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Abstract

Pretrained Language Models (LMs) have been
shown to possess significant linguistic, com-
mon sense and factual knowledge. One form
of knowledge that has not been studied yet
in this context is information about the scalar
magnitudes of objects. We show that pre-
trained language models capture a significant
amount of this information but are short of the
capability required for general common-sense
reasoning. We identify contextual information
in pre-training and numeracy as two key fac-
tors affecting their performance, and show that
a simple method of canonicalizing numbers
can have a significant effect on the results. 1

1 Introduction

The success of contextualized pretrained Language
Models like BERT (Devlin et al., 2018) and ELMo
(Peters et al., 2018) on tasks like Question Answer-
ing and Natural Language Inference, has led to
speculation that they are good at Common Sense
Reasoning (CSR).

On one hand, recent work has approached this
question by measuring the ability of LMs to an-
swer questions about physical common sense (Bisk
et al., 2020) (”How to separate egg whites from
yolks?”), temporal reasoning (Zhou et al., 2020)
(”How long does a basketball game take?”), and
numerical common sense (Lin et al., 2020). On the
other hand, after realizing some high-level reason-
ing skills like this may be difficult to learn from
a language-modeling objective only, (Geva et al.,
2020) injects numerical reasoning skills into LMs
by additional pretraining on automatically gener-
ated data. All of these skills are prerequisites for
CSR.

∗Both authors contributed equally.
†Work done during an internship at Google Research.

1Code and models are available at https://github.
com/google-research-datasets/numbert.

Figure 1: Scalar probing example. The mass of ”dog”
is a distribution (gray histogram) concentrated around
10-100kg. We train a linear model over a frozen (shown
by the snowflake in the figure) encoder to predict this
distribution (orange histogram) using either a dense
cross-entropy or a regression loss (Section 3).

Here, we address a simpler task which is another
pre-requisite for CSR: the prediction of scalar at-
tributes, a task we call Scalar Probing. Given an
object (such as a ”wedding ring”) and an attribute
with continuous numeric values (such as Mass or
Price), can an LM’s representation of the object
predict the value of that attribute? Since in gen-
eral, there may not be a single correct value for
such attributes due to polysemy (“crane” as a bird,
versus construction equipment) or natural variation
(e.g. different breeds of dogs), we interpret this as
a task of predicting a distribution of possible values
for this attribute, and compare it to a ground truth
distribution of such values. An overview of this
scalar probing is shown in Figure 1. Examples of
ground-truth distributions and model predictions
for different objects and attributes are shown in
Figure 2.

Our analysis shows that contextual encoders, like
BERT and ELMo, perform better than noncontex-
tual ones, like Word2Vec, on scalar probing de-

https://github.com/google-research-datasets/numbert
https://github.com/google-research-datasets/numbert
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spite the task being non-contextual (Mikolov et al.,
2013). Further, we show that using scientific nota-
tion to represent numbers in pre-training can have
a significant effect on results (though sensitive to
the evaluation metric used). Put together, these re-
sults imply that scale representation in contextual
encoders is mediated by transfer of magnitude in-
formation from numbers to nouns in pre-training
and making this mechanism more robust could im-
prove performance on this and other CSR tasks.
We also show improvements by zero-shot transfer
from our probes to 2 related tasks: relative compar-
isons (Forbes and Choi, 2017) and product price
prediction (Jianmo Ni, 2019), indicating that our
results are robust across datasets.

2 Problem Definition and Data

We define the scalar probing task (see Figure 1) as
the problem of predicting a distribution over values
of a scalar attribute of an object. We map these val-
ues into 12 logarithmically-spaced buckets, so that
our task is equivalent to predicting (the distribution
of) the order of magnitude of the target value. We
explore both models that predict the full distribu-
tion and models that predict a point estimate of the
value, which is essentially a distribution with all
the mass concentrating on one bucket.

