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Abstract
We present the Le Petit Prince Corpus (LPPC), a multi-lingual resource for research in (computational) psycho- and neurolinguistics.
The corpus consists of the children’s story The Little Prince in 26 languages. The dataset is in the process of being built using state-
of-the-art methods for speech and language processing and electroencephalography (EEG). The planned release of LPPC dataset will
include raw text annotated with dependency graphs in the Universal Dependencies standard, a near-natural-sounding synthetic spoken
subset as well as EEG recordings. We will use this corpus for conducting neurolinguistic studies that generalize across a wide range of
languages, overcoming typological constraints to traditional approaches. The planned release of the LPPC combines linguistic and EEG
data for many languages using fully automatic methods, and thus constitutes a readily extendable resource that supports cross-linguistic
and cross-disciplinary research.

1. Introduction
We present the Le Petit Prince Corpus (LPPC), a
multi-lingual resource for experimental research in cross-
linguistic (computational) psycho- and neurolinguistics.
The corpus consists of translations of the children’s story
Le Petit Prince (The Little Prince), published by Antoine
de Saint-Exupéry in 1943, in 26 languages. The corpus is
built by combining current methods from speech and lan-
guage technology, that is, state-of-the-art Text-to-Speech
Synthesis (TTS) and dependency parsing, as well as elec-
troencephalography (EEG).
This paper describes ongoing work. We describe the re-
source that we will release as well as the important aspects
to consider while building this corpus. The final release
of the dataset will include three main parts: The primary
written data is given as raw text and annotated with depen-
dency graphs in the Universal Dependencies (UD) standard
(Nivre et al., 2016). A subset of the corpus will be provided
as time-aligned synthetic speech. The speech data will be
used as an auditory stimulus for recording EEG data, which
comprises the final part of the release.

1.1. Motivation
Traditional psycho- and neurolinguistic research has em-
ployed factorial experimental designs that require a large
number of trials with highly controlled stimuli. Such ex-
perimental designs thus limit the generalizability of find-
ings, and it has been increasingly acknowledged in recent
years that factorial experiments lack sufficient statistical
power and ecological validity (Brennan, 2016; Willems et
al., 2015). For this reason, more and more studies rely on
naturalistic stimuli (Hamilton and Huth, 2018).
An additional shortcoming of factorial experiments is evi-
dent from recent findings in probabilistic language process-
ing: Repetitive presentation of large numbers of matched
stimuli can have the undesired effect of changing tran-
sitional probabilities during the experiment and thus, of
obscuring neurobiological results (Kroczek and Gunter,
2017). The development of information-theoretic quantifi-

cations of speech and language processing (Hale, 2001) and
their excellent fit to behavioral (Levy, 2008; Demberg and
Keller, 2008) and neurobiological data (Hale et al., 2018;
Rabovsky et al., 2018; Frank et al., 2015) supports this.
Traditional psycho- and neurolinguistic studies have typi-
cally been restricted to single or few individual languages.
This results in limited generalizability beyond small typo-
logical domains, thereby hindering the understanding of
cross-linguistic commonalities and differences in the cog-
nitive apparatus and neural substrate of speech and lan-
guage processing (Kandylaki and Bornkessel-Schlesewsky,
2019).
In contrast, the LPPC as a resource facilitates gener-
alization across a range of languages (Kandylaki and
Bornkessel-Schlesewsky, 2019), helping the psycho- and
neurolinguistic fields to further overcome their current sta-
tistical and typological limitations. The motivation for
building this dataset is in line with the recent development
of openly accessible naturalistic stimulus sets in the neu-
rolinguistic community, such as the Mother of All Unifica-
tion Studies (Schoffelen et al., 2019), the Narrative Brain
Dataset (Lopopolo et al., 2018), the Alice Datasets (Bhat-
tasali et al., 2020) and the ongoing Alice in Language Lo-
calizer Wonderland project1. Unlike factorial and/or mono-
lingual experimental datasets that are tailored to just one
specific question, the LPPC’s lexico-syntactic annotation
in the UD standard fosters research that addresses a broad
range of linguistic research questions. The LPPC is also
sustainable in that its data is amenable to future re-analysis
that addresses future research questions. Furthermore, the
use of the dataset will facilitate the formulation of neu-
robiological frameworks that generalize across languages
(Bornkessel-Schlesewsky and Schlesewsky, 2016), assum-
ing that the structural and functional properties of the hu-
man brain that subserve language are shared among speak-
ers of all languages (Futrell et al., 2015; Levy, 2008; Bren-
nan et al., 2019). In turn, the dataset may also serve as re-

1https://evlab.mit.edu/alice
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source for traditional linguistic research that aims to explain
why languages are different, yet they all can be processed
by brains that are unitary across humans.

