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The global pandemic has made it more important
than ever to quickly and accurately retrieve relevant
scientific literature for effective consumption by re-
searchers in a wide range of fields. We provide an
analysis of several multi-label document classifi-
cation models on the LitCovid dataset, a growing
collection of 23,000 research papers regarding the
novel 2019 coronavirus. Additionally, we test these
models on a subset of the CORD-19 dataset con-
taining 100 papers about previous epidemics we
manually annotated.

Class LitCovid CORD-19 Set
Prevention 11,042 12
Treatment 6,897 20
Diagnosis 4,754 25
Mechanism 3,549 70
Case Report 1,914 2
Transmission 1,065 6
General 368 7
Forecasting 461 2

Table 1: Category distribution for the LitCovid and
CORD-19 Test Datasets.

We find that pre-trained language models fine-
tuned on this dataset outperform all other base-
lines and that BioBERT surpasses the others by a
small margin with micro-F1 and accuracy scores
of around 86% and 75% respectively.

Model Dev Set Test Set
Acc. F1 Acc. F1

LR 68.5 81.4 68.6 81.4
SVM 71.2 83.4 70.7 83.3
LSTM 69.0 ±0.9 83.9 ±0.1 68.9 ±0.3 83.2 ±0.2
LSTMreg 71.2 ±0.5 83.9 ±0.3 70.8 ±0.7 83.6 ±0.5
KimCNN 69.9 ±0.2 83.3 ±0.3 68.8 ±0.1 82.7 ±0.1
XML-CNN 72.9 ±0.4 84.1 ±0.2 71.7 ±0.7 83.5 ±0.3
BERTbase 74.3 ±0.6 85.5 ±0.4 73.6 ±1.0 85.1 ±0.5
BERTlarge 75.1 ±3.9 85.9 ±1.9 74.4 ±2.7 85.3 ±1.4
Longformer 74.4 ±0.8 85.6 ±0.5 73.9 ±0.8 85.5 ±0.5
BioBERT 75.0 ±0.5 86.3 ±0.2 75.2 ±0.7 86.2 ±0.6

Table 2: Performance for each model expressed as
mean ± standard deviation across three training runs.

We evaluate the data efficiency and generaliz-
ability of these models as essential features of any

system prepared to deal with an urgent situation
like the current health crisis.

Figure 1: Data efficiency analysis.

All pre-trained language models tested are im-
pressively data efficient, with BioBERT achieving
an F1 score only 4 points below its maximum score
using only 1% of the training data.

Acc. F1
SVM 29.0 62.8

LSTMreg 32.7 ±1.5 67.7 ±0.7
Longformer 41.3 ±6.4 70.0 ±2.9

BioBERT 36.0 ±7.8 69.7 ±2.8

Table 3: Performance on the CORD-19 Test Set ex-
pressed as mean ± standard deviation across three
training runs.

From Table 3, we can see that performance drops
significantly on the CORD-19 test set which does
not mention COVID-19. This shows that more
work needs to be done for these models to be im-
mediately useful in future health emergencies.

Finally, we explore 50 errors made by the best
performing models on LitCovid documents and
find that they often (1) correlate certain labels too
closely together and (2) fail to focus on discrim-
inative sections of the articles; both of which are
important issues to address in future work. Both
data and code are available on GitHub 1.

1https://github.com/dki-lab/
covid19-classification

https://github.com/dki-lab/covid19-classification
https://github.com/dki-lab/covid19-classification
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