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Abstract

Many natural language processing (NLP) tasks
involve reasoning with textual spans, includ-
ing question answering, entity recognition,
and coreference resolution. While extensive
research has focused on functional architec-
tures for representing words and sentences,
there is less work on representing arbitrary
spans of text within sentences. In this paper,
we conduct a comprehensive empirical evalua-
tion of six span representation methods using
eight pretrained language representation mod-
els across six tasks, including two tasks that we
introduce. We find that, although some simple
span representations are fairly reliable across
tasks, in general the optimal span representa-
tion varies by task, and can also vary within
different facets of individual tasks. We also
find that the choice of span representation has
a bigger impact with a fixed pretrained encoder
than with a fine-tuned encoder.

1 Introduction

Fixed-dimensional span representations are often
used as a component in recent models for a number
of natural language processing (NLP) tasks, such
as question answering (Lee et al., 2016; Seo et al.,
2019), coreference resolution (Lee et al., 2017),
and constituency parsing (Stern et al., 2017; Kitaev
and Klein, 2018; Kitaev et al., 2019, inter alia).
Such models initialized with contextualized word
embeddings (Peters et al., 2018; Devlin et al., 2019)
have achieved new state-of-the-art results for these
tasks (Kitaev et al., 2019; Joshi et al., 2019b).

Since spans can have arbitrary length (i.e., num-
ber of tokens), fixed-dimensional span representa-
tions involve some form of (parameterized) pooling
of the token representations. Existing models typ-
ically pick a span representation method (dashed
boxes in Figure 1) that works well for the task(s) of
interest. However, a comprehensive evaluation com-
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Figure 1: Probing architectures for span representation
methods. The models are very similar to that of Ten-
ney et al. (2019b) but we explicitly separate the span
representation part into a projection step followed by a
choice among span representation methods.

paring various span representation methods across
tasks is still lacking.

In this work, we systematically compare and an-
alyze a wide range of span representations (Sec-
tion 3.2) by probing the representations via various
NLP tasks, including constituent detection, con-
stituent labeling, named entity labeling, semantic
role labeling, mention detection, and coreference
arc prediction (Section 2).1 All of the tasks we con-
sider naturally involve span representations. Simi-
lar comparisons are done by Tenney et al. (2019b),
where they use this probing approach to compare
several pretrained contextual embedding models,
while keeping the span representation method fixed
to self-attentive pooling (Lin et al., 2017; Lee et al.,
2017). Here we vary both the choice of contextu-
alized embedding models (among BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b), XL-

1Code available at https://github.com/
shtoshni92/span-rep

https://github.com/shtoshni92/span-rep
https://github.com/shtoshni92/span-rep
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Net (Yang et al., 2019), and SpanBERT (Joshi et al.,
2019a)) and the span representation methods. By
analyzing the performance of each span representa-
tion method for multiple tasks, we aim to uncover
the importance of choice of span representation.

We follow the “edge probing” setup of Tenney
et al. (2019b) and introduce two new tasks to this
setup, namely constituent detection and mention
detection, which complement the constituent label-
ing and coreference arc prediction tasks, respec-
tively, that are part of the original setup. For the
full-scale comparison, we follow the original setup
and keep the pretrained token representation mod-
els fixed, learning only layer weights and additional
task-specific parameters on top of the weighted pre-
trained representations. We also conduct a small-
scale study to compare the effect of fine-tuning on
different span representations in terms of their rel-
ative ordering and for comparison with their non
fine-tuned counterparts.

Overall, we find that the behavior of span rep-
resentations tends to pattern according to whether
they are based on information at the span bound-
aries versus using the entire span content. When
pretrained models are frozen, we find that the choice
of span representation is more important than the
choice of pretrained model. When fine-tuning, the
choice of span representation still has an impact on
performance though it is much less pronounced than
in the frozen case. Although the best-performing
method can vary greatly among tasks, we find in
general that a span representation that simply takes
the max over time is a reliable choice across tasks.

2 Span Probing Tasks

We borrow four probing tasks applied by Tenney
et al. (2019b), namely constituent labeling, named
entity labeling, semantic role labeling, and coref-
erence arc prediction. We also introduce two new
tasks: constituent detection and mention detection.
The specific tasks are described below.

Constituent labeling is the task of predicting the
non-terminal label (e.g., noun phrase, verb phrase,
etc.) for a span corresponding to a constituent.