1.2. The LPPC – an automatic corpus
Recent advancements in the field of speech and language
processing, fueled by the striking success of deep learning
models, have made it feasible to automatically create and
annotate large amounts of data with a higher quality than
previously possible. We exploit such methods for build-
ing our resource, that, given it comprises 26 languages,
would require much effort using traditional manual meth-
ods. Apart from the primary text data, which is manu-
ally cleaned, the database is created using automatic de-
pendency parsing, forced-alignment and speech synthesis.
In addition to the state-of-the-art speech and language pro-
cessing tools employed for building the corpus, the EEG
data is preprocessed using a fully automatic pipeline setup.
We are also planning to make the EEG data available to the
community in an open format that facilitates further pro-
cessing. To the best of our knowledge, the LPPC is the first
resource for neurolinguistic research that is not only created
by, but also combines such methods.

2. The LPPC multi-lingual resource
The corpus consists of translations of the children’s story
Le Petit Prince by Antoine de Saint-Exupéry. The text was
originally written in 1943 and has since been translated into
over 300 languages2.
The languages chosen for the LPPC are Arabic, Chi-
nese (Mandarin), Czech, Danish, Dutch, English, Finnish,
French, German, Greek, Hindi, Hungarian, Indonesian,
Italian, Japanese, Korean, Norwegian, Polish, Portuguese,
Russian, Slovak, Spanish, Swedish, Turkish, Ukrainian,
and Vietnamese.
The criteria for choosing these languages was their avail-
ability both as a significantly large treebank in the UD tree-
bank (Nivre et al., 2016) (to allow for uniform syntactic
parsing across languages) as well as in Google’s Text-to-
Speech API3 voice selection. Both tools are part of auto-
matic pipelines for creating the linguistic annotations and
the speech data, respectively.

2.1. Primary written data
The primary data in the LPPC consists of one text version
of the story in each of 26 chosen languages. The full story
comprises 27 chapters in total (plus a short prologue) and
the English version amounts to roughly 16k words. The
LPPC includes the first six chapters in each language as
spoken data, amounting to around 20 minutes of speech (≈
250 sentences).
We chose existing published translations of the story. Since
the domain of the data is literary text, the versions for the
various languages cannot be expected to be translated di-
rectly at the sentence level. Furthermore, we do not have
any control on how close the different translations are to the

2It has thus been referred to as the most-translated non-
religious text in the world (Le Figaro, 7. April 2017).

3https://cloud.google.com/text-to-speech/

French original, and we expect expect a certain degree of
variation between the different translations. Nevertheless,
given the fact that the book follows a clear story line and
uses rather simple language, we consider the translations to
be fairly parallel. The LPPC is therefore not a strictly par-
allel corpus, but a combination of comparable parts as well
as parallel, but unaligned sentences4.

2.1.1. Acquisition of text
For the written text part of the corpus, we acquired elec-
tronic translations of the text. In most languages, multiple
translations have been published since the first issue, and
newer translations continue to appear until today. There-
fore, we carefully chose versions according to the follow-
ing criteria: The first being the availability as an e-book5, as
these are readily obtained and easily converted to raw text.
The second criterion was the availability of bibliographic
data. Since the texts available on web differ in quality, we
selected releases that contained information on the trans-
lator, year, and publishing house. We also discussed the
choice of text with native speakers in cases where we were
unsure about the quality of the translated versions.

