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Abstract

The COVID-19 pandemic has caused international social tension and unrest. Besides the crisis
itself, there are growing signs of rising conflict potential of societies around the world. Indi-
cators of global mood changes are hard to detect and direct questionnaires suffer from social
desirability biases. However, so-called implicit methods can reveal humans intrinsic desires
from e.g. social media texts. We present psychologically validated social unrest predictors and
replicate scalable and automated predictions, setting a new state of the art on a recent German
shared task dataset. We employ this model to investigate a change of language towards social
unrest during the COVID-19 pandemic by comparing established psychological predictors on
samples of tweets from spring 2019 with spring 2020. The results show a significant increase
of the conflict-indicating psychometrics. With this work, we demonstrate the applicability of
automated NLP-based approaches to quantitative psychological research.

1 Introduction

The COVID-19 pandemic and the reactions to it have led to growing social tensions. Guitérrez-
Romero (2020) studied the effects of social distancing and lockdowns on riots, violence against civilians,
and food-related conflicts in 24 African countries. The author found that the risk of riots and violence
have increased due to lockdowns. Resistance against national health regulations such as the duty to wear
masks are partially met with resistance by movements such as anti-maskers or anti-obligation demon-
strations.1 Even anti-democratic alterations of e.g. services offered by the US Postal Service (USPS) of
delivering mail-in ballots for the US presidential elections 2020, which are essential for social distancing
measures amidst the pandemic, are being utilized amidst this international crisis and foster social unrest
and potential outbursts of violence, civil disobedience or uprisings.2

Social media has become an important reflection of nationally and internationally discussed topics,
and is a predictor of e.g. stock markets, disease outbreaks or political elections (Kalampokis et al., 2013).
The majority of human-produced data exists in textual form and broadly in social media and thus, an the
investigation of social unrest and conflict situations from social media becomes a worthwhile application
area for natural language processing (NLP) problem (Gentzkow et al., 2019).

When speaking about such global phenomena such as a rise in international social unrest and possible
occurrences of conflict reflected in text, the detection of specific keywords or utterances have not been
successful in past research. Mueller et al. (2017) utilized Laten Dirichlet Allocation (LDA, (Blei et
al., 2003)) topic modelling on war-related newspaper items and were not able to improve predictability
from other multi-factor models that take into account e.g. GDP figures, mountainous terrain or ethnic

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://firstdraftnews.org/latest/coronavirus-how-pro-mask-posts-boost-the-anti-
mask-movement/

2https://www.businessinsider.com/trump-walks-back-threat-block-covid-relief-over-
usps-funding-2020-8?r=DE&IR=T
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polarization. Furthermore, Chadefaux (2012) showed that news reports on possible war situations alone
did not function as good predictors but identified sharp frequency increases before war emerged, possibly
helping with just-in-time safety measures but likely failing to avoid war situations altogether.

Alternatively, the risks of escalation could be determined based on politician’s personalities and the
current mood and tone of utterances (Schultheiss and Brunstein, 2010, p. 407). However, intrinsic desires
and personality can hardly be measured directly (see Section 3). Intrinsic or subconscious desires and
motivation would more likely correlate with personalities, tone, and thus possibly social unrest.

We hypothesize that the frequency of social unrest predictors have significantly changed in social
media textual data during the COVID-19 pandemic drawn from the Twitter 1 percent stream3 in early
2019 and 2020, whilst linguistic features stay comparably stable and unchanged. With this, we aim
to demonstrate a possible transition from laborsome manual psychological research to automated NLP
approaches.

After presenting and discussing related work in Section 2, we will first introduce the concept of implicit
motives and self-regulating levels in more details in Section 3 and the social unrest predictors thereafter
in Section 4. The data utilized for experiments is described in Section 5 and the methodology in Section
6. Thereafter, we will present the results in Section 7 and discuss their impacts in Section 8. Lastly, we
will draw a conclusion in Section 9.