Constituent detection is the task of determin-
ing whether a span of words corresponds to a
constituent (i.e., a nonterminal node) in the con-
stituency parse tree of the input sentence. We in-
troduce this task as a complement to the task of
constituent labeling, to further evaluate the syntac-

tic ability of the span representation methods.

Named entity labeling (NEL) is the task of pre-
dicting the entity type of a given span corresponding
to an entity, e.g., whether the span “German” in its
sentence context refers to people, an organization,
or a language.

Semantic role labeling (SRL) is concerned with
predicting the semantic roles of phrases in a sen-
tence. In this probing task the locations of the pred-
icate and its argument are given, and the goal is to
classify the argument into its specific semantic roles
(ARG0, ARG1, etc.).

Mention detection is the task of predicting
whether a span represents a mention of an entity
or not. For example, in the sentence “Mary goes
to the market”, the spans “Mary” and “the mar-
ket” refer to mentions while all other spans are not
mentions. The task is similar to named entity recog-
nition (Tjong Kim Sang and De Meulder, 2003),
but the mentions are not limited to named entities.
We introduce this task as it is the first step for coref-
erence resolution (Pradhan et al., 2012), if the can-
didate mentions are not explicitly given.

Coreference arc prediction is the task of predict-
ing whether a pair of spans refer to the same entity.
For example, in the sentence “John is his own en-
emy”, “John” and “his” refer to the same entity.

3 Models

In this section, we first briefly describe the prob-
ing model, which is borrowed from Tenney et al.
(2019b) with the extension to different span rep-
resentations (Figure 1), followed by details of the
various span representation methods we compare in
this work.

3.1 Probing Model
The input to the model is a sentence d =
{d1, · · · , dT } where the di are tokens (produced
by a tokenizer specific to a given choice of en-
coder). The sentence is first passed through a fixed,
pretrained encoder, such as BERT, followed by a
learned projection layer to obtain contextualized to-
ken embeddings {e1, · · · , eT }. These embeddings
are then fed to span representation modules to get
fixed-dimensional contextual span embeddings. Fi-
nally, the span embeddings are fed into a two-layer
MLP followed by a sigmoid layer to predict the la-
bels. For multiclass probing tasks with |L| labels,
the predictions are made independently with sep-
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arate MLPs per label resulting in a [0, 1]|L| vector.
Finally, some tasks involve a single span, whereas
others (coreference, semantic role labeling) involve
two spans; in the latter case, the MLP takes as input
the concatenation of the representations correspond-
ing to the two spans.

3.2 Span Representation Methods
Given a span s = [i, j] and its corresponding con-
textualized embeddings [ei, · · · , ej ], where ek ∈
Rd, a span representation module outputs a fixed-
dimensional span representation sij . Below we
describe the various span representation methods
compared in this work.

Average pooling is a simple average of the contex-
tualized embeddings in the span window:

sij =
1

j − i+ 1

j∑
k=i

ek

Attention pooling or self-attention pooling is a
learned weighted average over the contextualized
token embeddings in the span:

αk = v · ek; ak =
exp(αk)∑j
`=i exp(α`)

sij =

j∑
k=i

ak · ek

where v is a learned parameter vector. This pool-
ing method is a popular choice for many NLP tasks
(Lee et al., 2017; Lin et al., 2017), and is the one
used by Tenney et al. (2019b).

Max pooling takes the maximum value over time
for each dimension of the contextualized embed-
dings within the span. Max pooling has been fre-
quently used to obtain fixed-dimensional sentence
representations for classification tasks (Collobert
et al., 2011; Hashimoto et al., 2017; Conneau et al.,
2017).

Endpoint is a simple concatenation of the end-
points of the span: sij = [ei; ej ]. This is a popular
choice for representing answer spans (Lee et al.,
2016) in extractive question-answering tasks such
as SQuAD (Rajpurkar et al., 2016). Note that in
this case sij ∈ R2d.

Diff-Sum is a variant of endpoint where we concate-
nate the sum and difference of the span endpoints:
sij = [ej + ei; ej − ei]. Diff-sum and its close

variants have been used in parsing and SRL (Stern
et al., 2017; Ouchi et al., 2018). As in endpoint,
sij ∈ R2d.