2.1.2. Choice of translation
We placed an additional constraint on our choice of transla-
tions based on diachronic linguistic changes that may pose
additional interfering factors during neuroscientific studies.
Such problems may arise, for example, when performing
EEG studies on canonical participant samples, e.g. in an
age range of 20 to 30 years. Since participants in this age
group are less familiar with the writing style used in the
original version from 1943 and the early translations, we
chose to collect more recent translations for the corpus.
This decision was based on the outdated language in older
translations, which may confound experimental measure-
ments. For example, the Hungarian version uses the obso-
lete term fölnőtt for the word grown-up, whereas the new
version uses felnőtt. An additional concern was the use of
literary writing style, which has changed considerably over
the years. Old words or syntactic constructions may be un-
familiar to participants and thus be experienced as unusual,
thereby triggering meta-cognitive processing.
Conversely, due to the fact that Le Petit Prince is a well-
known text, we expect that participants who are very famil-
iar with the original translations may also display interfer-
ence effects when confronted with a different translation.
Therefore, this choice comprises a trade-off between a fa-
miliar story and a contemporary language style. To keep
the corpus as consistent as possible, however, we chose the
newest translation available that fits the aforementioned cri-
teria. Apart from the French original text, the full collection
therefore contains translations that were published after the

4Cross-language sentence alignments may be carried out by
hand to a limited extent. The research questions we seek to ad-
dress with this corpus, discussed in section 3.3.3. do not require
a strictly parallel corpus, and we therefore do not plan to include
such alignments in this release.

5Obtaining digitized text from print versions was deemed
too error-prone due to expected issues in using optical character
recognition (OCR).
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year 2000 except for Russian and Slovak, for which such
recent translations are currently not available as e-books.

2.1.3. Preprocessing
In order to prepare the written text for the annotation
pipeline, the documents needed to be cleaned of format-
ting errors, punctuation, typographical errors and other in-
consistencies resulting from the conversion process. Addi-
tional text stemming from the title page, picture captions as
well as biography sections or other supplemental sections
was removed. Each sentence of the text is assigned a sepa-
rate ID to facilitate further processing. We employed native
speakers to preprocess and check the texts manually.

2.2. Synthesized speech data
The first six chapters of the story will be converted to
spoken language via Text-to-Speech Synthesis (TTS). We
chose to use synthetic voices over natural voices for two
main reasons: First, due to the time and cost involved
in recording professional speakers in a laboratory setting.
Second, to have more control over the resulting speech out-
put and to obtain voices that do not differ too much in voice
quality, pitch and speaking rate. This allows for better ex-
perimental control over the effects of individual voice dif-
ferences during neuroscientific studies.

2.2.1. Google Text-to-Speech API
In order to obtain synthesized speech that is as natural
as possible, we chose to use the state-of-the-art WaveNet
(Oord et al., 2016) voices provided by the Google Cloud
Text-to-Speech API. We chose this synthesizer since it cur-
rently provides the largest selection of natural sounding
voices. The client libraries are an efficient method of creat-
ing speech output in a wide range of languages in human-
like quality. The API also allows the input to be further
enhanced using the W3C Speech Synthesis Markup Lan-
guage (SSML6), which enables the user to manually add
additional instructions on how the input text is to be syn-
thesized. The Google API supports a subset of SSML tags
for generating different prosody or for reading out numer-
als.

2.2.2. Manual markup of input text
The first six chapters as cleaned written text files are used as
raw input for TTS. The text is segmented into smaller parts,
that is, single sentences or paragraphs, for easier handling
during the processing pipeline.
We recruited native speakers with expertise in TTS to create
SSML markup that increase the naturalness of the synthesis
where necessary. This markup can be used to change the
prosody, for example for making pitch modifications and
inserting breaks. An example of the markup is illustrated in
Figure 1.
Since the prosody across sentence boundaries can differ
when sentences are entered individually or as part of a
longer text, they were also asked to decide whether to syn-
thesize the sentences individually or as grouped into para-
graphs. The sentence IDs assigned to the raw text are kept
track of during this step.

6https://www.w3.org/TR/speech-synthesis11/

We let the native speakers choose the most natural sound-
ing female WaveNet voices according to their opinion. The
only current exception is Spanish, for which currently only
one ”standard” female voice is provided.