2 Related Work

Conflict predictions from natural language are rarely encountered applications and have mainly been
about content analysis and less about crowd psychology. Kutuzov et al. (2019) used one-to-X analogy
reasoning based on word embeddings for predicting previous armed conflict situations from printed news.
Johansson et al. (2011) performed named entity recognition (NER) and extracted events via Hidden
Markov Models (HMM) and neural networks, which were combined with human intelligence reports to
identify current global areas of conflicts, that, in turn, were utilized mainly for world map visualizations.

Investigation of personality traits has mainly been focussing on so-called explicit methods. For these,
questionnaires are filled out either by interviewers, through observations, or directly by participants.
One of the most broadly utilized psychometrics is the Big Five inventory, even though its validity is
controversial (Block, 1995). The five-factory theory of personality (later named Big Five) identifies five
personality traits, namely openness to experiences, conscientiousness, extraversion, agreeableness and
neuroticism (McCrae and Costa Jr., 1999; Goldberg, 1981). This Big Five inventory was utilized by
Tighe and Chegn (2018) for analyzing these five traits of Filipino speakers.

Some studies perform natural language processing (NLP) for investigating personality traits. Lynn
et al. (2020) utilized an attention mechanism for deciding upon important parts of an instance when
assigning the five-factor inventory classes. The Myers-Briggs Type Indicator (MBTI) is a broadly utilized
adaption of the Big Five inventory, which Yamada et al. (2019) employed for asserting the personality
traits within tweets.4

The research field of psychology has moved further towards automated language assertions during the
past years. One standard methodology is the utilization of the tool linguistic inquiry and word count
(LIWC), developed by Pennebaker et al. (1999). The German version of LIWC was developed by Wolf
et al. (2008). It includes 96 target classes, some of which are rather simple linguistic features (word
count, words longer than six characters, frequency of punctuation), and psychological categories such
as anxiety, familiarity, or occupation. Even though the tool appears rather simple from an NLP point
of view, it has a long tradition to be utilized for content research in the field of behavioral psychology.
Studies utilizing LIWC have shown that function words are valid predictors for long-term developments
such as academic success (Pennebaker et al., 2014). Furthermore, it has been shown that LIWC corre-
lates with the Big Five inventory (McCrae and Costa Jr., 1999). Importantly, the writing style of people
can be considered a trait, as it has shown high stability over time, which means that it is not dependent on

3https://developer.twitter.com/en/docs/labs/sampled-stream/overview
4A Tweet is a short message from the social network microblogging service Twitter (https://www.twitter.com/)

and consists of up to 240 characters.
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one’s current mood, the time of day, or other external conditions (Pennebaker and King, 2000). Hogen-
raad (2003) utilized an implicit motive (see Section 3) dictionary approach to automatically determine
risks of war outbreaks from different novels and historic documents, identifying widening gaps between
the so-called power motive and affiliation motive in near-war situations.

Overall, the work on automated classification of implicit motive data or the use of NLP for the as-
sertion of psychological traits in general is rather sparse or relies on rather outdated methods, as this
application domain can be considered a niche (Schultheiss and Brunstein, 2010; Johannßen and Bie-
mann, 2019; Johannßen and Biemann, 2018; Johannßen et al., 2019). One recent event in this area was
the GermEval 2020 Task 1 on the Classification and Regression of Cognitive and Motivational Style
from Text (Johannßen et al., 2020). The best participating team reached a macro f1 score of 70.40 on the
task of classifying implicit motives combined with self-regulating levels, resulting in 30 target classes.
However, behavioral outcomes from automatically classified implicit motives have – to our knowledge –
not yet been researched.