Our primary resource for the scalar probing task
is Distributions over Quantities (DoQ; Elazar et al.,
2019) which consists of empirical counts of scalar
attribute values associated with >350K nouns, ad-
jectives, and verbs over 10 different attributes, col-
lected from web data. In this work, we focus only
on nouns (which we refer to as objects) over the
scalar attributes (or scales) of MASS (in grams),
LENGTH (in meters) and PRICE (in US Dollars).
For each object and scale, DoQ provides an em-
pirical distribution over possible values (e.g. Fig-
ure 2) that we map into the 12 afore-mentioned
buckets and treat it as ”ground truth”. We note
that DoQ itself is derived heuristically from web
text and itself contains noise; however, we use it
as a starting point to evaluate the performance of
different models. Moreover, we validate our find-
ings with transfer experiments shown in Section 6,
using DoQ to train a probe that is evaluated on the
ground-truth data of Forbes and Choi (2017) and
Jianmo Ni (2019).

To explore the role of context in scalar probing,
we also trained specialized probing models on a
subset of DoQ data in narrow domains: MASS of

Animals and PRICE of Household products.

3 Probing Model

We probe three different embedding models:
Word2vec (Mikolov et al., 2013), ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2018) (the
latter two of which are contextualized encoders).
For each encoder, the input layer extracts an em-
bedding of the object and the probing layer predicts
the scalar magnitude. 2

Input representations For Word2vec, we follow
the standard practice of averaging the embeddings
of each word in the object’s name. If an object
name is a full phrase in the dictionary, we use its
embedding instead. As BERT and ELMo are con-
textual text encoders operating on full sentences,
we generate artificial sentences with the following
templates:

• MASS: The X is heavy.
• PRICE: The X is expensive.
• LENGTH: The X is big.

and use the CLS token emebedding (for BERT) or
final state embedding (for ELMo) as the input rep-
resentation. For LENGTH, We use ”big” instead of
”long”, since LENGTH measurements in DoQ can
be widths or heights as well. Variations of these
templates with different adjectives and sentence
structures (e.g. ”The X is small.” or ”What is the
length of X?” for LENGTH) led to very similar
performance in our evaluations.

Probes We use linear probes in all cases follow-
ing many previous probing work (Shi et al., 2016;
Ettinger et al., 2016; Pimentel et al., 2020) since we
want to use a simple probe to find easily accessible
information in a representation. Hewitt and Liang
(2019) also demonstrates that linear probes achieve
relatively high selectivity compared to non-linear
ones like MLP.

We experiment with two different approaches
for predicting scales:

Regression (rgr) For the point estimate, we
use a standard Linear Regression model trained

2We use Word2Vec embeddings of dimension size 500
trained on Wikipedia, BERT-Base (L=12, H=768, A=12, Total
Parameters=110M) trained on Wikipedia+Books and ELMo-
Small (LSTM Hidden Size=1024, Output Size=128, #High-
way Layers=1, Total Parameters=13.6M) trained on the 1 Bil-
lion Word Benchmark, approximately 800M tokens of news
crawl data from WMT 2011.
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Figure 2: Empirical DoQ distributions and scalar probe predictions for MCC+BERT and MCC+NumBERT (Sec-
tion 4). The left plot shows length for the term ’runner’, showing two peaks corresponding to the length of runner
cloths and distances run in races. The right plot shows price for the term ’bill’, with counts corresponding to
popular denominations and the volumes of larger currency transactions.

to predict log of the median of all values for each
object for the scale attribute under consideration.

Multi-class Classification (mcc) We take a
non-parametric approach to modeling the full dis-
tribution of scalar values and treat the prediction
of which bucket a measurement will fall under as
a multi-class classification task, with one class
per bucket. A similar approach was shown by
(Van Oord et al., 2016) to perform well for model-
ing image pixel values. This approach discards the
relationship between adjacent bucket values, but it
allows us to use the full empirical distribution as
soft labels. We train a linear model with softmax
output, using a dense cross-entropy loss against the
empirical distribution from DoQ.

More details of the model and training procedure
are in the Appendix.

4 Numeracy through Scientific Notation

Wallace et al. (2019) showed that BERT and ELMo
had a limited amount of numeracy or numerical
reasoning ability, when restricted to numbers of
small magnitude. Intuitively, it seems that signif-
icant model capacity is expended in parsing the
natural representation of numbers as Arabic numer-
als, where higher and lower order digits are given
equal prominence. As further evidence of this, it is
shown in Appendix B of Wallace et al. (2019) that
the simple intervention of left-padding numbers in
ELMo instead of the default right-padding used
in Char-CNNs greatly improves accuracy on these

tasks.

