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Abstract
Privacy policy documents are long and ver-
bose. A question answering (QA) system can
assist users in finding the information that is
relevant and important to them. Prior studies
in this domain frame the QA task as retrieving
the most relevant text segment or a list of sen-
tences from the policy document given a ques-
tion. On the contrary, we argue that providing
users with a short text span from policy docu-
ments reduces the burden of searching the tar-
get information from a lengthy text segment.
In this paper, we present PolicyQA, a dataset
that contains 25,017 reading comprehension
style examples curated from an existing cor-
pus of 115 website privacy policies. PolicyQA
provides 714 human-annotated questions writ-
ten for a wide range of privacy practices. We
evaluate two existing neural QA models and
perform rigorous analysis to reveal the advan-
tages and challenges offered by PolicyQA.

1 Introduction

Security and privacy policy documents describe
how an entity collects, maintains, uses, and shares
users’ information. Users need to read the privacy
policies of the websites they visit or the mobile
applications they use and know about their privacy
practices that are pertinent to them. However, prior
works suggested that people do not read privacy
policies because they are long and complicated
(McDonald and Cranor, 2008), and confusing (Rei-
denberg et al., 2016). Hence, giving users access to
a question answering system to search for answers
from long and verbose policy documents can help
them better understand their rights.

In recent years, we have witnessed noteworthy
progress in developing question answering (QA)
systems with a colossal effort to benchmark high-
quality, large-scale datasets for a few application

∗Equal contribution.

Website: Amazon.com

Information You Give Us: We receive and store
any information you enter on our Web site or give
us in any other way. Click here to see ...

Question. How do you collect my information?

information you enter on our Web site

Promotional Offers: Sometimes we send offers
to selected groups of Amazon.com customers on
behalf of other businesses. When we do this, we
do not give that business your name and address.
If you do not want to receive such offers, ...

Question. Is my information shared with others?

we do not give that business your name and address

Table 1: Question-answer pairs that we collect from
OPP-115 (Wilson et al., 2016a) dataset. The evidence
spans are highlighted in color and they are used to form
the question-answer pairs.

domains (e.g., Wikipedia, news articles). However,
annotating large-scale QA datasets for domains
such as security and privacy is challenging as it
requires expert annotators (e.g., law students). Due
to the difficulty of annotating policy documents at
scale, the only available QA dataset is PrivacyQA
(Ravichander et al., 2019) on privacy policies for
35 mobile applications.

An essential characteristic of policy documents
is that they are well structured as they are written
by following guidelines set by the policymakers.
Besides, due to the homogeneous nature of dif-
ferent entities (e.g., Amazon, eBay), their privacy
policies have a similar structure. Therefore, we can
exploit the document structure (meta data) to form
examples from existing corpora. In this paper, we
present PolicyQA, a reading comprehension style
question answering dataset with 25,017 question-
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PolicyQA (This work) PrivacyQA
Source Website privacy policies Mobile application privacy policies
# Policies 115 35
# Questions 714 1,750
# Annotations 25,017 3,500
Question annotator Domain experts Mechanical Turkers
Form of QA Reading comprehension Sentence selection
Answer type A sequence of words A list of sentences

Table 2: Comparison of PolicyQA and PrivacyQA.

passage-answer triples associated with text seg-
ments from privacy policy documents. PolicyQA
consists of 714 questions on 115 website privacy
policies and is curated from an existing corpus,
OPP-115 (Wilson et al., 2016a). Table 1 presents a
couple of examples from PolicyQA.

In contrast to PrivacyQA (Ravichander et al.,
2019) that focuses on extracting long text spans
from policy documents, we argue that highlight-
ing a shorter text span in the document facilitates
the users to zoom into the policy and identify the
target information quickly. To enable QA models
to provide such short answers, PolicyQA provides
examples with an average answer length of 13.5
words (in comparison, the PrivacyQA benchmark
has examples with an average answer length of
139.6 words). We present a comparison between
PrivacyQA and PolicyQA in Table 2.