3 Implicit Motives and Self-regulatory Levels

Implicit motives can reveal intrinsic, unconscious human desires, and thus avoid social desirability bi-
ases, which usually are present when utilizing direct questionnaires. They originated from the Thematic
Apperception Test (TAT) by Murry et al (1943). Participants are confronted with ambiguous images
of multiple people that interact with each other as displayed in Figure 1, and are asked to answer four
questions: i) who is the main person, ii) what does that person feel? iii) why does the person feel that
way, and iv) how does the story end? From these questions, trained psychologists can assign one of five
motives: affiliation (A), freedom (F), achievement (L), power (M), and zero (0). The psychologists fol-
low some rules, one being the so-called primacy rule, where the very first identifiable motive determines
the whole instance, despite what follows (Scheffer and Kuhl, 2013). These motives have shown to be
behavioral predictors and allow for long-term statements of e.g. group dynamics or success (McClelland
and Boyatzis, 1982; Schultheiss and Brunstein, 2010). Implicit motives have been broadly utilized in
the 1980s but at the cost of laborsome manual annotating processes. It takes about 20 hours of training
for an annotator to encode one of the implicit motives. Skilled human annotators take up to 50 hours
per 100 participants. This costly annotating process has hampered this once-promising psychometric
(Schultheiss and Brunstein, 2010, p. 140).

Whilst the classification performance of implicit motive models have been explored and achieved high
results (e.g. (Johannßen and Biemann, 2019; Johannßen et al., 2020)), behavioral consequences and mass
phenomena from automated labeled textual instances have barely been researched.

In addition to the implicit motives, the data set from the GermEval20 Task 1 comes with so-called
levels per textual instance. The levels were developed by Kuhl (2001). They describe the self-regulatory
enactment in five dimensions. According to Scheffer and Kuhl (2013) the 1st level is the ability to
self-regulate a positive affect, the 2nd is the sensitivity for positive incentives, the 3rd self-regulates a
negative affect, the 4th is the sensitivity for negative incentives and the 5th level describes the passive
coping with fears. In other words, these levels help to identify the type of the participant’s emotional
response according to the identified implicit motive.

As with many psychometrics, the reliability of implicit motives, and especially their predecessor (the
TAT) is controversial. One main point of criticism is that implicit motives do not correlate significantly
with so-called explicit motives. Whilst implicit motives try to measure intrinsic desires indirectly by ask-
ing participants associative questions, explicit motives try to measure desires via direct questionnaires.
In psychology, reliability means, that personality traits revealed by one measure may not conflict with
personality traits measured by other, well-established measures. Since the measured desires of implicit
and explicit motives generally do not match, the reliability of implicit motives is said to be weak.

Schultheiss et al. (2010) explain this lack of reliability and correlation with the fact that explicit im-
plicit motives are by definition of different measurements that can not be directly compared. Whilst
implicit motives measure intrinsic desires that are subconscious, explicit motives are more influenced
by a social expectation bias (i.e. what do participants think is a socially sound and accepted answer to a
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question) and thus are closer connected to behaviorism. Nonetheless, reliability in psychological research
demands different observable results of metrics to be coherent (Reuman, 1982) when the descriptions of
what a psychometric is supposed to measure matches (i.e. desires).

Another point of criticism is the way the TAT images are selected. They emerge from an empiri-
cal study, where participants are shown different images. Only when past frequencies of motives are
achieved with an image, this image gets added to the available testing stock. With this, however, the very
first selected implicit motive images could not have been validated. Nowadays, many scholars argue that
the amounts of positive evidence legitimize this methodology, but it has yet to be resolved (Hibbard,
2003).

Figure 1: Exemplary image to be interpreted by participants utilized for the operant motive test (OMT).
Identifiable motives are the affiliation motive (A), the power motive (M), achievement (L), and freedom
(F). A 0 represents the unassigned motive (Kuhl and Scheffer, 1999).

The transition from natural language to intrinsic desires and motivation is not trivial, as humans do
not express intrinsic and unconscious desires unfiltered and directly. As soon as a direct questionnaire
is involved, social desirability biases (i.e. thoughts of publicly expected answers) alter an uninfluenced
introspection (Brunstein, 2008). Such direct questionnaires are called explicit methods, in contrast to
implicit methods, such as e.g. the TAT and subsequent tests produced by image descriptions.

4 Social Unrest Predictors

Times of severe social unrest are reflected by distinct patterns of implicit motives and linguistic features.
Winter (2007) surveyed multiple prior studies, identifying three main predictors: responsibility, activity
inhibition, and integrative complexity, displayed in Table 1. In this study, the author identified and
analyzed 8 occurrences of crises and social unrest by examining influential political speeches of this
time. Thereafter, the outcomes of these crises – whether they ended peacefully or in conflict – were
projected on indicators from earlier research.