To examine the effect of numerical representa-
tions on scalar probing, we trained a new version
of the BERT model (which we call NumBERT) by
replacing every instance of a number in the training
data with its representation in scientific notation,
a combination of an exponent and mantissa (for
example 314.1 is represented as 3141[EXP]2
where [EXP] is a new token introduced into the
vocabulary). This enables the BERT model to more
easily associate objects in the sentence directly with
the magnitude expressed in the exponent, ignoring
the relatively insignificant mantissa. This model
converged to a similar loss on the original BERT
Masked LM+NSP pre-training task and a standard
suite of NLP tasks (See Appendix) as BERT-base,
demonstrating that it was not over-specialized for
numerical reasoning tasks.

5 Evaluation

We offer the following aggregate baseline to help
interpret our results: For each attribute, we com-
pute the empirical distribution over buckets across
all objects in the training set, and use that as a pre-
dicted distribution for all objects in the test set (this
is a stronger version of the majority baseline used
in classification tasks). Since we are comparing
results from regression and classification models,
we report results on 3 disparate metrics that give a
full picture of performance:
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Accuracy For mcc we use the highest scoring
bucket from the predicted distribution as the pre-
dicted bucket, while for rgr we map the predicted
scalar to the single containing bucket and use that
as the predicted bucket. Then the accuracy is calcu-
lated between the predicted bucket and the ground-
truth bucket, which is the highest scoring bucket in
the empirical distribution in DoQ.

Mean Square Error (MSE) When used to com-
pare distributions, this is also known as the Cramer-
Von Mises distance (Baringhaus and Henze, 2017)
. It ignores the difference in magnitude between
different buckets (a difference in probability mass
between buckets i and i + 1 is equivalent to the
same difference between buckets i and any other),
but is upper-bounded by 1, making it easier to in-
terpret. To calculate MSE for rgr, we assume that
it assigns a probability of 1 to the single containing
bucket.3

Earth Mover’s Distance (EMD) Also known as
the Wasserstein distance (Rubner et al., 1998).

Given two probability densities p1 and p2 on
Ω, and some distance measure d on Ω, the Earth
Mover’s Distance is defined as follows:

D(p1, p2) = inf
π

∫
Ω

∫
Ω

d(x, y)dπ(x, y)

where the infimum is over all non-negative mea-
sures π on Ω×Ω satisfying π(E×Ω)−π(Ω×E) =∫
E p1(x)dx−

∫
E p2(x)dx for measurable subsets

E ⊂ Ω. Intuitively, EMD measures how much
“work” needs to be done to move the probability
mass of p1 to p2, while MSE measures pointwise
what the difference in densities is. So EMD ac-
counts for the distance between buckets, and pre-
dictions to neighboring buckets are penalized less
than those further away.

EMD is favored in the statistics literature be-
cause of its better convergence properties (Rubner
et al., 1998), and there is evidence that it is more
robust to adversarial perturbations of the data dis-
tribution (Liu et al., 2019), which is relevant for
our transfer tasks described below.

Transfer experiments We also evaluate models
trained on DoQ on 2 datasets containing ground
truth labels of scalar attributes. The first is a human-
labeled dataset of relative comparisons (e.g. (per-
son, fox, weight, bigger)) (Forbes and Choi, 2017).

3This is distinguished from the MSE loss used to train
regression models, as it is a distance measure over pairs of
distributions.