In this work, we present two strong neural base-
line models trained on PolicyQA and perform a
thorough analysis to shed light on the advantages
and challenges offered by the proposed dataset.
The data and the implemented baseline models are
made publicly available.1

2 Dataset

PolicyQA consists question-passage-answer triples,
curated from OPP-115 (Wilson et al., 2016a). OPP-
115 is a corpus of 115 website privacy policies
(3,792 segments), manually annotated by skilled
annotators following the annotation schemes prede-
fined by domain experts. The annotation schemes
are composed of 10 data practice categories (e.g.,
First Party Collection/Use, Third Party Shar-
ing/Collection, User Choice/Control etc.). The
data practices are further categorized into a set of
practice attributes (e.g., Personal Information Type,
Purpose, User Type etc.). Each practice attribute
is associated with a predefined set of values. In

1https://github.com/wasiahmad/PolicyQA

“Practice”: First Party Collection/Use
“Attribute”: Purpose
“value”: “Additional service/feature”
“startIndexInSegment”: 360
“endIndexInSegment”: 387
“selectedText”: “responding to your requests”
“Practice”: Third Party Sharing/Collection
“Attribute”: Third Party Entity
“value”: “Unnamed third party”
“startIndexInSegment”: 573
“endIndexInSegment”: 596
“selectedText”: “Third-Party Advertisers”

Table 3: Sample span annotations from OPP-115 asso-
ciated with a segment of Amazon.com privacy policy.

the Appendix (in Table 9), we list all the attributes
under the First Party Collection/Use category.

In total, OPP-115 contains 23,000 data practices,
128,000 practice attributes, and 103,000 annotated
text spans. Each text span belongs to a policy seg-
ment, and OPP-115 provides its character-level
start and end indices. We provide an example in
Table 3. We use the annotated spans, correspond-
ing policy segments, and the associated {Practice,
Attribute, Value} triples to form PolicyQA exam-
ples. We exclude the spans with practices labeled
as “Other” and the values labeled as “Unspecified”.
Next, we describe the question annotation process.

Question annotations. Two skilled annotators
manually annotate the questions. During anno-
tation, the annotators are provided with the triple
{Practice, Attribute, Value}, and the associated text
span. For example, given the triple {First Party
Collection/Use, Personal Information Type, Con-
tact} and the associated text span “name, address,
telephone number, email address”, the annotators
created questions, such as, (1) What type of contact
information does the company collect?, (2) Will
you use my contact information?, etc.
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(a) PolicyQA (This work) (b) PrivacyQA

Figure 1: Distribution of trigram prefixes of questions in (a) PolicyQA and (b) PrivacyQA.

Privacy Practice Proportion Example Question From PolicyQA
First Party Collection/Use 44.4 % Why do you collect my data?
Third Party Sharing/Collection 34.1 % Do they share my information with others?
Data Security 2.2 % Do you use encryption to secure my data?
Data Retention 1.7 % How long they will keep my data?
User Access, Edit and Deletion 3.1 % Will you let me access and edit my data?
User Choice/Control 11.0 % What use of information does the user choice apply to?
Policy Change 1.9 % How does the website notify about policy changes?
International and Specific Audiences 1.5 % What is the company’s policy towards children?
Do Not Track 0.1 % Do they honor the user’s do not track preference?

Table 4: OPP-115 categories of the questions in the PolicyQA dataset.

For a specific triple, the process is repeated for
5-10 randomly chosen samples to form a list of
questions. We randomly assign a question from this
list to the examples associated with the triple that
were not chosen during the sampling process. In
total, we considered 258 unique triples and created
714 individual questions. In Table 4, we provide an
example question for each practice category. Also,
we compare the distribution of questions’ trigram
prefixes in PolicyQA (Figure 1a) with PrivacyQA
(Figure 1b). It is important to note that, PolicyQA
questions are written in a generic fashion to become
applicable for text spans, associated with the same
practice categories. Therefore, PolicyQA questions
are less diverse than PrivacyQA questions.

We split OPP-115 into 75/20/20 policies to form
training, validation, and test examples, respectively.
Table 5 summarizes the data statistics.

3 Experiment

In this section, we evaluate two neural question
answering (QA) models on PolicyQA and present
the findings from our analysis.

Baselines. PolicyQA frames the QA task as pre-
dicting the answer span that exists in the given
policy segment. Hence, we consider two existing
neural approaches from literature as baselines for
PolicyQA. The first model is BiDAF (Seo et al.,
2017) that uses a bi-directional attention flow mech-
anism to extract the evidence spans. The second
baseline is based on BERT (Devlin et al., 2019)
with two linear classifiers to predict the boundary
of the evidence, as suggested in the original work.

Implementation. PolicyQA has a similar setting
as SQuAD (Rajpurkar et al., 2016). Therefore, we
pre-train the QA models using their default settings
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Dataset Train Valid Test
# Examples 17,056 3,809 4,152
# Policies 75 20 20
# Questions 693 568 600
# Passages 2,137 574 497
Avg. question length 11.2 11.2 11.2
Avg. passage length 106.0 96.6 119.1
Avg. answer length 13.3 12.8 14.1

Table 5: Statistics of the PolicyQA dataset.