Winter and Barenbaum (1985) found that the power motive (M) has a moderating effect of respon-
sibility. In other words, responsibility determines, how vast amounts of power motivated expressions
are behaviorally enacted. If a high responsibility score is measurable, power motivated individuals act
pro-social. On the contrary, if the responsibility score is low, aggression and lack of leadership are to be
expected.

Activity inhibition is reflected, according to by McClelland et al. (1972) as the frequency of “not”
and “-n’t” contradictions in TAT or other verbal texts. Activity inhibition functions as motivational
and emotional regulation. The authors identified a negative correlation between activity inhibition and
male alcohol consumption. Combined with a high power motive (M) and low affiliation motive (A),
subsequent research by McClelland and his colleagues revealed a so-called leadership motive pattern
(LMP) (McClelland and Boyatzis, 1982; McClelland, 1988). The higher this LMP, the more responsible
leaders act. As for integrative complexity it was observed, that the lower the frequency of utterances in
accordance to the 7-point score was (see Table 1), the more likely escalations became.
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Category Measure Example or Explaination

Responsibility
i) moral standards observable, if people, actions, or

things are described with either
morality or legality

’she wants to do the right thing’

ii) obligation means, that a character in a story
is obliged to act because of a rule
or regulation

’he broke a rule’

iii) concern for others emerges, when a character helps
or intends to help others or when
sympathy is shown or thought

’the boss will understand the
problem and will give the
worker a raise’

iv) concerns about conse-
quences

can be identified when a char-
acter is anxious or reflects upon
negative outcomes

’the captain is hesitant to let the
man on board, because of his in-
structions’

v) self-judgment scores when a character criti-
cally judges his or her value,
morals, wisdom, self-control,
etc. and has to be intrinsic

’the young man realizes he has
done wrong’

Activity inhibition
linguistic negation in English terms, the authors de-

scribe activity inhibition as the
frequency of “not” and “-n’t”

responsibility measure, e.g. a
variable negatively correlated
with male alcohol consumption

leadership motive pattern
(LMP)

combined with a high power mo-
tive (M) and low affiliation mo-
tive (A)

predicts responsible leadership
power behaviors instead of prof-
ligate impulsive expressions of
power

Integrative complexity
7-point continuum
range score from
simplicity to
differentiation
and integration

1: no sign of conceptual and dif-
ferentiation or integration can be
observed

only one solution is considered
to be legitimate

7: overreaching viewpoints are expressed, in-
volving different relationships
between alternate perspectives

Table 1: According to Winter (2007), some distinct psychometrics and their combinations predict social
unrest – namely responsibility, activity inhibition, and integrative complexity. The table shows their cat-
egories, measurements and offer examples or explanations. Responsibility is measured with a dedicated
TAT, activity inhibition (AI) and integrative complexity is determined via content analysis. Especially
the combination of low responsibility, high activity inhibition and little integrative complexity (e.g. high
frequency of the power motive combined with the self-regulatory 4th level) predict situations of social
unrest with negative escalatory outcomes.

5 Training and experimental data

For testing the proposed hypothesis (Section 1), we first train a classification model and utilize this model
for testing social network textual data. In this section, we will describe the two different data sources for
training and the experiments.
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5.1 Model Training Data

The data utilized for training models were made available by the organizers of the GermEval-2020 Task 1
on the Classification and Regression of Cognitive and Motivational Style from Text.56 (Johannßen et al.,
2020) The training set consists of 167,200 unique answers, given by 14,600 participants of the OMT (see
Section 3. The training data set is imbalanced. The power motive (M) is the most frequent class, covering
41.02% of data points. The second most frequent class, achievement (L) only accounts for 19.63% and
thus is half as frequent as M. The training data was assembled and annotated by the University of Trier,
reaching a pairwise annotator intraclass correlation of r = .85. With only 22 words on average per training
instance (i.e. a participant’s answer) and a standard deviation of 12 words, training a classifier on this
data is a short text classification task (Johannßen et al., 2020).7

5.2 Experimental Data

The experimental data was collected before this work by crawling the Twitter API and fetching 1 percent
of the worldwide traffic of this social network (Gerlitz and Rieder, 2013). We sample posts over the
time window from March to May of both, 2019 and 2020. There are no apparent linguistic differences
between the two samples. The average word count, part-of-speech (POS) tags, sentence length, etc. are
comparable.

