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Abstract

In this paper, we detail novel strategies for in-
terpolating personalized language models and
methods to handle out-of-vocabulary (OOV)
tokens to improve personalized language mod-
els. Using publicly available data from Red-
dit, we demonstrate improvements in offline
metrics at the user level by interpolating a
global LSTM-based authoring model with a
user-personalized n-gram model. By optimiz-
ing this approach with a back-off to uniform
OOV penalty and the interpolation coefficient,
we observe that over 80% of users receive a
lift in perplexity, with an average of 5.2% in
perplexity lift per user. In doing this research
we extend previous work in building NLIs and
improve the robustness of metrics for down-
stream tasks.

1 Introduction

Natural language interfaces (NLIs) have become
a ubiquitous part of modern life. Such interfaces
are used to converse with personal assistants (e.g.,
Apple Siri, Amazon Alexa, Google Assistant, Mi-
crosoft Cortana), to search for and gather informa-
tion (Google, Bing), and to interact with others on
social media. One developing use case is to aid
the user during composition by suggesting words,
phrases, sentences, and even paragraphs that com-
plete the user’s thoughts (Radford et al., 2019).

Personalization of these interfaces is a natural
step forward in a world where the vocabulary, gram-
mar, and language can differ hugely user to user
(Ishikawa, 2015; Rabinovich et al., 2018). Nu-
merous works have described personalization in
NLIs in audio rendering devices (Morse, 2008),
digital assistants (Chen et al., 2014), telephone in-
terfaces (Partovi et al., 2005), etc. We explore an
approach for personalization of language models

* Indicates equal contributions

(LMs) for use in downstream NLIs on composition
assistance, and replicate previous work to show
that interpolating a global long short-term mem-
ory network (LSTM) model with user-personalized
n-gram models provides per-user performance im-
provements when compared with only a global
LSTM model (Chen et al., 2015, 2019). We extend
that work by providing new strategies to interpolate
the predictions of these two models. We evaluate
these strategies on a publicly available set of Red-
dit user comments and show that our interpolation
strategies deliver a 5.2% perplexity lift. Finally,
we describe methods for handling the crucial edge
case of out-of-vocabulary (OOV) tokens1.

Specifically, the contributions of this work are:

1. We evaluate several approaches to handle
OOV tokens, covering edge cases not dis-
cussed in the LM personalization literature.

2. We provide novel analysis and selection of in-
terpolation coefficients for combining global
models with user-personalized models.

3. We experimentally analyze trade-offs and
evaluate our personalization mechanisms on
public data, enabling replication by the re-
search community.

2 Related Work

Language modeling is a critical component for
many NLIs, and personalization is a natural di-
rection to improve these interfaces.

Several published works have explored personal-
ization of language models using historical search
queries (Jaech and Ostendorf, 2018), features gar-
nered from social graphs (Wen et al., 2012; Tseng

1To the best knowledge of the authors, these edge cases
are not clearly defined in the literature when combining two
LMs trained on two different datasets.
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et al., 2015; Lee et al., 2016), and transfer learn-
ing techniques (Yoon et al., 2017). Other work
has explored using profile information (location,
name, etc.) as additional features to condition
trained models (Shokouhi, 2013; Jaech and Os-
tendorf, 2018). Specifically, in the NLI domain,
Google Smart Compose (Chen et al., 2019) produc-
tized the approach described in (Chen et al., 2015)
by using a linear interpolation of a general back-
ground model and a personalized n-gram model to
personalize LM predictions in the email authoring
setting. We view our work as a natural extension
to this line of research because strategies that im-
prove personalization at the language modeling
level drive results at the user interface level.

3 Personalized Interpolation Model

The goal of text prediction is strongly aligned with
language modeling. The task of language modeling
is to predict which words come next, given a set
of context words. In this paper, we explore using
a combination of both large scale neural LMs and
small scale personalized n-gram LMs. This combi-
nation has been studied in the literature (Chen et al.,
2015) and has been found to be performant. We
describe mechanisms for extending this previous
work in this section. Once trained, we compute the
perplexity of these models not by exponentiation of
the cross entropy, but rather by explicitly predicting
the probability of test sequences. In practice this
model is to be used to rerank sentence completion
sequences. As a result, it is impossible to ignore
the observation of OOV tokens.