Coherent is a span representation proposed by
Seo et al. (2019) for indexing phrases in a query-
agnostic manner for question answering. First, the
endpoints of the span are split into four parts:

ei = [e1i ; e
2
i ; e

3
i ; e

4
i ]

where e1i , e
2
i ∈ Ra and e3i , e

4
i ∈ Rb, and therefore

2a+ 2b = d. The endpoints are then combined as:

sij = [e1i ; e
2
j ; e

3
i · e4j ]

where the last term e3i · e4j is referred to as the co-
herence term; hence the name “coherent” (assigned
by us). In this case, sij ∈ R2a+1 where 2a+ 1 < d
since 2a+ 2b = d.2

4 Experimental Setup

4.1 Implementation details
All input strings are passed through contextual en-
coder models to obtain an embedding for each to-
ken. With frozen encoders the weighted average
of outputs from all layers is used as the token rep-
resentation ek (Tenney et al., 2019b), while for
fine-tuned encoders the last layer output is used un-
less otherwise stated. We investigate four pretrained
models: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), SpanBERT (Joshi et al., 2019a), and
XLNet (Yang et al., 2019). Each has both “base”
and “large” variants, and we experiment with both.
Since some of the models, such as XLNet, only
have cased versions, we use the cased version for
all models. We use the HuggingFace (Wolf et al.,
2019) implementation of the four models, which is
based on PyTorch (Paszke et al., 2019).

Embeddings are first projected down to 256 di-
mensions.3 For each span, a representation method
(one of the methods from Section 3.2) is then ap-
plied to its sequence of projected vectors to obtain
a fixed-length representation for the span. The span
representations are concatenated (if there are more
than one) and fed into a two-layer MLP followed
by a sigmoid output layer. The two-layer MLP is a

2Seo et al. (2019) used a=480 and b=32 for 1024-
dimensional BERT-large embeddings. We use the same pro-
portions for the projected contextualized embeddings.

3For SRL we use separate projection matrices for the two
spans involved in the task, as the two spans may require dif-
ferent types of information to be extracted. For all of the other
tasks, a single projection matrix is used.
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Task Task Type |L| #Examples (Train / Val. / Test)

Constituent labeling Syntactic 30 1.9M / 255K / 191K
Constituent detection Syntactic 2 3.1M / 426K / 318K
NEL Semantic 18 128K / 20K / 13K
SRL Semantic/Syntactic 66 599K / 83K / 62K
Mention detection Syntactic 2 387K / 49K / 48K
Coreference arc prediction Semantic 2 208K / 27K / 28K

Table 1: Dataset statistics for the six tasks.

stack of a linear layer, a non-linear layer with tanh
activations, layer normalization, dropout (0.3 ze-
roing probability), and a second linear layer. The
hidden dimension of the MLP is 256. Models are
trained by minimizing binary cross-entropy loss
against the set of true labels. Though some tasks
(e.g., SRL) are multi-class classification, we make
predictions for each label independently i.e. binary
classification, which facilitates analysis on individ-
ual labels or label groups. The binary classifica-
tion setting also allows using the micro-averaged
F-score as the evaluation metric across tasks.

In experiments with frozen encoders, we only
learn the encoder layer mixing weights, projection
parameters, and MLP parameters, keeping the en-
coder parameters themselves fixed. For optimiza-
tion we use Adam (Kingma and Ba, 2015) with an
initial learning rate of 5× 10−4 and a batch size of
64.4 The model is evaluated on the validation set
every 1000 steps and the learning rate is reduced by
a factor of 2 if no improvement is seen in the pre-
vious 5 validation evaluations. Training stops if no
improvement is seen for 20 validation evaluations.

In experiments with fine-tuning the encoders, we
focus on only a subset of the frozen-encoder con-
figurations for computational reasons. In particular,
we only experiment with the “base” versions of
BERT, RoBERTa, and SpanBERT.5 All models are
trained using Adam with an initial learning rate of
3× 10−5 and a batch size of 64. Finally, the token
embedding is either a layer-weighted combination
or just the last layer.6

4We found non-trivial gains with this choice of higher learn-
ing rate compared to 1× 10−4 used by Tenney et al. (2019b).

5We omit XLNet due to its relatively poor performance
across tasks in the frozen setting.

6Typically the last layer embeddings perform slightly better
but a few of those training runs failed and we present the layer-
weighted results for those.