2.2.3. Naturalness of synthetic speech
The naturalness of the speech recordings is constrained by
feasibility: Based on prior experiences, we chose to em-
ploy TTS because the recruitment of professional speak-
ers of comparable professionalism, speech training, and
speech quality across languages is a hard-to-predict risk to
a project of this size and scope. However, we ensured that
the synthetic voices chosen for this corpus are of very high,
and in part near-natural, quality. The mean opinion scores
(MOS) obtained by using a WaveNet vocoder in the TTS
system have been reported to greatly surpass those of tra-
ditional parametric or concatenative TTS systems (Shen et
al., 2018; Oord et al., 2016).
In addition, we take two further measures to handle vari-
ability in synthesis quality: First, the native speakers in
charge of SSML adjustment will report gross problems with
the TTS output and SSML markup, such that corpus users
can easily identify sentences of low synthesis quality. Sec-
ond, we plan to include with each sentence the results of a
rating study collected via crowdsourcing (e.g. Amazon Me-
chanical Turk), allowing users of the LPPC to include para-
metric covariates of naturalness in their statistical models
or define individual naturalness thresholds.

2.2.4. Alignment of speech and text
The text and speech data will be time-aligned, that is, the
timestamps that denote the start and end times of each word
in the text will be automatically obtained and provided with
the corpus. This step is especially necessary for aligning the
spoken part of the data to the EEG recordings.
While standard available tools generally yield good per-
formance in resource-rich languages such as English and
German, we expect a poorer quality of the alignments in
other languages, and that for certain languages there may
not even exist suitable tools. Since Google’s services do not
provide timestamps for the synthesized output, we will use
a workaround solution7 using their multi-lingual Speech-
To-Text API8, which does provide word offset times.

2.3. Lexico-syntactic annotations
The LPPC will contain lexico-syntactic annotations for the
written text part of the corpus that we will automatically
obtain using natural language processing (NLP) tools. The
full texts will be parsed according to the UD framework.
This framework comprises a method of combining con-
sistent annotations across languages. Furthermore, previ-
ous evidence has suggested a link between syntactic de-
pendency and psycholinguistic processing (Brennan et al.,
2019). The parsed output will be provided in a standard for-
mat (CoNLL), which includes part-of-speech (POS) tags
and lemmatization. We will train the best state-of-the-art
parser trained on the respective UD treebank for each lan-

7This workaround had been suggested to us by Google.
8https://cloud.google.com/speech-to-text
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<p>
<s> He bent over the drawing. </s><break time="300ms"/>
<s><prosody pitch="+2st" rate="110%"> "Not so small as all that. <break time="500ms"/>
Look! <break time="300ms"/> He’s gone to sleep!" </prosody></s><break time="700ms"/>
<s> And that’s how I made the acquaintance of the little prince. </s>

</p>

Figure 1: Example paragraph taken from the English translation of Le Petit Prince with SSML markup

guage for parsing. We refer to section 3.3.2. for a discus-
sion on annotation quality estimation.

2.4. EEG data
We aim to collect EEG recordings from 20 participants for
each of the languages in the LPPC. During EEG record-
ing, the synthesized speech data (i.e., the first six chapters
of the story) will be played via loudspeakers at a volume
that is comfortable to the participants. To ensure that par-
ticipants stay alert and focus on the content of the story,
a set of multiple-choice comprehension questions will be
asked after each chapter; questions and responses will be
included in the corpus. This also enables corpus users to
model inter-individual comprehension differences or define
their own selection thresholds.
While we plan to include an active task, the paradigm be-
hind the planned EEG recordings is mostly passive. We
refer to a body of literature from the speech, language,
and music fields (Cheung et al., 2019; Hale et al., 2018;
Rabovsky et al., 2018; Frank et al., 2015; Armeni et al.,
2019; Brennan and Martin, 2020; Weissbart et al., 2020;
Meyer and Gumbert, 2018; Di Liberto et al., 2015) to ex-
pect variability of electrophysiological responses of interest
to the user (e.g., evoked responses, changes in oscillatory
phase and power) to exhibit enough variance for state-of-
the-art statistical analysis (e.g., multiple regression, tempo-
ral response functions, speech–brain-coupling measures).
EEG data will be continuously recorded from 64 elec-
trodes.The setup will be referenced against the left mastoid
and grounded to the sternum. To facilitate subtraction of
eye blink and movement artifacts, the horizontal and ver-
tical electrooculograms will be acquired. Scalp electrodes
will be placed according to the 10–20 system in an elastic
cap. During recording, the word start and end markers of
the audio will be stored as events in the EEG file.
Artifact cleaning will be automatic, combining functions
from EEGLAB (Delorme and Makeig, 2004) and Field-
Trip (Oostenveld et al., 2011) running in MATLAB R©. We
will use an absolute threshold to remove outlier record-
ing channels. The 50-Hz artifact and resonance fre-
quencies will be projected out via a combination of a
perfect-reconstruction filter bank and a spatial filter (de
Cheveigné, 2019). Remaining artifacts will be removed
using independent-components analysis (ICA). To stabilize
ICA, an 1-Hz highpass filter will be applied (Winkler et
al., 2015), followed by wavelet ICA (Gabard-Durnam et al.,
2018) and ICA (Makeig et al., 1996); artifact components
will be automatically classified using MARA (Winkler et
al., 2011), ADJUST (Mognon et al., 2011), and ICLA-
BEL (Pion-Tonachini et al., 2019). Artifactual components