3.1 Personalized n-gram LMs

Back-off n-gram LMs (Kneser and Ney, 1995)
have been widely adopted given their simplicity,
and efficient parameter estimation and discount-
ing algorithms further improve robustness (Chen
et al., 2015). Compared with DNN-based models,
n-gram LMs are computationally cheap to train,
lightweight to store and query, and fit well even
on small data—crucial benefits for personalization.
Addressing the sharp distributions and sparse data
issues in n-gram counts is critical. We rely on Mod-
ified Kneser-Ney smoothing (James, 2000), which
is generally accepted as one of the most effective
smoothing techniques.

3.2 Global LSTM
For large scale language modeling, neural network
methods can produce dramatic improvements in
predictive performance (Jozefowicz et al., 2016).
Specifically, we use LSTM cells (Hochreiter and
Schmidhuber, 1997), known for their ability to cap-
ture long distance context without vanishing gradi-
ents. By computing the softmax function on the out-
put scores of the LSTM we can extract the LSTM’s
per-token approximation as language model proba-
bilities.

3.3 Evaluation
We use perplexity (PP) to evaluate the performance
of our LMs. PP is a measure of how well a prob-
ability model predicts a sample, i.e., how well an
LM predicts the next word. This can be treated
as a branching factor. Mathematically, PP is the
exponentiation of the entropy of a probability dis-
tribution. Lower PP is indicative of a better LM.
We define lift in perplexity (PP lift) as

PP lift =
PPglobal − PPinterpolated

PPglobal
, (1)

where PPinterpolated is the perplexity of the interpo-
lated model and PPglobal is the perplexity of the
global LSTM model, which serves as the baseline.
Higher PP lift is indicative of a better LM.

3.4 Interpolation Strategies
Past work (Chen et al., 2015) has described mecha-
nisms for interpolating global models with person-
alized models for each user. Our experimentation
mixes a global LSTM model with the personalized
n-gram models detailed above2.

The interpolation is a linear combination of the
predicted token probabilities:

P = αPpersonal + (1− α)Pglobal (2)

α indicates how much personalization is added to
the global model. We explore constant values of
α, either globally or for each user. We compute
a set of oracle α values, the values of α per user
that empirically minimize interpolated perplexity.
We compare our strategies for tuning α to these
oracle α values, which present the best possible
performance on the given user data in Section 5.3.
Intuitively, users whose comments have a high pro-
portion of tokens outside the global vocabulary will

2We further detail the hyperparameters and training
scheme of our LSTM and n-gram models in the appendices.
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need more input from the global model than their
own personalized model to accurately model their
language habits. Thus, we also explore an inverse
relationship between α and each user’s OOV rate.

3.5 OOV Mitigation Strategies

When training on datasets with a large proportion
of OOV tokens, low PP may not indicate a good
model. Specifically, if the proportion of OOV to-
kens in the data is high, the model may assign too
much mass to OOV tokens resulting in a model
with a propensity to predict the OOV token. Such
a model may have low PP, but only because it fre-
quently predicts the commonly occurring OOV to-
ken. While this may be an effective model of the
pure sequence of tokens, it does not align with
downstream objectives present at the interface level
which relies on a robust prediction of non-OOV to-
kens. Because of this disconnect between model
and overall task objective, mitigation strategies
must be implemented in order to adequately evalu-
ate the performance of LMs in high OOV settings.
We evaluate the following strategies to mitigate this
behavior:

1. Do nothing, assigning OOV tokens their esti-
mated probabilities;

2. Skip the OOV tokens, scoring only those
items known in the training vocabulary; and

3. Back-off to a uniform OOV penalty, assigning
a fixed probability φ to model the likelihood
of selecting the OOV token3.

When reporting our results we denote PPbase as
PP observed when using strategy 1, PPskip as PP
observed when using strategy 2, and PPbackoff as
PP observed when using strategy 3.