Thereafter, we extracted the text and date time fields of posts marked as German. From those files
hashtags, name references (starting with ’@’), corrupted lines, and any post shorter than three content
words were removed. The resulting files for 2019 and 2020 contained more than 1 million instances.
Lastly, the instances were randomly shuffled. We drew and persisted 5,000 instances per year for the
experiments, as this data set size is large enough for producing statistically significant results. The posts
on average consist of 11.97 (2019) and 11.8 (2020) words per sentence, and thus are very short. During
the experiments, further pre-processing steps were undertaken, which are described in Section 6. By
stretching out the data collection time window and by comparing the same periods in two subsequent
years, we aim to reduce any bias effect that might impact Twitter user behavior over short periods,
e.g. the weather, any sports event, or short-lived political affairs.

6 Methodology for Implicit Motive Classification Social Unrest Prediction

For constructing a model of sufficient quality to test our hypothesis, we follow Johannßen and Bie-
mann (2019) and train a long short-term memory network (LSTM, (Hochreiter and Schmidhuber, 1997))
combined with an attention mechanism.

An LSTM is a special type of recurrent neural network (RNN). An RNN not only has connections
between units from layer to layer but also between units of the same layer. Furthermore an LSTM also
has a mechanism called the forget gate, allowing the structure to determine which to keep and which
information to forget during the training process. The attention mechanism (Young et al., 2018) can cap-
ture the intermediate importance of algorithmic decisions made by the network. It can be employed for
enhanced results but also investigated for researching algorithmic decisions. However, it is debated upon,
whether this algorithmic importance can serve as an explanation. Even though oftentimes, the algorith-
mic importance is correlated with an explanation for the task (i.e. does a model for image recognition
of animals look at the animals or the backgrounds of the images?), there are cases, where algorithmic
importance and explanation for the task differ (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019)).
Since automatically labeling implicit motives is a sequential problem revolving around identifying the
first verbal enactment of a motive (see Section 3, we decided to employ a Bi-LSTM with an attention
mechanism (Schuster and Paliwal, 1997).

5GermEval is a series of shared task evaluation campaigns that focus on Natural Language Processing for the German
language.

6https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2020-
cognitive-motive.html

7The data can be retrieved via https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/
germeval-2020-cognitive-motive.html
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We decided against additional features such as part of speech (POS) tags or LIWC features like in
our previous work (Johannßen and Biemann, 2019), as we did not reach the best results with these
additional features. The maximum token length was set to 20, as determined by preliminary experiments
(Johannßen and Biemann, 2019), and reflects the primacy rule of the implicit motive theory described in
Section 3. The average answer length of the training data set was 22 tokens (see Section 5). With this
decision to limit the considered tokens, we aim to closely replicate the implicit motive coding practices
manually performed by trained psychologists (Kuhl and Scheffer, 1999). Accordingly, it is preferable to
assign the 0 motive (i.e. no clear motive could be identified) than to falsely assign a motive that is not the
very first one in the sequence.

Some standard pre-processing steps were applied to reduce noise, which was to remove the Natural
Language Toolkit (NLTK) German corpus stop words8, to lowercase the text, remove numbers, normalize
special German letters (i.e. umlaute). Emojis were removed as well, since Twitter offers a selection of
a 3,348 emojis9 , that in turn mainly do not capture sufficient informational gain per textual answer for
the task at hand. To remove stop words has to be an informed choice when it comes to performing
NLP on psychological textual data. For example, function words are said to predict academic success
(see Section 2). However, during our experiments, we saw an increase in model performance when stop
words were removed.

