
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 109–114
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

109

Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets
 Abeer Abuzayed Tamer Elsayed
 Islamic University of Gaza Qatar University
 Gaza, Palestine Doha, Qatar
 aabuzayed1@students.iugaza.edu.ps telsayed@qu.edu.qa

Abstract
As the use of social media platforms increases extensively to freely communicate and share opinions, hate speech becomes an
outstanding problem that requires urgent attention. This paper focuses on the problem of detecting hate speech in Arabic tweets. To
tackle the problem efficiently, we adopt a “quick and simple” approach by which we investigate the effectiveness of 15 classical (e.g.,
SVM) and neural (e.g., CNN) learning models, while exploring two different term representations. Our experiments on 8k labelled
dataset show that the best neural learning models outperform the classical ones, while distributed term representation is more effective
than statistical bag-of-words representation. Overall, our best classifier (that combines both CNN and RNN in a joint architecture)
achieved 0.73 macro-F1 score on the dev set, which significantly outperforms the majority-class baseline that achieves 0.49, proving
the effectiveness of our “quick and simple” approach.

Keywords: Offensive language, Twitter, Text classification, Learning models, Neural models, Distributed term representation.

1. Introduction
Twitter is a place where 330 million users (in 2019) from 1

every background, race, religion, and nationality interact
and communicate, and freely share their ideas, opinions,
and beliefs. This makes Twitter easy to exploit in sharing
content that targets and threatens individuals or groups
based on their common characteristics or identities by
spreading hate speech. According to Twitter hateful
conduct policy , hate speech is to "attack or threaten other 2

people on the basis of race, ethnicity, national origin,
caste, sexual orientation, gender, gender identity, religious
affiliation, age, disability, or serious disease", such as the
tweet: الیهود“ منبع یا ارهابیین یا خوارج ”یا (O Kharijites,
terrorists, the source of the Jews). Twitter encourages
users to report any kind of hate speech that violates the
hateful conduct policy, so that an action can be made such
as suspending the user or deleting the tweet. Despite the
considerable effort that social media sites are making in
trying to curb hate speech, it is still threatening the online
communities and users are still seeing it on many
platforms. As hate speech might result in serious physical
or mental abuse, there is an imperative need to detect and
prevent such content on social media platforms.

Several researchers studied hate speech in the social
media domain and proposed various approaches to detect
it with more focus on English language, e.g., Malmasi and
Zampieri (2018), Watanabe et al. (2018), Zhang and Luo
(2018), and Zhang et al. (2018). However, detecting hate
speech in Arabic content is still nascent. The richness and
complexity of the nature and structure of the Arabic
language, the variety of dialects, and the problems at
orthographic, morphological, and syntactic levels make
detecting hate speech in Arabic very challenging.

In this work, we conduct a preliminary study on the
detection of hate speech in Arabic tweets as part of our
participation in the Hate Speech Detection subtask in
OSACT4 workshop (Mubarak et al., 2020). Given the 3

tight time we had for participation , we aim to tackle the 4

1 https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

2 https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy

3 http://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/

4 We only had 3 days before the submission deadline.

classification problem in a simple, quick, yet effective
approach. We elect to use “simple” features that are not
problem-specific but easy to compute or use, while
leveraging the richness, maturity, and strong support for
“quick” development that current popular machine
learning frameworks (e.g., Keras) provide. Adopting this
quick and simple approach for developing our
classification system for hate speech detection, we
investigate the performance of several learning models
and aim to answer two research questions in the context of
this problem:
RQ1. Is distributed (latent) word representation (e.g.,
Word2Vec embeddings) more effective than standard
statistical bag-of-words representation (e.g., tf-idf)?
RQ2. Are neural models more effective than classical
machine learning models?

To answer both questions, we conducted experiments
over seven classical and eight neural learning models
using the labelled dataset of 8,000 tweets, provided by the
shared task organizers, and submitted two runs on the test
set. Our results show that, surprisingly, the bag-of-words
tf-idf representation is more effective than distributed
word embeddings representation; however the best neural
models outperform classical models. Overall, our best
classifier achieved a reasonable 0.73 macro-F1 score on
the dev set, which significantly outperforms the
majority-class baseline that achieves 0.49, proving the
effectiveness of our quick and simple approach.