Accuracy MSE EMD
mcc rgr mcc rgr mcc rgr

L
en

gt
hs

Aggregate .24 .24 .027 .027 .077 .077
word2vec .30 .12 .026 .099 .079 .072
ELMo .43 .23 .019 .084 .055 .072
BERT .42 .24 .020 .084 .056 .072
NumBERT .40 .22 .021 .086 .052 .072

M
as

se
s

Aggregate .15 .15 .026 .026 .076 .076
word2vec .26 .20 .025 .088 .082 .077
ELMo .36 .21 .021 .087 .061 .077
BERT .33 .22 .021 .085 .062 .077
NumBERT .32 .20 .021 .088 .057 .077

Pr
ic

es

Aggregate .24 .24 .019 .019 .057 .057
word2vec .26 .14 .019 .090 .063 .087
ELMo .37 .21 .016 .081 .051 .087
BERT .33 .19 .017 .083 .054 .087
NumBERT .32 .17 .017 .085 .051 .087

A
ni

m
al

M
as

se
s

Aggregate .30 .30 .022 .022 .059 .059
word2vec .33 .35 .021 .069 .069 .077
ELMo .43 .28 .016 .079 .057 .077
BERT .41 .26 .017 .079 .058 .077
NumBERT .42 .23 .018 .083 .053 .077

Table 1: Comparison of encoders and probes on the
Scalar probing task on DoQ data. Results are averaged
over 10-fold cross-validation.

Predictions for this task are made by comparing the
point estimates for rgr and highest-scoring buckets
for mcc. The second is an empirical distribution
of product price data extracted from the Amazon
Review Dataset (Jianmo Ni, 2019). We retrained a
model on DoQ prices using 12 power-of-4 buckets
to support finer grained predictions.

6 Results

Table 1 shows results of scalar probing on DoQ
data.4 For MSE and EMD the best possible score
is 0, while for accuracy we take a loose upper
bound to be the performance of a model that sam-
ples from the ground-truth distribution and is evalu-
ated against the mode. This method achieves accu-
racies of 0.570 for lengths, 0.537 for masses, and
0.476 for prices. Compared to the baseline, we can
see that mcc over the best encoders capture about
half (as measured by accuracy) to a third (by MSE
and EMD) of the distance to the upper bound, sug-
gesting that while a significant amount of scalar
information is available, there is a long way to go
to support robust commonsense reasoning.

From Table 1, we see that the more expressive
models using mcc consistently beat rgr, with the
latter frequently unable to improve upon the Ag-
gregate baseline. This shows that scale information
is present in the embeddings, but training on the
median alone is not enough to reliably extract it;

4The full set of experimental results are shown in Table 6
in the Appendix.
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the full data distribution is needed.
Comparing results by encoders, we see that

Word2Vec performs significantly worse than the
contextual encoders – even though the task is non-
contextual – indicating that contextual information
during pre-training improves the representation of
scales.

Despite being weaker than BERT on down-
stream NLP tasks, ELMo does better on scalar
probing, consistent with it being better at numer-
acy (Wallace et al., 2019) due to its character-level
tokenization.

NumBERT does consistently better than ELMo
and BERT on the EMD metric, but worse on MSE
and Accuracy. This is in contrast to other standard
benchmarks such as Q/A and NLI, where Num-
BERT made no difference relative to BERT. Our
key takeaway is that the numerical representation
has an impact on scale prediction (see Figure 2
for qualitative differences), but the direction is sen-
sitive to the choice of evaluation metric. As dis-
cussed in Section 5, we believe EMD to be the most
robust metric a priori, but this finding highlights
the need to still examine the full range of metrics.

Results on Animal Masses (Table 1) show that
training models only on objects in a narrow domain
can significantly improve scalar prediction, under-
scoring the importance of context. For example,
while “crane” in general can refer to either a bird or
a piece of construction equipment, only the former
is relevant in the animal domain, giving the model
a simpler distribution of masses to predict.

Note that, despite significant differences in the
raw numbers for each scale (mass/length/price), the
relative behavior of encoders, metrics and probes
are the same, indicating that our conclusions are
broadly applicable.