4.2 Data
Table 1 shows the dataset statistics of the six tasks
evaluated in this study. For SRL, NEL, corefer-
ence arc prediction and constituent labeling, we
use the annotations in the OntoNotes 5.0 corpus
(Weischedel et al., 2013) and cast the original an-
notations into the edge probing format, following
the same procedure as Tenney et al. (2019b) for
pre-processing.

For the newly proposed constituent detection and
mention detection tasks, we create our own datasets
using the existing annotations and random nega-
tive sampling. For constituent detection, we use
the constituent labeling annotations to get actual
constituents, and for each constituent we sample
a random negative span of the same length. We
ensure that all negative spans are different and that
we don’t sample an actual constituent. We follow a
similar procedure to get mention detection annota-
tions from coreference arc prediction annotations.
To make the mention detection task harder and more
realistic, we sample 5 times more negatives than
actual mentions.

5 Results

5.1 Results without Fine-Tuning
The results across tasks and models are shown
in Figure 2. Overall we find max pooling to
be the most robust and effective choice across
tasks. Boundary-based span representations (i.e.,
ENDPOINT, DIFFSUM, COHERENT) are superior to
entire-span methods (i.e., ATTN, MAX, AVG) on
tasks which are more shallow/syntactic (e.g., con-
stituent labeling and constituent detection), though
max pooling is competitive with the boundary-
based methods.

On the other hand, entire-span representations
are good at semantic tasks like coreference arc pre-
diction. As SRL has both semantic and syntactic
characteristics, COHERENT, MAX, and ATTN show
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Figure 2: Results with frozen encoders (no fine-tuning) for the 6 different tasks presented as separate heatmap fig-
ures. Each heatmap represents the 48 combinations resulting from 6 span representations and 8 pretrained models.
The bars at the side of the heatmap represent the max value in the row/column which is right below the bar.

similar performance with the other methods fairly
close behind. We do not find large differences be-
tween span representation methods for NEL, which
mainly contains short spans.

Model-wise, large models are usually better than
base models though there exist exceptions (e.g., con-
stituent labeling). RoBERTa shows strong perfor-
mance across tasks. We also find that SpanBERT
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Figure 3: Results with fine-tuned encoders for four tasks, namely constituent labeling, SRL, mention detection,
and coreference arc prediction, presented as separate heatmaps.

excels for tasks where boundary-based methods
are superior, which may be because it is explic-
itly trained with an objective of predicting tokens
inside a span given the boundary tokens.

Results for each task are summarized below.

Constituent detection/labeling: Boundary-based
representations are better than entire-span ones,
though MAX is close behind. Surprisingly, in these
two tasks, large models are not as good as their
base counterparts (Goldberg (2019) found similar
exceptions for syntactic tasks).

Semantic role labeling: COHERENT is the best
method on this task with MAX and ATTN being very
close behind.

Mention detection and coreference arc predic-
tion: ATTN and MAX perform the best for corefer-
ence arc prediction since they benefit from access
to the entire span and thus to the semantic head of
the span (Lee et al., 2017). For mention detection
the trends are reversed, except for MAX, with the
boundary-based methods doing quite well. This is
not surprising since the mention detection task is
somewhat close to constituent tasks. Surprisingly,
ATTN shows high variance across models and per-
forms worse than even AVG. Since we initialize

the attention parameter vector v to all zeroes, this
result means that not learning the attention vector is
surprisingly better than learning them.7 Preliminary
investigation of the learned attention weights did
not provide any clues.

Mention detection and coreference arc prediction
together complete the pipeline for coreference reso-
lution. The preference for different forms of span
representations between the two (except for MAX)
suggests that different span representations can be
considered for different stages of the coreference
resolution task. Interestingly, one of the best per-
forming end-to-end coreference models (Lee et al.,
2017) uses a concatenation of a boundary-based
span representation, ENDPOINT, and ATTN.

Some of our observations may be confounded
with training set sizes, which vary from coreference
arc prediction on the small end (208K) up to con-
stituent tasks on the largest end (1.9M), with SRL
(599K) in the middle of the range.

5.2 Results with Fine-Tuning

State-of-the-art models almost always fine-tune the
pretrained encoders. However, the training is quite

7Stopping the gradient for the attention vector indeed per-
formed similarly to AVG.
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Figure 4: Visualization of layerwise weights learned for all span representation methods for constituent labeling,
SRL, and coreference arc prediction for the RoBERTa-large model.