After the training, we utilize the model on the two sampled data sets described in Subsection 5.2. Ac-
cording to our hypothesis in Section 1 and following the theories in Section 4, investigate the frequency
of the power motive with the self-regulatory level 4, which we expect to be higher. At the same time, we
will also analyze the other motives and levels to see which ones are now less frequent and to what extent.
Furthermore, we compare different linguistic features and statistics from 2019 to 2020 to see, if any of
these show differences that might indicate possible biases in the data.

Our Bi-LSTM model was set to be trained within 3 epochs and with a batch size of 32 instances. The
model was constructed having 3 hidden layers and utilized pre-trained fasttext embeddings (Bojanowski
et al., 2017), as this character-based or word fragment-based language representation has shown to be
less prone to noisy data and words that have not been observed yet like e.g. spelling mistakes or slang
– both often observable in social media data. The fasttext embeddings had 300 dimensions and were
trained on a Twitter corpus, ideally matching the task at hand.10 Explorative experiments with different
parameter combinations have shown that a drop-out rate of .3 and step width of .001 produced good
results.

The cross-entropy loss was reduced rather quickly and oscillated at 1.1 when we stopped training
early during the second epoch. After each epoch, the model was evaluated on a separate development
test. After the training was finished, the model was tested once on the GermEval20 Task 1 test data and
with the official evaluation script. This provides the chance to compare the achieved results with the
best-participating team. Schütze et al. (2020) achieved a macro f1 score of 70.40, which our Bi-LSTM
model was able to outperform with an f1 score of 74.08, setting a new state of the art on this dataset.

7 Results

After having trained the Bi-LSTM model and sampled the experimental data, we will describe the results
and findings of the conducted Twitter COVID-19 experiments in this section. An overview of all results
is displayed in Table 2.

To investigate the main predictor for social unrest activity inhibition (see Section 4), the power motive
(M) in combination with level 4 was counted. The self-regulatory level 4 describes the sensitivity for
negative incentives (see Section 3). These measures are collected for all four data sets. Our Bi-LSTM
model assigned power 4 in 33.76% of all cases for the Twitter sample from March to May of 2019,
making this the most frequent label. However, for the data sample from 2020, power 4 is as frequent as

8The Natural Language Toolkit (NLTK) is a collection of python libraries for NLP https://www.nltk.org/.
9https://emojipedia.org/twitter/twemoji-13.0.1/

10The fasttext model was obtained from Spinningbytes at http://spinningbytes.ch/resources/
wordembeddings
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Metric 2019 2020 Percentage delta Significance

Activity inhibition and responsibility
Power 4 33.76 37.40 10.97 p<.01***

LIWC Family .08 .05 -37.60 p<.05*
LIWC insight .23 .17 -26.09 p<.05*

Implicit motives
Power motive 65.84 68.24 3.64 p<.01***

Freedom motive 20.28 17.72 -12.63 p<.01***
Achievement motive 6.80 7.00 2.94 p>.05

Affiliation motive 2.00 1.86 -7.00 p>.05
Null motive 5.10 5.10 .00 p>.05

Self-regulatory levels
Level 1 6.50 6.01 -7.54 p>.05
Level 2 2.76 3.26 18.12 p>.05
Level 3 27.20 25.58 -5.96 p<.01***
Level 4 42.78 45.20 5.67 p<.01***
Level 5 15.86 14.92 -5.93 p<.05*

Linguistic statistics
Average words 11.97 11.80 -1.42 p>.05

Verbs 1.19 1.22 2.52 p>.05
Adjectives .43 .43 .00 p>.05

Words >6 letters 38.65 38.86 .54 p>.05

Table 2: Overview of the different psychometric and statistical results. * represents significant results,
*** represents highly significant results. All combinations of motives and levels have been examined.
Note that most motives, levels, and statistical values stay constant. However, power 4 is more frequent,
whilst the freedom motive is less. As the linguistic statistic metrics stay relatively stable, this indicates
no observable sampling bias.

