.

2.1 Multilingual Sentiment Classification

Most of the state-of-the-art multilingual models are based on Transformer (Vaswani et al., 2017). In
mBert (Devlin et al., 2019), a 12 layers model trained on a multilingual corpus including 104 languages is
proposed. (Conneau and Lample, 2019) has proposed a new learning target to leverage both unsupervised
and supervised corpus on monolingual and cross-lingual corpus respectively to train the cross-lingual
language model XLM. (Conneau et al., 2019) upgrades the XLM to XLM-R with more training data,
which significantly outperforms mBERT and XLM in many datasets including a sentiment dataset SST-2
(Socher et al., 2013) and a cross-lingual entailment classification dataset MNLI (Williams et al., 2017).

2.2 Adversarial Training

Adversarial examples were first found in (Szegedy et al., 2013) where a malicious example called
adversarial example can be designed while it is not perceptible for human eyes. Both (Szegedy et al.,
2013) and (Goodfellow et al., 2014) found that by putting the adversarial example back into training,
the model will be regularized and can provide an additional regularization benefit beyond that provided
by using dropout. Since those methods are proposed and tested in image classification, (Miyato et al.,
2016) designed a semi-supervised loss based on adversarial training for sentence classification and shows
promising results on text classification results. Therefore, in this work, the impact of applying adversarial
training with the state-of-the-art multilingual language model is studied.

3 Model

In this section, we describe the two models that were used in this competition are proposed. The first
one is ERNIE proposed by (Sun et al., 2019) which uses the paradigm of continuous learning to pretrain
language models which are adapted to sentiment classification using domain transfer learning. The other
one is a multi-lingual model XLM-R and we have further trained it with adversarial training.

3.1 Backbone Model

The backbone models ERNIE (Sun et al., 2019) and XLM-R (Conneau et al., 2019) used in this tasks are
all based on Transformer. For this code-mixing sentiment classification task, the input sentence will be
organized as

[CLS], w1, w2, ..., wn, [SEP ]

where the [CLS] token is inserted in the beginning place of the sequence which is used as an indicator
of the whole sentence, and specifically it is used to perform sentiment classification. The [SEP ] is a
token to separate a sequence from the subsequent one and is an indicator of the end of a sentence. wi is
token of the sequence. After they go through the backbone model, for each item of the sequence, a vector
representation of the size H , size of specified hidden layers, is computed. The representation of [CLS] is
applied with a fully connected layer to classify the three sentiment labels including negative, neutral, and
positive.
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Figure 1: The effect of the hyper-parameter ε for adversarial training

3.2 Training with Mono-lingual Model
The ERNIE model is trained with a continuous learning method. The training tasks of ERNIE include
different granularity, such as the lexical level task of capital letter predictions and masked language model
for entity, syntax level task of predicting document order, and relation, e.g. entailment relation prediction.

This model is trained with monolingual corpus, including Wikipedia, BookCorpus, and Reddit. The
off-the-shell model is used directly for finetuning on the code-mixing corpus.

After the code-mixing sentence goes through ERNIE, the representation of the token [CLS] is used to
classify the sentiment. Softmax is used to calculate the probability distribution of each class. The cross
entropy is used to calculate the loss:

Lce = −y log p(y|x; θ)

where, p(y|x) is the probability for target label y.

3.3 Adversarial Training Multilingual Model
XLM-R (Conneau et al., 2019) is used as the multilingual backbone model for this task. XLM-R is trained
with 100 languages with 2.5 TB corpus. The training objective is the same as RoBERTa (Liu et al., 2019)
which is a masked language model, that is, the input is a corrupted sentence and the goal is to recover
those corrupted tokens.

Adversarial examples are inputs to machine learning models that an attacker has intentionally designed
to cause the model to make a mistake (Goodfellow et al., 2014). According to the access to the model
parameters, it can be divided into two types of attack algorithms: white box attack and black box attack.
The former adversarial one has full access to the model parameters (e.g. embedding, linear mapping
weights), and the latter uses only on the input and output, e.g. token id, the probability distribution of
model prediction. Considering that the goal of adversarial training in our experiment is to regularize the
training process, the white-box method allows it to access the embeddings.

To create adversarial examples, the formula proposed by (Miyato et al., 2016) is used, where the
perturbation is created using the gradient of the loss function. Assume the input embedding x and the
model parameters θ is given, to find the adversarial examples the following problem should be solved:

radv = εg/‖g‖2 where g = ∇x+dKL[p(·|x; θ̂)‖p(·|x+ d; θ̂)]

where KL[p‖q] denotes the KL divergence between distributions p and q, r denotes the perturbation on
the input and θ̂ is a constant copy of θ in order not to allow the gradients to propagate in the process
of constructing the artificial examples. Solving the above problem means that we are searching for the
worst perturbation while trying to maximize the divergence of the outputs between benign input x and
adversarial input x+ d of the model, where d is a small random vector. Therefore, the perturbations are
injected to the input embeddings to create new adversarial sentences in the embedding space. ε is the
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size of the perturbation. To find values that outperform the original results, an ablation study was carried
out on four values for ε whose results are presented in Figure 1 and discussed in Section Model Robust
Analysis. After the

Precision Recall F1
Positive 0.8426 0.7600 0.7992
Negative 0.7850 0.7544 0.7694
Neutral 0.6521 0.7309 0.6892
Macro Average - - 0.7526

Table 1: Results of our test set submissions

adversarial examples go through the network, their loss is calculated as follows:

Ladv(θ) = KL
[
p
(
·|x; θ̂

)
||p (·|x+ radv;θ)

]
Effectively, the total loss is calculated by

L = Lce + αLadv

as the adversarial term favors label smoothness in the embedding neighborhood, and α is a hyperparameter
that controls the trade-off between standard errors and robust errors.