Our contribution in this work is two-fold:
1. We conducted a preliminary study investigating

the performance of 15 different classical and
neural learning models for detecting hate speech
in Arabic tweets.

2. We demonstrated a simple and quick approach of
developing a system that is implemented in less
than 3 days to tackle the problem, yet achieved
reasonable performance. We make all of our
code open-source for the research community . 5

The paper is organized as follows. Section 2 describes
related work. Section 3 outlines our approach in tackling
the problem. Section 4 presents our experimental

5 https://github.com/AbeerAbuZayed/QUIUG_Hate-Speech-Detection_OSACT4-Workshop

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
http://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/
https://github.com/AbeerAbuZayed/QUIUG_Hate-Speech-Detection_OSACT4-Workshop

110

evaluation results. Section 5 concludes our work with
potential future work.

2. Related Work
As mentioned earlier, there are several research studies
conducted to study hate speech in online communities
over English content. Mondal et al. (2017) conducted a
study in online social media to understand how social
media platforms are rich with hate speech and to
investigate the most popular hate expressions and the
main targets of online hate speech. Malmasi and Zampieri
(2018) aimed to distinguish hate speech from general
profanity using a dataset annotated as “hate, offensive,
and ok”, with advanced ensemble classifiers and stacked
generalization along with various features such as
n-grams, skip-grams, and clustering-based word
representations. Additionally, Watanabe et al. (2018)
classify tweets based on three labels (clean, offensive and
hateful) using sentiment-based features, semantic features,
unigram features, and pattern features. Zhang and Luo
(2018) and Zhang et al. (2018) also conducted studies on
Twitter hate speech for the English language.

Other researchers focused on detecting offensive
language over Arabic content, where a number of studies
were conducted to detect offensive and abusive language
for Arabic Tweets and for YouTube comments (Mubarak
and Darwish, 2019; Alakrot et al., 2018; Mohaouchane et
al., 2018; Mubarak et al., 2017). However, hate speech is
different from offensive and abusive language (Malmasi
and Zampieri, 2018). Also, Zhang and Luo (2018) argue
the same point and pointed out that the term “hate speech”
might be overlapping with other terms such as
“offensive”, “profane” and “abusive”. In order to
distinguish them, they defined hate speech as “targeting
individuals or groups on the basis of their characteristics
and demonstrating a clear intention to incite harm, or to
promote hatred and this speech may or may not use
offensive or profane words”.

Consequently, hate speech should be distinguished
from other offensive and profane languages. Thus, other
studies focus only on hate speech detection. Albadi et al.
(2018) developed a system to detect religious hate speech
in Arabic tweets. They used three various approaches to
tackle this problem. Firstly, they constructed an Arabic
lexicon of religious hate speech and used it to classify
tweets to “hate” if the tweet terms exist in the lexicon,
otherwise it is labelled as “not hate”. Secondly, they
trained Logistic Regression and SVM classifiers using
n-gram models. Finally, a GRU model with the
pre-trained embedding model AraVec (Twitter-CBOW
300D architecture) showing 0.77 F1 score was adopted.

Moreover, Chowdhury et al. (2019) studied religious
hate speech in Arabic tweets too, where they argued that
considering the community interactions can raise the
ability to detect hate speech content on social media. To
investigate this, Arabic word embedding (AraVec,
Twitter-CBOW 300D architecture), social network
graphs, and neural networks (e.g., RNN+CNN) were used.
They pointed out that considering community interactions
significantly improves the result and outperforms Albadi
et al. (2018) performance, where the combination of
social network graphs and joint LSTM and CNN model
achieved 0.78 F1 score.

Furthermore, there are studies on hate speech detection
in multilingual tweets including Arabic. Ousidhoum et al.
(2019) used the bag of words (BOW) as features with
Logistic Regression (LR) and deep learning models to
detect hate speech in multilingual tweets. Smedt et al.
(2018) conducted an experiment to detect online Jihadist
hate speech in multilingual tweets, where SVM was used
to classify tweets.