Figure 5: Visualization of layerwise weights learned for the coreference arc prediction task for three span represen-
tation methods with {BERT, RoBERTa, SpanBERT, XLNet}-large models. While BERT, SpanBERT, and XLNet
have peaked weight distributions, RoBERTa’s weights are more spread out. Oddly enough XLNet chooses to place
the most weight on the embedding layer for ATTN and MAX (the two best span representations for XLNet-large).

computationally expensive; hence, we perform the
span representation comparison for a small set of
the total configurations whose results are shown
in Figure 3. In general, fine-tuning improves the
results for all span representation methods across
tasks, with the performance of different span repre-
sentation methods now more tightly clustered. This
is best illustrated by the constituent labeling task
where without fine-tuning AVG trails by 10+ F-score
with respect to the best span representation but less
than 0.5 F-score with fine-tuning.

6 Analysis

In this section we analyze the impact of span repre-
sentation method with fixed pretrained encoders.

6.1 Layerwise Weight Analysis
Figures 4 and 5 visualize learned layer weights for
different task, span representation, and pretrained
encoder combinations. Within a model and task,
we generally found that the layer weights were
fairly consistent across span representation meth-
ods. Overall, we find similar trends to prior work in
analyzing layer weights for downstream NLP tasks,
namely that constituency parsing has higher weight
for lower layers and coreference has most weight

on higher layers, with SRL in between (Liu et al.,
2019a; Tenney et al., 2019a). For ablation analysis
of layer weights, whether to learn them or not, see
Appendix A.1.

6.2 Label-Specific Analysis of Span Groups

We seek to determine whether boundary-based span
representation methods (COHERENT, DIFFSUM, and
ENDPOINT) differ systematically from methods that
consider the entire span (ATTN, MAX, and AVG).
We pooled predictions from the three methods in
each group for RoBERTa-large and calculated the
recall for particular labels, for two tasks: SRL and
constituent labeling (analysis for NEL appears in
Appendix A.2). We found the labels with the largest
differences in recall between the two groups, and
discuss our findings below.

SRL. Table 2 shows the argument labels with the
largest differences in recall (∆R) between the two
groups, limiting our analysis to the 20 most fre-
quent argument labels. Labels with positive ∆R are
handled better by boundary-based methods. These
tend to be arguments that can be identified based
on particular words, often function words, at the
boundaries. For example, ARGM-DIS is found
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Argument ∆R Notes Examples

C-ARG1
(continuous
argument)

10.85 often starts with to, similar to
xcomp in universal dependencies

“were granted the right earlier this year to ship sugar”, “brought
more money into a city than it took out”, “Food prices are
expected to be unchanged”

ARGM-DIS
(discourse)

3.24 mostly single-word discourse mod-
ifiers like and or but

“In addition , the government is figuring”, “But eluding”, “And
the USIA said”, “of course , there ’s that word”

ARGM-MNR
(manner)

2.03 mostly adverbs and prepositional
phrases

“...get married in a tuxedo”, “relatively respected”, “Moving
rapidly through school”, “...do n’t leave home without the
American Express card”

ARG3
(starting point,
benefactive,
attribute)

-4.28 multiple functions depending on
predicate, and thus a variety of
boundary words

“And what I had mentioned about my mother bugging me
was...”, “You should feel comfortable staying there”, “...he be-
lieves that it can bring the market back up after a plunge”, “Bi-
ologists mixed a mold element in the cells of plants with pearl
powder to produce a granulated drug”

ARGM-DIR
(direction)

-5.20 typically a word or short phrase,
mostly adverbs, prepositional
phrases, particles, and adjectives

“newspapers turning to color on their pages”, “bond prices rapidly
turned south”, “major brokerage firms rushed out ads”, “takes
the dispute to the Supreme Court”, “we have to get out of bed”,
“toss the chalk back and forth”

ARGM-EXT
(extent)

-8.14 often a short phrase like more, very
much, a lot, etc.; limited semantics,
range of surface forms

“you ’re critical to yourself too much”, “of freezing , at least
partially”, “increase of 32 %”, “life has changed a lot”, “Thank
you very much”

Table 2: Analysis of argument labels for semantic role labeling. ∆R = argument recall% with boundary-based span
representation methods minus recall% with entire-span methods. In the examples, predicates are underlined and
arguments of the given type are shown in boldface.