4 Experiments

Implementation details There are 14000/3000/3000 examples in the train/dev/test dataset respectively,
for more detailed dataset information please refer to the work of (Patwa et al., 2020). To train a better
model, data cleaning strategies have been applied, e.g. the URLs, hashtags, usernames are all removed.
When processing the data, to increase the data diversity, we tried both retaining and discarding case
information. To fully make use of the data provided by the competition, the Spanish-English code-mixing
dataset is combined with Hindi-English dataset, however, it shows a negative effect with training those
two datasets together. We performed all our experiments on a GPU (Nvidia Tesla V100) with 32 GB of
memory. Except for the code specific to our model, we adapted the codebase utilized by XLM-R. To carry
out the ablation study of adversarial training, batches of 32 were specified. For optimization, the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 3e − 5 was used. Also, we have applied the
linear warm strategy for the learning rate. We set α = 1 for the adversarial loss. The experiments are
conducted for 5 epochs and we pick the best model using the dev set.

Improving Generalization As the adversarial training can be a regularizer to model, it is expected to
have a more robust generalization on both development and test set. From Figure 1 it can be seen that
the hyperparameter ε is important. When ε = 2, we get the best F1 score for the development dataset,
and furthermore, the scores for this parameter are better than the baseline most of the time (green line in
Figure 1). From Table 2, there is a trend with decreasing development set score but increasing score in
test set score, which shows the overfitting is easing. From this, we can see the increasing generalization
and robustness of the trained model.

Domain Transfer Learning Discussion. From Table 2, it can be seen that ERNIE is tested as the
baseline. ERNIE is proposed as a uni-language pretrained model trained for English. We have applied
the model finetuned on the Hindi-English code-mixed dataset directly as domain transfer learning, and
surprisingly this model provided a strong baseline (0.6725 test score) for this task. We speculate that
this result comes first because of the structural similarity between the two languages as they both belong
to Indo-European languages, which is important and fully discussed in the in (Pires et al., 2019), and
second, thanks to the BPE tokenizer (Sennrich et al., 2016), tokens can be processed at sub word level,
thus reducing the proportion of unknown words. As a result, the ERNIE shows a strong domain transfer
learning ability.
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Models Dev set score Test set score
ERNIE 2.0 0.6571 0.6725
XLM-R 0.6660 0.7177
+ε = 1 0.6653 0.7305
+ε = 2 0.6723 0.7320
+ε = 3 0.6689 0.7332
+ε = 5 0.6674 0.7349
Ensemble – 0.7526

Table 2: Score analysis for candidates of final
ensemble

Ensemble Results The training set is very small compared to the large scale of the pre-training corpus
and model parameters for the backbones we have used. To take full advantage of the training dataset
and increase training diversity, the strategy of constructing a training dataset is important. In practice,
a 10-fold cross validation is executed. During each fold, we obtain results for the test dataset which
provides a large number of candidates for the ensemble. Besides, we also used different backbone network
and hyperparameter settings to increase the result diversity. The ensemble method we used was mainly
based on the average prediction result, that is, the probability of each category was averaged across all the
ensemble candidates, and finally the category with the highest probability among the three categories was
selected as the prediction result. As a result, we have reached 0.75 F1-score and achieved the 1st place in
competition.

However, from Table 1, it can be seen the F1 score of the neutral class is considerably low, which is
mainly caused by the low precision of the neutral class. We speculate that, despite using the adversarial
training as a regularizer, the model is still more inclined to learn specific keywords as emotional category
indicators, resulting in low precision for neutral class. For the positive and negative class, the model
performs better, but both the precision is higher than the recall score, which shows that the sentiment is
not always obvious. We leave this research in future further work.

5 Conclusion

In this paper, we tested the performance of ERNIE for domain transfer learning and applied adversarial
to code-mixed sentiment analysis with XLM-R. The experiments show that ERNIE provides a strong
baseline in the cross-lingual setting. After replacing the backbone model with the multilingual model
XLM-R, the F1-score of sentiment classification was significantly improved, further improved after the
adversarial learning was applied. In particular, we have carried out experiments on hyperparameters in
adversarial learning. Different parameters have a significant influence on the experimental results, but they
all achieve the purpose of enhancing the generalization of the model. As a result, we have achieved the
top rank for the competition of Hindi-English code-mixed sentiment classification and our user name is
kk2018. As future work, other white-box adversarial examples as well as black-box ones will be utilized
to compare adversarial training methods for various sentiment analysis tasks.
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