Transfer experiments On the F&C relative com-
parison task (Table 2), rgr+NumBERT performed
best, approaching the performance of using DoQ
as an oracle, though short of specialized models
for this task (Yang et al., 2018). Scalar probes
trained with mcc perform poorly, possibly because
a finer-grained model of predicted distribution is
not useful for the 3-class comparative task. On
the Amazon price dataset (Table 3) which is a full
distribution prediction task, mcc+NumBERT did
best on all three metrics. On both zero-shot trans-
fer tasks, NumBERT was the best encoder on all
configurations of metric/objective, suggesting that
manipulating numeric representations can signifi-

dev test
mcc rgr mcc rgr

word2vec .40 .73 .38 .74
ELMo .47 .71 .47 .72
BERT .48 .71 .49 .71
NumBERT .51 .77 .54 .76
DoQ [Elazar et. al. 2019] - .78 - .77
Yang et. al. ’18 - .86 - .87

Table 2: Accuracy on VerbPhysics (Forbes and Choi,
2017).

Accuracy MSE EMD
mcc rgr mcc rgr mcc rgr

Aggregate .04 .04 .02 .02 .06 .06
word2vec .09 .23 .02 .07 .07 .08
BERT .14 .25 .02 .07 .06 .08
NumBERT .18 .27 .02 .07 .05 .08

Table 3: Results on consumer price data (Jianmo Ni,
2019).

cantly improve performance on scalar prediction.

7 Conclusion

From our novel scalar probing experiments, we
find there is a significant amount of scale informa-
tion in object embeddings, but still a sizable gap
to overcome before LMs achieve this prerequisite
of CSR. We conclude that although we observe
some non-trivial signal to extract scale information
from language embedding, the weak signals sug-
gest these models are far from satisfying common
sense scale understanding.

Our analysis points to improvements in model-
ing context and numeracy as directions in which
progress can be made, mediated by the transfer
of scale information from numbers to nouns. The
NumBERT intervention has a measurable impact
on scalar probing results, and transfer experiments
suggest that it is an improvement. For future work
we would like to extend our models to predict
scales for sentences bearing relevant context about
scalar magnitudes, e.g. ”I saw a baby elephant”.
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Task Metric BERT NumBERT
Base

CoLA Dev Acc .745 .742
MNLI Dev Matched Acc .791 .789

Dev Mismatched Acc .795 .798
MRPC Dev Acc .816 .802
Squad v1 F1 .799 .789
Squad v2 Best F1 .669 .673
STS-B Dev Pearson’s r .866 .871

Table 4: NumBERT vs BERT-base on a suite of stan-
dard NLP benchmarks.

For experiments on the narrow domains with
smaller datasets, we first use PCA to reduce em-
beddings down to 150 dimensions before training
the probing model.

A.2 NumBERT

NumBERT is pretrained on the Wikipedia and
Books corpora used by the original BERT paper
(Devlin et al., 2018). The BERT configuration is
the same as BERT-Base (L=12, H=768, A=12, To-
tal Parameters=110M). The language model mask-
ing is applied after WordPiece tokenization with
a uniform masking rate of 15%. Maximum se-
quence length (number of tokens) is 128. We train
with batch size of 64 sequences for 1,000,000 steps,
which is approximately 40 epochs over the 3.3 bil-
lion word corpus. All the other hyperparameters
and implementation details (optimizer, warm-up
steps, etc.) are the same as the original BERT im-
plementation. Table 4 shows a comparison of Num-
BERT vs a re-implementation of BERT-base with
identical settings as above, on a suite of standard
NLP benchmarks, and we conclude that the two
models reach similar performance on these tasks.

B Data Statistics

Table 5 shows the statistics of 3 datasets/resources
we use in this paper. For DoQ, we take the original
resource and get each subset by filtering using the
corresponding dimensions and/or object types (e.g.
all objects, animals, product categories, etc.). Also,
only objects with more than 100 values collected
in the resource are used. For F&C Cleaned dataset,
we use the data and the train/dev/test splits from
(Elazar et al., 2019).

Dataset Subset #Data Samples

DoQ

all masses 76,424
all prices 212,277
all lengths 244,517
animal masses 519
product category prices 1,789

Product Price - 1,888

F&C Cleaned
train 172
dev 1,267
test 1,522

Table 5: Statistics of Datasets/Resources used in our
paper

C Complete Experimental Results

We model the distributions of those scalar attributes
as categorical distributions over 12 categories. We
first take the base-10 logarithm of all the values and
then round them to the nearest integer (between -
2 and 9 for all scales). We treat each integer as
a bucket and use the normalized counts in each
bucket as the true distribution for that scalar at-
tribute of the object.