In this study, we focus on detecting hate speech in
Arabic tweets using several classical and neural learning
models with tf-idf and word embeddings features. We
adopt a quick and simple approach of developing our
classifiers and conducting our experiments, focusing on
unigram representations that are problem-independent,
while leveraging the power and ease-of-use of existing
learning frameworks.

3. Approach
We approach hate speech detection as a supervised
learning problem. In our study, we experimented with
several classical and neural learning models trained for
detecting Arabic hate speech on Twitter. We adopted
basic text preprocessing and two main feature extraction
techniques for comparison.

3.1 Preprocessing
To prepare our dataset for the feature extraction process,
basic text preprocessing is done as follows:

● Punctuations, foreign characters and numbers
(including user mentions and URLs), and
diacritics (tashdid, fatha, tanwin fath, damma,
tanwin damm, kasra, tanwin kasr, sukun, and
tatwil/kashida) are all removed. We also
removed repeated characters.

● The remaining Arabic text is normalized. Letters
are normalized as follows:

● {"ا" to "إأآا"}
● {"ى" to "ي"}
● {"ء" to "ؤ"}
● {"ء" to "ئ"}
● {"ه" to "ة"}
● {" ك" to "گ"}

While some normalization has been done through
building the pre-trained word embedding model
(AraVec2.0) used in our experiment, we augmented it
with additional steps.

3.2 Feature Extraction
We adopted two main simple and problem-independent
feature extraction techniques: tf-idf and word embeddings.

Firstly, tf-idf term weight (term frequency-inverse
document frequency) indicates how relevant a term is to a
document in a collection of documents. In our
experiments, tf-idf weights are only used with the
classical machine learning algorithms in order to compare
against using word embeddings as features.

Secondly, word embeddings are the most popular
distributed representation of words (or terms). Each word
in the vocabulary is represented as a vector of a few
hundred dimensions, where words that have the same

111

meaning are closer to each other, while the words with
different meanings are far apart. This is done by learning
the vector representation of the words through the
contexts in which they appear. One of the popular
techniques for efficiently learning a standalone word
embedding from a text corpus is Word2Vec (Mikolov et
al., 2013). There are two different learning models to
learn the embeddings, Skip Gram and Continuous Bag of
Words (CBOW). The CBOW model learns the
embeddings by predicting the current word using the
context as an input, while the continuous skip-gram takes
the current word as input and learns the embeddings by
predicting the surrounding words (Mikolov et al., 2013).

In our experiments, we used the pre-trained Arabic
word embedding model AraVec2.0 (Soliman et al., 2017),
which provides various pre-trained Arabic word
embedding model architectures; each is trained on one of
three different datasets: tweets, Web pages, and Wikipedia
Arabic articles. Moreover, for each dataset, two models
are built: one using Skip Gram and another using CBOW.
For the purpose of this study, we used the pre-trained
SkipGram 300D-embeddings trained on more than 77M
tweets, since we work on tweets. We used the pre-trained
model in both classical and neural learning approaches.
To use it with classical learning algorithms, the average
vector of all the embeddings of the tweet words is
computed and used as the feature vector of the tweet.
However, for the neural learning models, the embedding
vectors are used to initialize the weights of the embedding
layer, which is then connected to the rest of the layers in
the network.

3.3 Models
This section describes the classical and neural learning
models used in our experiments.

3.3.1 Classical Learning Models
We experimented with various classical machine learning
models, namely SVM, Random Forest, XGBoost, Extra
Trees, Decision Trees, Gradient Boosting, and Logistic
Regression. These models are trained along with both
types of features we described earlier, tf-idf and
pre-trained word embeddings.

3.3.2 Neural Learning Models
We experimented with two types of neural models,
Recurrent Neural Networks (RNN), and Convolutional
Neural Networks (CNN). We tried different RNN
architectures, namely Long Short-Term Memory (LSTM),
Bidirectional LSTM (BLSTM), and Gated Recurrent Unit
(GRU).

We also tried a combination of both CNN and RNN.
Previous studies showed that the joint CNN and RNN
architecture outperforms CNN or RNN alone in natural
language processing tasks such as sentiment analysis and
text classification tasks (Wang et al., 2016 and Zhou et al.
2015). This combined architecture allows the network to
learn local features from the CNN, and long-term
dependencies, positional relation of features, and global
features from the RNN (Wang et al., 2016). The combined

architecture used in this work consists of one CNN layer
with max-pooling and time distributed layer, followed by
one RNN layer and dropout layer, as shown in the
example joint CNN and LSTM architecture in Figure 1.