Fine-
tuning

SQuAD
Pre-training

Valid Test
EM F1 EM F1

BiDAF
7 7 25.1 52.3 22.0 48.0
7 3 26.7 53.7 23.3 49.5
3 7 27.9 57.2 24.4 52.8

BERT-base
7 7 30.5 59.4 28.1 55.6
7 3 30.5 60.2 28.0 56.2
3 7 32.8 60.9 28.6 56.6
3 3 32.7 61.2 29.5 56.6

Table 6: Performance of baselines on PolicyQA. The
bold face values indicate the best performances.

on the SQuAD dataset. Besides, we consider lever-
aging unlabeled privacy policies in fine-tuning the
models, as noted below.

• Fine-tuning. We train word embeddings using
fastText (Bojanowski et al., 2017) based on a cor-
pus of 130,000 privacy policies (137M words) col-
lected from apps on the Google Play Store.2 These
word embeddings are used as fixed word repre-
sentations in BiDAF while training on PolicyQA.
Similarly, to adapt BERT to the privacy domain,
we first fine-tune BERT using masked language
modeling (Devlin et al., 2019) based on the privacy
policies and then train on PolicyQA.

• No fine-tuning. In this setting, we use the pub-
licly available fastText (Bojanowski et al., 2017)
embeddings with BiDAF, and the BERT model is
not fine-tuned on those privacy policies.

We adopt the default model architecture and opti-
mization setup for the baseline methods. We detail
the hyper-parameters in Appendix (in Table 10).

Evaluation. Following Rajpurkar et al. (2016), we
use exact match (EM) and F1 score to evaluate the
model’s accuracy.

2We thank the authors of (Harkous et al., 2018) for sharing
the 130,000 privacy policies.

BERT Size
Valid Test

EM F1 EM F1
Tiny 21.0 47.1 15.5 39.9
Mini 26.5 55.2 22.8 49.8
Small 28.4 57.2 24.6 52.3
Medium 31.1 59.1 25.2 53.5
Base 30.5 59.4 28.1 55.6

Table 7: Performance of different sized QA models.

|ans| EM F1
Third Party Sharing/Collection 9.3 35.0 60.2
First Party Collection/Use 10.1 28.3 55.7
Data Retention 10.6 29.1 55.9
User Choice/Control 11.0 24.3 53.2
User Access, Edit and Deletion 12.2 21.6 51.5
Policy Change 14.6 43.4 67.7
Do Not Track 30.9 37.5 69.2
Data Security 34.6 24.4 54.3
Intl. and Specific Audiences 52.8 5.3 43.1

Table 8: Test performance breakdown of BERT-base
model for privacy practice categories, sorted by the av-
erage answer length as indicated by |ans|.

3.1 Results and Analysis

The experimental results are presented in Table 6.
Overall, the BERT-base methods outperform the
BiDAF models by 6.1% and 7.6% in terms of EM
and F1 score (on the test split), respectively.

Impact of fine-tuning. Table 6 demonstrates that
the fine-tuning step improves the downstream task
performance. For example, BERT-base perfor-
mance is improved by 0.5% and 1.0% EM and
F1 score, respectively, on the test split. This re-
sult encourages to train/fine-tune BERT on a larger
collection of security and privacy documents.

Impact of SQuAD pre-training. Given a small
number of training examples, it is challenging to
train deep neural models. Hence, we pre-train the
extractive QA models on SQuAD (Rajpurkar et al.,
2016) and then fine-tune on PolicyQA. The ad-
ditional pre-training step improves performance.
For example, in no fine-tuning setting, BiDAF, and
BERT-base improve the performance by 1.5% and
0.6% F1 score, respectively (on the test split).

Impact of model size. We experiment with dif-
ferent sized BERT models (Turc et al., 2019) and
the results in Table 7 shows that the performance
improves with increased model size. The results
also indicate that PolicyQA is a challenging dataset,
and hence, a larger model performs better.
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Figure 2: BERT-base model’s performance on (a) the three most frequent attributes of “First Party Collection/Use”
and “Third Party Sharing/Collection” practice categories, and (b) questions with different answer lengths.

Analysis. We breakdown the test performance of
the BERT-base method to examine the model per-
formance across practice categories. The results are
presented in Table 8. We see the model performs
comparably on the three most frequent categories
(comprise 89.5% of the total examples).