4 Data

The data for our model comes from comments
made by users on the Internet social media web-
site Reddit4. Reddit is a rich source of natural-
language data with high linguistic diversity due
to posts about a variety of topics, informality of
language, and sheer volume of data. As a linguis-
tic resource, Reddit comments present in a heavily

3We consider φ to be a hyperparameter which must be
tuned for each use case. In our experiments we assign φ to be
1
V

, where V is the vocabulary size.
4We retrieved copies of www.reddit.com user comments

from https://pushshift.io/.

conversational and colloquial tone, and users fre-
quently use slang and misspell words. Because
of this there are a high number of unique tokens.
As developers of a machine learning system, we
seek to balance having a large vocabulary in or-
der to capture the most data with having a small
vocabulary in order to keep the model from overfit-
ting. We construct our vocabulary by empirically
selecting the n most common tokens observed by
randomly selecting Reddit user comments. We
then share this vocabulary, created from the global
training set, in both the personalized and global
models. This value of n must be tuned based on
data. When choosing a size for vocabulary, there
exists a tradeoff between performance and captur-
ing varied language. Larger vocabularies adversely
impact performance but may encapsulate more vari-
ability of language. For a given vocabulary size
chosen from training data for the global LSTM, we
plot the resulting OOV rates for users. As can be
seen when comparing Figure 1 and Figure 2, very
few gains in user-level OOV rates are seen when
expanding the vocabulary size twenty-fold. Thus,
we choose a vocabulary size of 50,000.

Figure 1: Histogram of OOV rates for 3265 users’ train-
ing data with a vocabulary size of 50,000.

For the global LSTM, we split the global distribu-
tion of Reddit data into training sourced from 2016,
validation sourced from 2017, and test sourced
from 2018. We sampled such that 70% of users
were reserved for training, 20% of users for valida-
tion, and 10% of users for test. We allot 100, 000
users for the test set and scale the number of users
in the other sets accordingly. There are 10 billion
total tokens in the training data, with 29 million
unique tokens. 90% of unique tokens occur 6 or
fewer times, and half of users have 20 or fewer com-
ments per year with an average comment length of

www.reddit.com
https://pushshift.io/
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Figure 2: Histogram of OOV rates for 3265 users’ train-
ing data with a vocabulary size of 1,000,000.

13 tokens. For the personalized n-grams, we se-
lected all comment data from 3265 random Reddit
users6 who made at least one comment in each of
2016, 2017, and 2018. Then, for each user, we se-
lected the data from 2016 as training data, the data
from 2017 as validation data, and the data from
2018 as testing data.

5 Results

Here we discuss the results observed when eval-
uating the interpolated global LSTM and user-
personalized n-gram model on users’ comments
using various OOV mitigation and α interpolation
strategies.

5.1 OOV Mitigation Strategies

In our data used for personalization, 68% users
have more than 25% OOV rate for validation data,
and 65% users have more than 25% OOV rate for
training data. This empirically causes large devi-
ations between the different PPbackoff, PPskip, and
PPbase. We find that a personalized n-gram model
can’t handle OOV tokens very well in high OOV
settings, because it assigns higher probabilities to
OOV tokens than some of the tokens in the vocab-
ulary. As discussed in Section 3.5 high OOV rates
at the per-user level PPbase present a view of the
results that is disconnected from downstream use in
an NLI. At the same time, PPskip presents the view
most aligned with the downstream task because
in an NLI the OOV token should never be shown.
However, PPskip comes with some mathematical
baggage. Specifically, when all tokens are OOV,
the PPskip will be infinite. These two approaches
represent the extremes of the strategies which could
be used. We argue that PPbackoff represents the best

of both worlds.
Figure 3 shows that PPbackoff provides measure-

ments near the minima that are closely aligned with
PPskip while also being free of the mathematical
and procedural issues associated with PPskip and
PPbase. We provide an example to further illus-
trate the above statement. Consider a high OOV
rate comment such as “re-titled jaff ransomware
only fivnin.” with OOV tokens re-titled, jaff, ran-
somware, fivnin. Following encoding, the mode
would see this sequence as “OOV OOV OOV only
OOV”. When measuring the probability of this
sequence a model evaluated using PPbase would
have lower perplexity because it has been trained to
overweight the probability of OOV tokens as they
occur more frequently than the tokens they repre-
sent. However, this sequence should have far lower
probability, and thus higher perplexity, because the
model is in fact failing to adequately model the true
sequence. We argue that assigning a uniform value
θ to OOV tokens will more accurately represent
the performance of the model when presented with
data with a high quantity of OOV tokens.

Because we believe that PPbackoff presents the
most accurate picture of model performance, we
have chosen to present our results in Section 5.2
and 5.3 using PPbackoff.

Figure 3: Average of interpolated PP for all users for
varied values of α ≤ 0.7 for each method of approach-
ing OOV tokens.