37.4%, making this an increase of 10.97%. For calculating the significance of this rise, we perform a
t-test on the label confidences for the power motive with self-regulatory level 4 for both, 2019 and 2020
with the 5,000 samples from each year (see Section 5).

The two-sample t-test on the confidence levels shows, that the rise in frequency is statistically signifi-
cant (p < 0.05 with x̄1 = .27, x̄2 = .29, σ1 = .28, σ2 = .28, N1 = 5,000 and N2 = 5,000).

The affiliation motive (A) is barely classified, covering only 2% (2019) and 1.89% (2020) of all in-
stances. The slight decrease is not statistically significant (p > .05). The frequency of self-regulatory
level 4 is elevated by 6.7%. The whole of all assigned power motive labels has only risen by 3.64%, both
having risen less than the combination of the power motive and level 4 combined. The strongest decline
in frequency can be measured for the freedom motive with -12.63%. The other motives of affiliation,
achievement, and null have barely changed in comparison to 2019 with 2020. The same holds for the
average amounts of words per sentence, verbs, adjectives, and words containing at least 6 letters, all
of which have barely changed, not indicating sampling biases. An overview of the class frequencies is
provided in Table 3.

Since both, responsibility and integrative complexity can only be measured by employing a specific
TAT and a questionnaire, which would have to be performed with each Twitter user, we can only investi-
gate activity inhibition as a combination of the power motive with the self-regulatory level 4. However,
we will review some psychological LIWC categories, that follow a close description as the five categories
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Implicit motive Frequency Self-regulatory level Frequency

2019
Power 3,251 1 492

Affiliation 141 2 193
Achievement 414 3 1,487

Freedom 9622 4 1,872
Zero 232 5 724

0 232

2020
Power 3,433 1 316

Affiliation 90 2 151
Achievement 203 3 1,259

Freedom 923 4 2,233
Zero 761 5 780

0 261

Table 3: Overview of the class frequencies.

of Winter’s responsibility scoring system (Winter and Barenbaum, 1985). Relevant LIWC categories for
the responsibility is the combination of family, which are terms connected to expressions like ’son’ or
’brother’, and insight, which contain expressions such as ’think’ or ’know’, representing self-aware intro-
spection. Family shows a significant decrease from 2019 (0.08) to 2020 (0.05) of -37.5%. The frequency
of insight terms fell from 2019 (.23) to 2020 (.17) by -26%, all of which are statistically significant
changes (p < 0.05 for both categories).

8 Discussion

We hypothesized that the social unrest predictors by Winter (2007), namely activity inhibition, respon-
sibility, and integrative complexity are automatable and reveal changes in natural language and signs
of social unrest observable through the use of social media textual data connected to the COVID-19
pandemic.

The main research objective of this work is to find novel approaches to automatically provide the
community with red flags for growing tensions and signs of social unrest via social media textual data.
For this, activity inhibition is the main predictor. It consists of a distinct shift in implicit motives. It is
present when the frequency of the power motive with the self-regulating level 4 (sensitivity for negative
incentives, see Section 3) is elevated and the affiliation motive is suppressed – even though Winter (2007)
did not find clear evidence of the latter. The comparable rise by 10.97% (p < 0.01) is an indicator of the
social tension of COVID-19 related social media posts.

Since other linguistic statistics, such as the average amounts of adjectives, verbs, words per sentence,
or words containing at least 6 letters have barely changed, this indicates that the measurable differences
in social unrest predictors are content-based and not due to linguistic biases.

It is remarkable, that whilst the power motive has been labeled more frequently, the frequency of the
labeled freedom motive has declined by -12.63% from 2019 to 2020. This freedom motive has barely
been researched yet but has a close connection to the power motive. Whilst power-motivated individuals
desire control over their fellow humans and their direct surrounding for the sake of control, freedom-
motivated individuals seek to express themselves and want to avoid any restraining factors. Motives
are said to be rather stable but can change over time (Schultheiss and Brunstein, 2010). This change in
motive direction could indicate a roughening of verbal textual content and interpersonal communication.
Example utterances classified as freedom and power from 2019 compared with 2020 are displayed in
Table 4.