Label ∆R Examples

SBAR 6.1 “that are missing”, “who owned the land”
PRN 4.6 “, she says ,”, “, it turns out ,”, “( file photo

)”, “( hey , it ’s possible )”
ADJP 3.3 “liable”, “available to anyone”, “more gen-

erous”, “satisfied with where they work”,
“at least somewhat interesting”

PP 2.7 “in 1966”, “within a community”

SBARQ -6.1 “What can we do ?”, “So what should be
done .”, “and what is money for”, “how
shall I say”

SQ -6.5 “Did you see ?”, “will I do now”, “do you
make of”, “You still building”

FRAG -6.5 “Or something .”, “well below 1988 activ-
ity”, “As for Mr. Papandreou ?”

SINV -15.7 “should the Air Force order the craft”, “say
Mr. Dinkins ’s managers”, “notes Huang
frankly”, “invest they will”

Table 3: Analysis of labels for constituent labeling.
∆R = label recall% with ENDPOINT minus recall%
with MAX. We restrict this analysis to labels that appear
at least 100 times in our development set.

mostly with single-word modifiers in this dataset
(like and and but). Arguments that are handled
better by entire-span methods are more diverse in
terms of their boundary words. ARGM-EXT is used
for arguments with relatively limited semantics (as
shown in the examples) but a variety of surface
realizations.

Constituent labeling. Table 3 shows a similar
analysis for constituent labeling, though in this case
we compare only a single method from each family:
ENDPOINT and MAX. We do this because MAX is
comparable in performance to the boundary meth-
ods while ATTN and AVG are significantly worse.
We choose ENDPOINT as our single representative
of the boundary methods in order to compare only
two methods, though we found the same trends for
others in its group.

ENDPOINT has higher recall on several labels,
shown in the top part of the table. There is a 6%
difference for SBAR, which is a clause introduced
by a (possibly empty) subordinating conjunction.
About 25% of SBAR constituents begin with that,
and many others start with some other very common
subordinating conjunction, making SBAR easier
to find for methods that focus on boundary words.
Parentheticals (PRN) frequently begin and end with
commas or parentheses. ADJPs typically begin or
end with an adjective and PPs nearly always begin
with prepositions.

The lower part of Table 3 shows labels where
MAX has higher recall than ENDPOINT. The largest
difference is in SINV, which is an “inverted” declar-
ative sentence, that is, a sentence in which the sub-
ject follows the conjugated verb. These often look
like VPs based on boundary words but are more di-
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verse syntactically; a few short examples are shown
in the table. The other labels also show syntactic
diversity. FRAG (fragment) has many realizations
that vary widely in terms of their syntax. while
SBARQ and SQ often start with wh-words and end
in question marks, they show significant variation.

7 Related Work

Many of the span representations that we consider
here were proposed previously for specific tasks,
such as the attention-weighted pooling of Lee et al.
(2017) for coreference resolution; the endpoint-
based representation of Lee et al. (2016) and the “co-
herent” endpoint-based representation of Seo et al.
(2019) for question answering; and combinations
of differences and sums of endpoint representations
for parsing and semantic role labeling (Stern et al.,
2017; Ouchi et al., 2018). These are described in
more detail in Section 3.2.

Other recent work has considered pooling ap-
proaches such as the difference between endpoint
representations (Wang and Chang, 2016; Cross and
Huang, 2016) or a concatenation of endpoint and
attention-based representations (Li et al., 2016).
Other approaches concatenate additional special-
ized feature vectors, such as the span length or po-
sition information (Lee et al., 2017; He et al., 2018;
Kuribayashi et al., 2019). Some work has also con-
sidered explicitly composing span representations
via syntactic parse trees, such as recursive neural
networks (Li et al., 2014), and some unsupervised
parsing models produce span representations as a
byproduct of training (Drozdov et al., 2019; Shi
et al., 2019).

At the same time, there has been significant effort
devoted to the related problem of learning represen-
tations for sentences or even longer texts (Kalch-
brenner et al., 2014; Iyyer et al., 2015; Kiros et al.,
2015; Wieting et al., 2016; Conneau et al., 2017;
Shen et al., 2018, inter alia). Much of this work
focuses on pooling over word representations, often
finding that simple pooling operations like averag-
ing perform surprisingly well (Wieting et al., 2016;
Shen et al., 2018). Shen et al. (2018) did a similar
empirical study to ours in spirit, comparing a vari-
ety of pooling models for sentence representations
across tasks.