Figure 1: Joint CNN and LSTM model architecture.

4. Experimental Evaluation
In this section, we present and analyze the performance of
our trained models. We start with the experimental setup,
followed by the analysis of the two experiments we
conducted to answer the two research questions. Finally,
we discuss the results of our two submitted runs to the
shared task.

4.1 Experimental Setup
For the purpose of this study, we use SemEval 2020
Arabic offensive language dataset (OffensEval 2020,
Subtask B for detecting hate speech) (Mubarak et al.,
2020). The dataset was split into train, dev, and test sets
(70%, 10%, and 20% respectively). There are 7,000
training tweets, only 361 of them (about 5.2%) are
labelled as hate speech. There are 1,000 dev tweets, only
44 of them (4.4%) are labelled as hate speech. This shows
how the two classes in the dataset are clearly unbalanced.

As expected, we used the training set to learn each
model’s parameters and the dev set to tune its

112

hyperparameters. The hyperparameters and their tuned
values are listed in Table 1.

Hyperparameter Value

Number of filters (CNN) 25

Kernel size (CNN) 5

Number of hidden units (RNN) 16

Dropout rate (Regularizer) 0.5

Learning rate (Adam optimizer) 0.001

Table 1: Tuned values of the hyperparameters.

To answer the two research questions we listed in

Section 1, we conducted two main experiments. The first
compares the use of tf-idf vs word embeddings features,
conducted on classical machine learning models. The
second compares classical vs. neural models.

We evaluated the performance of our models using two
measures: macro-averaged F1 (the official shared task
measure) and F1 score on the hate speech (HS) class
(since the target HS class is scarce). All reported results in
this section are on the dev set unless otherwise mentioned.
Notice that the majority-class baseline on the dev set
yields a 0.49 macro-F1 score.

It is worth noting that all of our development and
experiments were performed through Google
Colaboratory using Python and Keras libraries.

4.2 RQ1: tf-idf vs. Word Embeddings
To answer RQ1, we conducted an experiment over the
seven classical models listed in Section 3.3.1 using both
tf-idf and pre-trained word embeddings (AraVec 2.0).

Figures 2 depicts the performance of the models in
each of the two cases measured in macro-averaged F1.
There are several interesting observations. First, we notice
that the performance using tf-idf varies from 0.49 to 0.68,
while using word embeddings it varies from 0.51 to 0.57.
Second, some models (e.g., SVM) exhibited slightly better
performance using word embeddings, however more
models (e.g., Random Forest) exhibited much better
performance using tf-idf. Overall, the best three models
(namely Extra Trees, Random Forest, and Gradient
Boosting, respectively) are all indeed using tf-idf. This is
a surprising result, since tf-idf features neither capture
meaning nor are contextualized; both attributes are (or at
least should be) captured by word embeddings. This
observation definitely needs more investigation.

Figure 3 illustrates the performance of the models in
each of the two cases, but this time measured in F1 over

the positive class. It indicates very similar, but even
stronger, observations. Moreover, it clearly shows that the
task of detecting the HS tweets is, not surprisingly, much
harder than non-HS, achieving an F1 score of 0.39 at best.

Figure 2: Macro F1 of classical learning models.

Figure 3: F1 on HS class of classical learning models.

4.3 RQ2: Classical vs. Neural Models
We now turn our attention to RQ2, which is concerned
with comparing classical and neural models. We
considered the best-performing classical model, i.e., Extra
Trees with tf-idf features, as the baseline, which we
compare against eight neural models:

● The first three are RNN models, namely LSTM,
BLSTM, and GRU.

● The fourth is CNN.
● The next three are combined CNN and RNN

models, one for each RNN type.
● The last one is a combined CNN and LSTM

version that is trained on an oversampled training
data to address the unbalanced data problem,
where some HS (i.e., the minority class)
examples are replicated.