will be removed from the data highpass-filtered at 0.01 Hz
(Winkler et al., 2015). Then, channels removed from the
initial thresholding will be interpolated.

3. Ongoing work
We are currently in the stage of acquiring cleaned versions
of the text data as well as the SSML markup as input for
our speech processing pipeline. The annotation of the text
data and the recording of EEG data will occur in parallel
once the acquisition of the primary data is completed.

3.1. Availability
We plan to release the corpus in three stages: (1) The
release of the primary text data, synthesized speech and
(word-level) time-alignments, (2) the lexico-syntactic an-
notations of the written text, and (3) the preprocessed EEG
data recorded during listening and aligned with the speech
data. The first version of the corpus release is expected to
be available in parallel to this publication. The release of
neuroimaging data is postponed for the third release due to
pending legal issues regarding data privacy9. We plan to
make as many EEG recordings available as possible under
these constraints. For better re-usability, we also aim to
convert the EEG data to openNeuro10 format.

3.2. Metadata
The corpus release will include bibliographical informa-
tion on the e-book publications (e.g., name of the translator,
year of publication, and publishing house). We will provide
the Google WaveNet voice ID as well as the SSML markup
used to create the synthesized speech data. We will also
provide detailed information on the NLP tools and meth-
ods used to create the lexico-syntactic annotations, as well
as information on the estimated quality for each language.
The EEG subset of the corpus will include metadata such
as the age, gender, native language and bilinguality of each
subject. Complete EEG metadata (e.g., filter and ICA set-
tings) will be provided with the respective release.

3.3. Discussion
Due to use of automatic annotation methods and the choice
of using synthesized speech for our corpus, several open
questions arise, which we discuss in the following. Further-
more, we welcome feedback on possible additional caveats
and extensions while the corpus is under construction.
In addition, by means of an outlook, we will discuss some
classes of research avenues that could be addressed by em-
ploying the LPPC in planned typological contrasts.

9Subjects must give written consent according to the European
General Data Protection Regulation (GDPR).

10https://openneuro.org/
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Corpus subset Size Annotations Metadata
Text 27 chapters, ≈ 16k English words Universal Dependencies bibliographical data, NLP tools
Speech chapters 1–6, ≈ 20 minutes of speech time-alignments Google voice, SSML
EEG speech subset time-alignments subject metadata

Table 1: Overview of the planned LPPC resource in 26 languages.

3.3.1. Use of synthesized speech
The decision to use TTS to create the speech part of the
LPPC was based on our aim to use the dataset for neurolin-
guistic studies that focus on higher-level syntactic process-
ing. We would like to stress that we do not recommend
the corpus for research on lower-level phonetic or auditory
processing, since these would require human speech to rule
out any confounds created by parts of the auditory stimulus
that may be perceived as clearly non-human.
As discussed in section 2.2.3., the Google voices used to
create the spoken part of the corpus have been judged to be
of significantly higher quality than the best previous TTS
systems and the SSML markup is used to further increase
the naturalness of the synthesized speech. However, the
synthesized speech still differs from human speech, espe-
cially when used to read out a literary text. We had chosen
this method despite this drawback due to the fact that it
enables us to efficiently obtain speech data for all chosen
languages.
Depending on the outcome of the ratings obtained from
crowdsourcing (see 2.2.3.), it may be necessary to include
a recording of a human speaker for at least one language
to perform a comparison in further neuroscientific studies.
Expanding the selection of languages which include human
speech can then be taken into account for possible future
versions of the corpus.