In this work we are mainly focusing on the mod-
els for computing span representations given pre-
trained token embeddings, but we also include a
variety of pretrained contextual embeddings. One

in particular, SpanBERT (Joshi et al., 2019a), was
designed to enable improved span representations.
While recent work has compared across pretrained
contextual embeddings for representing spans (Ten-
ney et al., 2019b), to our knowledge there has been
no systematic comparison of methods for combin-
ing these contextual embeddings into span repre-
sentations across a variety of tasks.

8 Conclusion

We systematically compared multiple span repre-
sentation methods, combined with various base em-
bedding models, on various tasks. Our analysis in-
cludes two new tasks that we propose to tease apart
different aspects of span representations. When
using fixed, pretrained encoders, we find that, al-
though max pooling is a fairly reliable represen-
tation across tasks, the optimal span representa-
tion varies with respect to the syntactic and seman-
tic nature of the task. Finally, fine-tuning reduces
the impact of span representation choice on perfor-
mance, though it involves significant computational
expense. Our results are likely to be most useful
for those without the computational capabilities to
perform fine-tuning of large pretrained encoders, in
which case there are significant differences among
methods.
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A Appendix

A.1 Mixing Weights for Layers

Model AVG ATT MAX EP DS COH

BERT-large 90.6 92 91.4 90.5 91.1 90.5
-mix wt 90.3 91.3 91.5 90.4 90.4 90.3

RoBERTa-large 91.5 93 92.9 90.7 91.0 91.4
-mix wt 91.0 92.7 92.6 90.9 90.7 90.6

SpanBERT-large 91.6 92.6 92.4 91.1 91.2 91.3
-mix wt 90.4 91.4 91.5 90.6 90.3 90.2

XLNet-large 89.8 90.9 90.8 89.7 90.0 90.4
-mix wt 89.4 90.7 90.8 89.5 90.0 90.7

Table 4: Analysis of importance of learning mixing
weights for combination of different models and span
representations for the coreference arc prediction task.

In the table above we analyze the effect of learn-
ing the layerwise mixing weights vs simple av-
eraging over layers in context of the coreference
arc prediction task. ATTN-based models suffer the
biggest drop with a drop of 0.6% absolute on av-
erage. Among pretrained contextual embedding

models, SpanBERT-large is hurt the most with a
drop of 1% absolute on average. Surprisingly, XL-
Net drops by only 0.1% on average even though its
attention plots looked quite peaky for some of the
span representations.

A.2 Label-Specific Analysis of Span Groups
for NEL

Label ∆R Examples

ORDINAL 1.2 “first”, “second”, “First”, “6th”, “ninth”
CARDINAL 0.3 “two”, “10”, “Dozens”, “at least 37”

TIME -2.3 “seven o’clock”, “two hours”, “about
ten”, “eight fifty in the morning”

LAW -2.9 “Paragraph 14 of Article 19”, “the
Geneva Convention”, “Dru ’s Law”

LOC -3.2 “the Sierra Nevada Mountains”, “Asia”,
“Mai Po Marshes”

WORK
OF ART

-6.0 “The End of the Day”, “Carry On Trad-
ing”, “News Night Tonight”

Table 5: Analysis of labels for NEL. ∆R = label recall%
with boundary-based span representation methods mi-
nus recall% with entire-span methods.

NEL. Table 5 shows a similar analysis for entity
labeling as done in Section 6.2. The labels with
higher recall under the boundary-based methods
are limited to ORDINAL and CARDINAL num-
bers, which tend to be very short and highly regular
(nearly all ORDINAL entities are one token and ap-
proximately half are first). The entire-span methods
achieve much higher recall for the WORK OF ART
label, and also for LOC, LAW, and TIME. These
entities tend to be multi-word phrases with a variety
of syntactic forms and without consistent boundary
words.

It may be surprising that ORDINAL is better de-
tected by the boundary methods, since nearly all
ORDINAL entities are a single token, and the entire-
span methods reduce to a simple form for single
tokens. However, this may show that the entire-
span methods are being trained to abstract over the
contents of the span, thereby losing some of the sur-
face information. The boundary-based methods, by
contrast, devote particular parts of the span repre-
sentation to the boundary position representations,
thereby providing a more direct/explicit connection
between those boundary words and the downstream
classifier.