Due to time constraints, we only trained the neural
models using word embeddings. According to the results
of the first experiment in Section 4.2, using tf-idf features
is worth trying too. We defer this to future exploration.

113

Tweet True
label

Predicted
(Extra Trees,
Embeddings)

Predicted
(Extra Trees,

tf- idf)

Predicted
(CNN+LST

M)

 إحنا أتباع إیران یا آل سلول یا نسل الیهود
We are followers of Iran, O family of Salul, descendants of the Jews. HS HS HS HS

 بس یا فاشل یا خاین یا عمیل
Shut up, O loser and traitor! NOT_HS NOT_HS NOT_HS NOT_HS

😂😂 اددددددااا الحصالة خبوا الصداااااارة ف الاهلي یاادیب عمرو یا هنیدي یا
 #للخلف_درر_یا_زمالك

O Hinaidi, O Amr Adeeb, Al-Ahly is taking the lead. #GoBack_Zamalek team.
HS NOT_HS HS NOT_HS

 یا كافر یا زندیق یا مرتد یا انت عاوز یبقى عندنا دیمقراطیة زى الكفرة اللى ما یعرفوش ربنا
O bastard and Godless! You want us to have a democracy like the infidels, who
do not believe in God.

NOT_HS NOT_HS NOT_HS HS

 هههههههههههههههههههههه یا طحلبي یا صغیر جدة یا جاهل شوف بطولات الاتحاد قبل 1417
Hahahahahahaha! You, little kid of Jeddah, you ignorant. Check the Al-Ittihad
[tournaments/ championships] before 1417.

HS NOT_HS NOT_HS HS

Table 2: Examples (from the dev-set) of correct (bolded) and incorrect (underlined) classification using Extra Trees
models with word embeddings and tf- idf and the combined CNN+LSTM neural model.

Figure 4 depicts the performance of all tried neural
models along with the baseline measured in
macro-averaged F1. Similar to the first experiment, we
have several interesting observations. First, the figure
shows that combining CNN and RNN models improved
performance over individual models. Second, the classical
model unexpectedly exhibits a comparable performance to
several neural models. Third, combining CNN and LSTM
exhibited the best performance, outperforming all other
neural models in addition to the baseline classical model.
Finally, oversampling did not help, at least when applied
to the best performing model.

Figure 5 indicates the same exact performance patterns
measured in F1 on the HS class. However, the
performance gap between the best neural model and the
baseline is even widened.

Table 2 shows examples (from the dev-set) of correct
and incorrect classification using both of tf-idf and word
embeddings with Extra Trees classifier and combined
CNN and LSTM neural model. The table shows that the
models made different mistakes.

Figure 4: Macro F1 of neural learning models compared
to the best-performing classical model.

4.4 Submitted Runs
Based on the results above, we chose the combined CNN
and LSTM model in addition to its oversampling version
to submit results on the test set to the shared task. Table 3
shows the results of the two models as reported by the
task organizers, compared to the results on the dev set. As
expected, the performance on the test set is slightly lower
than on the dev set, however the unsampled version still
outperforms the oversampled one.

Figure 5: F1 on HS class of neural learning models
compared to the best-performing classical model.

Model Macro F1
(dev-set)

Macro F1
(test-set)

CNN+LSTM 0.73 0.69

CNN-LSTM (OS) 0.70 0.65

Table 3: Macro F1 scores of submitted models.

5. Conclusion and Future Work
In this paper, we presented a quick and simple approach to
tackle the problem of detecting hate speech in Arabic

114

tweets. Our approach adopts simple problem-independent
features to represent terms in tweets and leverages the
quick development service supported by existing powerful
machine learning libraries. We compared 15 classical and
neural learning models along with two different term
representations (tf-idf and word embeddings). Our
experiments over 8k labelled dataset of Arabic tweets
showed that tf-idf representation is more effective than
word embeddings when used in classical models, and that
the best neural learning model (a joint CNN and LSTM
architecture) outperforms the classical ones. To our
knowledge, this is the first time a combined CNN and
LSTM is used to detect hate speech over Arabic tweets.
The classification performance achieved by this combined
model exhibited a significant improvement over the
majority-class baseline, proving the effectiveness of our
“quick and simple” approach.