5.2 Analysis of Personalization

We next present an interesting dichotomy in Figure
4 not previously discussed in the personalization
literature. In the constant α for all users setting
we can optimize to either minimize the overall
PPbackoff for all users or to maximize the average
PPbackoff lift across users. These two objectives
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result in different constant α5. Specifically, mini-
mizing PPbackoff over users yields α = 0.105, pro-
viding an improvement for 67.3% of users and an
average PPbackoff lift of 2.5%. Maximizing the av-
erage PPbackoff lift per user yields α = 0.041, pro-
viding an improvement for 74.2% of users and an
average PPbackoff lift of 2.7%6.

Figure 4: PPbackoff and average PPbackoff lift over base-
line for various values of α < 0.22.

5.3 Constant and Personalized Interpolation
Coefficient α Optimization

When searching for a constant value for α for all
users, α = 0.105 achieves the minimum mean
interpolated PPbackoff, with an average PPbackoff lift
of 2.5%.

Next, we personalize the value of α for each user.
We first produce a set of oracles6 as described in
Section 3.4. With this set of oracle values of α, the
average PPbackoff lift is 6.1% with the best average
PPbackoff achievable in this context. While it is
possible to compute the oracle values for each user
in a production setting, this may not be tractable
when user counts are high and there exist latency
constraints.

Thus, we try an inverse linear relationship: α =
k · (1− OOV rate). To illustrate the effect of this
relationship, we perform this optimization 10 times,
using a different random subset of users each time
to optimize k and then evaluate on the rest of the
users. On average, we observe a PPbackoff lift of
5.2%, and 80.1% of users achieve an improvement
in PPbackoff. In Figure 5 we see that a heuristic ap-
proach of lower complexity achieves near-oracle
performance, with the distribution of PPbackoff for
this method closely matching the oracle distribu-

5There may be other trade-offs to examine.
6Further details are included in the appendices.

tion of PPbackoff. We also find that this method of
α personalization yields lower PPbackoff for more
users than using a constant value for α.

Figure 5: Distribution of interpolated PPbackoff for users
using each method of α optimization. The values for
α = k · (1 − OOV rate) are averaged over 10 random
selections.

6 Conclusion & Future Work

In this paper we presented new strategies for in-
terpolating personalized LMs, discussed strategies
for handling OOV tokens to give better vision into
model performance, and evaluated these strategies
on public data allowing the research community
to build upon these results. Furthermore, two di-
rections could be worth exploring: Investigate on
when personalization is useful at a user level to bet-
ter interpret the results; Research on user-specific
vocabularies for personalized models instead of us-
ing a shared vocabulary for both the personalized
and global background models.

As NLIs move closer to the user, personalization
mechanisms will need to become more robust. We
believe the results we have presented form a natural
step in building that robustness.
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A Appendices

A.1 Hyperparameters and Model Training

The global LSTM model trained token embeddings
of size 300, and had hidden unit layers of size 256
and 128, an output projection of dimension 100,
and a vocabulary of 50,000 tokens. It was trained
with dropout using the Adam optimizer, and we
parallel-trained our global LSTM on an Azure7

Standard NC24s v2 machine which includes 24
vCPUs and 4 NVIDIA Tesla P100 GPUs.

The personalized n-gram models were 3-gram
modified Kneser-Ney smoothed models with dis-
counting values of 0.5 (1-grams), 1 (2-grams), and
1.5 (3-grams).

A.2 User Analysis Plots

The average size of the user-personalized corpus is
around 140 comments, while the median size is 23
comments. The average comment length for each
user is around 14 tokens.

7www.azure.com

https://arxiv.org/pdf/1602.02410.pdf
https://arxiv.org/pdf/1602.02410.pdf
www.azure.com
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Figure 6: Histogram of PP lift over global model vs.
average comment length (α = 0.105).

Figure 7: Histogram of PP lift over global model vs.
number of comments (α = 0.105).

By analyzing the results with the lowest inter-
polated PPbackoff (α = 0.105 for all users), we
make two observations: users with average com-
ment length less than around 30 tokens don’t get
much benefit from personalization, and users with
less than around 100 comments don’t get much
benefit from personalization.

A.3 Oracle α Distribution
Figure 8 shows the distribution of the empirically-
computed “oracle” values for α.

Figure 8: Distribution of oracle values of α per user.