3.3.2. Quality of automatic annotations
Since the linguistic annotations will be obtained using
purely automatic NLP methods, they are expected to in-
clude errors. While the quality of the automatic time-
alignments and the syntactic parses will likely be quite high
for resource-rich languages such as English, we expect a
higher degree of error in low-resource languages. By using
tools that can be applied cross-linguistically, however, we
aim to generate annotations with a high accuracy. Further-
more, domain differences between the data used to train the
tools and the LPPC (children’s literature) can be reduced by
choosing treebanks from literary texts. The exact choice of
tools is subject to current work and will consist of methods
that meet this aim.
Possible methods to increase the quality of the linguistic an-
notations include hand-annotating small amounts of text as
a gold-standard reference for automatic evaluation and for
domain adaptation of annotation models, or employing na-
tive speakers to perform manual corrections in cases where
the error rate is deemed too large to be acceptable. Previ-
ous efforts to increase the quality of automatic corpus an-
notation include, for example, a silver standard approach
(Rebholz-Schuhmann et al., 2010; Schweitzer et al., 2018;
Hale et al., 2019), in which several annotation layers can be
combined to estimate confidence scores.

3.3.3. Outlook: an EEG typology
The main motivation for building the LPPC is to address the
notion of overcoming the typological restrictedness of prior
and current experimental designs in psycho- and neurolin-
guistics, which is a major obstacle for the generalizability
of cognitive and neuroanatomical frameworks of language
comprehension (Kandylaki and Bornkessel-Schlesewsky,
2019). While this work-in-progress paper cannot serve the
purpose of providing an exhaustive list of cross-linguistic
contrastive research questions, we here give a short set for
inspiration.
First, cross-linguistic variance in evoked potentials and os-
cillatory power and phase changes associated with mem-
ory storage mechanisms of dependency formation could be
tested (Meyer et al., 2013; Kluender and Kutas, 1993). Ini-
tial pilot work supports the feasibility of this (Brennan et
al., 2019). Moreover, further open questions of models of
dependency formation could be tested cross-linguistically,
including retrieval cues and their weighting, as well as
whether memory retrieval is activation-based or direct (Va-
sishth et al., 2019; McElree, 2000). Indeed, it has been
shown that such fine-grained aspects can be dissociated; for
instance, Search Effort as formalized in parsing algorithms
was shown to model evoked components classically associ-
ated with syntactic processing difficulty (Hale et al., 2018).
In addition to enhancing the validity of parsing algorithms
proper from their statistical fit to the underlying elec-
trophysiology, seminal work on the alignment between
electrophysiological excitability and information content
(Weissbart et al., 2020; Meyer and Gumbert, 2018) could
be tested for its cross-linguistic generalizability, thus work-
ing towards an information-theoretic typology (Hahn et al.,
2020; Gibson et al., 2019).

4. Conclusion
In this paper, we have presented the LPPC as a resource
that combines linguistic data in the form of text and speech
with EEG data for 26 languages. The corpus is currently
being built semi-automatically; only the written story was
acquired and the text cleaned by hand, and the synthetic
speech data, linguistic annotations as well as EEG data is
obtained using automatic state-of-the-art tools and meth-
ods. The LPPC bridges several gaps between traditional
psycho- and neurolinguistic approaches and current data-
driven research and enables researchers to investigate and
generalize research questions across a wide range of lan-
guages. We hope to show that using corpora obtained using
automatic methods is a realistic alternative to manual nat-
uralistic stimuli, since this approach enables testing larger
amounts of data and across a broader range of languages.
The corpus is work-in-progress. Apart from the planned re-
lease described here, we encourage future extensions of the
corpus by the (computational) psycho- and neurolinguistics
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communities to include additional languages as they be-
come available in Google’s TTS voice selection or in other
synthesis systems of comparable quality. Furthermore, the
speech part of the LPPC is limited to the first 6 chapters.
Provided that the quality of the output is acceptable and
that it proves to be a useful resource, the speech part can
readily be extended.
As future work, we plan to further expand the scope of re-
search questions that can be addressed with the LPPC by in-
corporating data from additional neuroimaging modalities,
such as magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI; see Bhattasali et al.
(2019) for an application using human speech). Our vision
is for the LPPC to become an open infrastructure to which
researchers from various communities can contribute by
adding further modalities, such as functional near-infrared
spectroscopy or electrocorticography. We also welcome
further suggestions and contributions to help expand the
utility of the LPPC across disciplines to facilitate innova-
tive psycho- and neurolinguistic research.
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