For future work, we plan to conduct several
experiments. Firstly, as it shows better performance with
classical learning models, we will consider using tf-idf
representation with neural models as well. Secondly, we
plan to experiment with transfer learning techniques to
leverage the models that are trained for related tasks such
as offensive language detection. Thirdly, we will further
investigate the sampling techniques to overcome the
unbalanced data problem. Finally, since the pre-trained
model BERT yields the state of the art performance in
several natural language processing tasks (Devlin et al.,
2018), it is worth trying for hate speech detection too.

6. References

Alakrot, A., Murray, L. and Nikolov, N.S., 2018. Towards
accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142, pp.315-320.

Albadi, N., Kurdi, M. and Mishra, S., 2018, August. Are
they our brothers? Analysis and detection of religious hate
speech in the Arabic Twittersphere. In 2018 IEEE/ACM
ASONAM (pp. 69-76).

Chowdhury, A.G., Didolkar, A., Sawhney, R. and Shah,
R., 2019. ARHNet-Leveraging Community Interaction for
Detection of Religious Hate Speech in Arabic. In
Proceedings of ACL: Student Research Workshop (pp.
273-280).

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K.,
2018. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Malmasi, S. & Zampieri, M., 2018. Challenges in
discriminating profanity from hate speech. Journal of
Experimental & Theoretical Artificial Intelligence, 30(2),
pp. 187-202.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and
Dean, J., 2013. Distributed representations of words and

phrases and their compositionality. In Advances in neural
information processing systems (pp. 3111-3119).

Mohaouchane, H., Mourhir, A. and Nikolov, N.S., 2019,
October. Detecting Offensive Language on Arabic Social
Media Using Deep Learning. In IEEE SNAMS (pp.
466-471).

Mondal, M., Silva, L. A. & Benevenuto, F., 2017. A
Measurement Study of Hate Speech in Social Media.. New
York, USA, ACM, p. 85–94.

Mubarak, H. & Darwish, K., 2019. Arabic Offensive
Language Classification on Twitter. In International
Conference on Social Informatics (pp. 269-276). Springer.

Mubarak, H., Darwish, K. and Magdy, W., 2017, August.
Abusive language detection on Arabic social media. In
Proceedings of the First Workshop on Abusive Language
Online (pp. 52-56).

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T. and
Al-Khalifa, H., 2020. Overview of OSACT4 Arabic
Offensive Language Detection Shared Task. In
Proceedings of the 4th Workshop on Open-Source Arabic
Corpora and Processing Tools (OSACT), vol. 4.

Ousidhoum, N., Lin, Z., Zhang, H., Song, Y. and Yeung,
D.Y., 2019. Multilingual and Multi-Aspect Hate Speech
Analysis. arXiv preprint arXiv:1908.11049.

Smedt, T., De Pauw, G. and Van Ostaeyen, P., 2018.
Automatic detection of online jihadist hate speech. arXiv
preprint arXiv:1803.04596.

Soliman, A.B., Eissa, K. and El-Beltagy, S.R., 2017.
Aravec: A set of arabic word embedding models for use in
arabic nlp. Procedia Computer Science, 117, pp.256-265.

Wang, X., Jiang, W. and Luo, Z., 2016. Combination of
convolutional and recurrent neural network for sentiment
analysis of short texts. In Proceedings of COLING 2016:
Technical papers (pp. 2428-2437).

Watanabe, H., Bouazizi, M. & Ohtsuki, T., 2018. Hate
speech on Twitter: A pragmatic approach to collect
hateful and offensive expressions and perform hate speech
detection. IEEE Access, 6, pp. 13825-13835.

Zhang, Z. & Luo, L., 2018. Hate speech detection: A
solved problem? the challenging case of long tail on
Twitter. CoRR abs/1803.03662 (2018).

Zhang, Z., Robinson, D. & Tepper, a. J., 2018. Hate
Speech Detection Using a Convolution-LSTM Based
Deep Neural Network. In Proceedings of ACM WWW
conference (WWW’2018). New York, NY, USA.

Zhou, C., Sun, C., Liu, Z. and Lau, F., 2015. A C-LSTM
neural network for text classification. arXiv preprint
arXiv:1511.08630.