We further analyze the performance on questions
associated with (1) the top three frequent attributes
for the two most frequent practice categories, and
(2) different answer lengths. The results are pre-
sented in Figure 2a and 2b. Our findings are (1)
shorter evidence spans (e.g., evidence spans for
Personal Information Type questions) are easier
to extract than longer spans; and (2) SQuAD pre-
training helps more in extracting shorter evidence
spans. Leveraging diverse extractive QA resources
may reduce the length bias and boost the QA per-
formance on privacy policies.

4 Related Work

The Usable Privacy Project (Sadeh et al., 2013)
has made several attempts to automate the analysis
of privacy policies (Wilson et al., 2016a; Zimmeck
et al., 2019). Noteworthy works include identifi-
cation of policy segments commenting on specific
data practices (Wilson et al., 2016b), extraction
of opt-out choices, and their provisions in policy
text (Sathyendra et al., 2016; Mysore Sathyendra
et al., 2017), and others (Bhatia and Breaux, 2015;
Bhatia et al., 2016). Kaur et al. (2018) used a
keyword-based technique to compare online pri-
vacy policies. Natural language processing (NLP)
techniques such as text alignment (Liu et al., 2014;
Ramanath et al., 2014), text classification (Harkous
et al., 2018; Zimmeck et al., 2019; Wilson et al.,
2016a) and question answering (Shvartzshanider
et al., 2018; Harkous et al., 2018; Ravichander
et al., 2019) has been studied in prior works to

facilitate privacy policy analysis.
Among the question answering (QA) methods,

Harkous et al. (2018) framed the task as retrieving
the most relevant policy segments as an answer,
while Ravichander et al. (2019) presented a dataset
and models to answer questions with a list of sen-
tences. In comparison to the prior QA approaches,
we encourage developing QA systems capable of
providing precise answers by using PolicyQA.

5 Conclusion

This work proposes PolicyQA, a reading compre-
hension style question answering (QA) dataset. Pol-
icyQA can contribute to the development of QA
systems in the security and privacy domain that
have a sizeable real-word impact. We evaluate two
strong neural baseline methods on PolicyQA and
provide thorough ablation analysis to reveal impor-
tant considerations that affect answer span predic-
tion. In our future work, we want to explore how
transfer learning can benefit question answering in
the security and privacy domain.
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Attribute Values

Does/Does Not Does; Does Not

Collection Mode Explicit; Implicit; Unspecified

Action First-Party

Collect on website; Collect in mobile app; Collect on mobile website; Track
user on other websites; Collect from user on other websites; Receive from other
parts of company/affiliates; Receive from other service/third-party (unnamed);
Receive from other service/third-party (named); Other; Unspecified

Identifiability Identifiable; Aggregated or anonymized; Other; Unspecified

Personal Information Type

Financial; Health; Contact; Location; Demographic; Personal identifier; User
online activities; User profile; Social media data; IP address and device IDs;
Cookies and tracking elements; Computer information; Survey data; Generic
personal information; Other; Unspecified

Purpose
Basic service/feature; Additional service/feature; Advertising; Marketing; Ana-
lytics/Research; Personalization/Customization; Service Operation and Security;
Legal requirement; Merger/Acquisition; Other; Unspecified

User Type User without account; User with account; Other; Unspecified

Choice Type
Dont use service/feature; Opt-in; Opt-out link; Opt-out via contacting company;
First-party privacy controls; Third-party privacy controls; Browser/device privacy
controls; Other; Unspecified

Choice Scope Collection; Use; Both; Unspecified

Table 9: The attributes and their values for the First Party Collection/Use data practice category. We do not
consider the data practices associated with “Unspecified” values.

Model Hyper-parameter Value Model Hyper-parameter Value

BiDAF

dimension 300

BERT

dmodel 768
rnn type LSTM num heads 12
num layers 1 num layers 12
hidden size 300 dff 3072
dropout 0.2 dropout 0.2
optimizer Adam optimizer BertAdam
learning rate 0.001 learning rate 0.00003
batch size 16 batch size 16
epoch 15 epoch 5

Table 10: Hyper-parameters used in our experiments.

Value Example Question From PolicyQA

Collect on website Do you collect my information on your website?
Collect in mobile app Will you collect my data if I use your phone app?
Collect on mobile website How do you collect data when I use my mobile?
Track user on other websites Do they track users’ activities on other websites?
Collect from user on other websites Does the website collect my info on other websites?
Receive from other parts of company/affiliates Do you collect my information from your affiliates?
Receive from other service/third-party (unnamed) Does the website obtain my data from others?
Receive from other service/third-party (named) Who provides you my data?
Other How do you receive data from users?

Table 11: Examples questions from PolicyQA for the “Action First-Party” attribute under the First Party Collec-
tion/Use data practice category.