The change of responsibility, as reflected in LIWC categories, retreated by roughly 30% from 2019
to 2020. This responsibility indicates a personal involvement in topics and decisions, that we feel are
relevant for our surroundings. If this involvement diminishes, our interest in participating in constructive
solutions to problems does as well.
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M ’RT @FrauLavendel: ist es wahr
dass schulleitungen den
schüler*innen drohen

F RT @UteWeber: Nach einem relativ
unfeierlichen,
regionalen Offline-Tag aufs Sofa
sinken, wie von der Tarantel
gestochen aufspringen und zur...

A Weltbestseller "P.S. Ich liebe
dich" bekommt einen zweiten Teil
https://t.co/9Ifl5CrNAP
------- Translation -----

M ’RT @FrauLavendel: is it true that
principals threatens students

F RT @UteWeber: after a relatively
un-celebrational, regional offline
day, as bitten by a tarantula
jumping up

A world best-selling book "P.S. Ich
liebe dich" gets a second part
https://t.co/9Ifl5CrNAP

M Corona-Regeln im Saarland sind zum
Teil absurd und unverhältnismäßig

F RT @kattascha: In den USA bekommen
viele Menschen keine Lohnfortzahlung
im Krankheitsfall. Das bedeutet:
Selbst bei Verdacht auf #COVID19 w...

A Wer einen Discord-Server sucht,
um entspannt mit seinen Kollegen
zu zocken oder gemeinsam abzuhängen
ist hier genau...

------- Translation -----
M the Corona rules for the Saarland
are partially absurd and dis-
proportionate

F RT @kattascha: in the US a lot
of people don’t receive continued
pay in case of illness. That means:
even in case of suspected #COVID19

A Whoever is looking for a Discord
server for enjoyably game with
their colleagues or chill together,
is in the right place...

Table 4: Some example tweets from 2019 (left) compared with 2020 (right). Whilst the power motive
(M) is more frequent in 2020, the freedom motive (F) became less frequent. The affiliation motive (A)
was very infrequent in both, 2019 and 2020. This signature indicates increased social unrest in 2020 in
comparison with 2019.

9 Conclusion and Outlook

With this work, we conducted a first attempt at automating psychometrics for investigating social unrest
in social media textual data. The Bi-LSTM model combined with an attention mechanism of this work
achieved an f1 score of 74.08 on 30 target classes, making it state of the art on a respective recent shared
task dataset. With this model, we measured a statistically significant rise in the power motive with self-
regulating level 4, which reflects the social unrest predictor of activity inhibition in the direct comparison
of the samples from March to May of 2019 vs. 2020.

Furthermore, we investigated responsibility, which shows significant reductions during the COVID-19
pandemic, hinting at negative outcomes of interpersonal and verbal communication on the social media
platform Twitter.

This first approach most likely does not qualify for a real-world social prediction system. Predictions
of such a system can not yet be reliable enough for deriving necessary actions from them. On the upside,
implicit motives do not only qualify for examining general socio-economic tensions, but can be applied
on an individual or small group scale. As an example, detecting tensions within a small group can help
to shape the group and guiding it into a better fit. Furthermore, we advocate for combining implicit
motives with sufficiently many complementary psychometrics and content-based analysis e.g. sentiment
analysis, topic modeling, or emotion detection.

Besides those combinations with other information sources for future work, different sampling ap-
proaches and larger data set sizes should be utilized for reproducing findings and research correlations
with other social unrest predictors and indicators. In this work, we have made the first steps towards
understanding the automation of psychological findings. Since only 5,000 samples were drawn from a
single social network platform, we advocate for broadening this approach to include many more samples
from wider time windows paired with mixing the data sources. In addition to that, deeper investigations
into the linguistic variances between times of so-called social unrest and more peaceful times should be
performed, as those could reveal patterns and characteristics of time-specific utterances.

Even though this work is only introductory, the observed correlations and social unrest patterns are in
line with an intuitive assumption of how language in social media data changes amid a pandemic. Future
work arises in the application of this methodology on other events and crises, eventually providing a
quantitative basis for implicit motive research.
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