To explore the effect of ambiguity, we divide
all the data in DoQ for each scale into 2 sets, Uni-
modal where the distribution has one well-defined
peak and Multimodal, where multiple peaks are
present. The number of peaks were identified by a
simple hill-climbing algorithm.

As words often have more than one meaning
in different contexts or even modifiers, their cor-
responding distribution from DoQ should reflect
the different senses if they appeared enough in the
data. When the objects are different enough (e.g.
an ice-cream have mainly one meaning and its size
doesn’t vary much, as opposed to a truck which
can be a toy truck, which is very small, or an actual
vehicle, which is very big), they may have different
modalities. In order to better understand our results,
we wish to separate between objects of different
modalities to objects with a single modality.

In order to estimate a multi-modal function, we
take the bucketed DoQ distribution and smooth it
into a probability density function. Then, by find-
ing local maxima over the fitted density function,
we estimate a distribution to be multi-modal if we
find more than one maximum, otherwise we deter-
mine it to be a single-modal distribution.

The complete experiment results including the
mutlimodal experiments are in Table 6.
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Accuracy MSE EMD
All Multi. Uni. All Multi. Uni. All Multi. Uni.

L
en

gt
hs

mcc

Aggregate .240 .250 .230 .027 .028 .025 .077 .078 .075
word2vec .300 .310 .280 .026 .022 .031 .079 .074 .087
ELMo .430 .420 .440 .019 .020 .017 .055 .056 .053
BERT .420 .410 .420 .020 .021 .018 .056 .058 .054
NumBERT .400 .400 .410 .021 .022 .019 .052 .053 .049

rgr

Aggregate .240 .250 .230 .027 .028 .025 .077 .078 .075
word2vec .120 .120 .130 .099 .100 .097 .072 .070 .074
ELMo .230 .230 .240 .084 .085 .082 .072 .070 .074
BERT .240 .230 .240 .084 .085 .081 .072 .070 .074
NumBERT .220 .210 .220 .086 .088 .084 .072 .070 .074

M
as

se
s

mcc

Aggregate .150 .150 .150 .026 .027 .024 .076 .077 .074
word2vec .260 .260 .260 .025 .026 .023 .082 .083 .080
ELMo .360 .360 .360 .021 .021 .019 .061 .062 .059
BERT .330 .330 .330 .021 .022 .019 .062 .063 .060
NumBERT .320 .320 .330 .021 .022 .019 .057 .058 .055

rgr

Aggregate .150 .150 .150 .026 .027 .024 .076 .077 .074
word2vec .200 .190 .200 .088 .090 .086 .077 .076 .080
ELMo .210 .200 .210 .087 .088 .085 .077 .076 .080
BERT .220 .210 .220 .085 .086 .084 .077 .076 .080
NumBERT .200 .190 .200 .088 .089 .086 .077 .076 .080

Pr
ic

es

mcc

Aggregate .240 .240 .250 .019 .021 .016 .057 .060 .054
word2vec .260 .250 .280 .019 .014 .024 .063 .055 .072
ELMo .370 .360 .380 .016 .018 .013 .051 .053 .047
BERT .330 .320 .330 .017 .019 .014 .054 .055 .051
NumBERT .320 .320 .330 .017 .019 .014 .051 .053 .048

rgr

Aggregate .240 .240 .250 .019 .021 .016 .057 .060 .054
word2vec .140 .130 .150 .090 .093 .085 .087 .084 .092
ELMo .210 .210 .220 .081 .083 .078 .087 .084 .092
BERT .190 .190 .190 .083 .085 .081 .087 .084 .092
NumBERT .170 .180 .170 .085 .087 .083 .087 .084 .092

A
ni

m
al

sM
as

se
s mcc

Aggregate .300 .280 .330 .022 .021 .024 .059 .055 .064
word2vec .330 .320 .350 .021 .020 .023 .069 .066 .075
ELMo .430 .440 .420 .016 .015 .019 .057 .056 .059
BERT .410 .390 .450 .017 .016 .019 .058 .057 .060
NumBERT .420 .430 .410 .018 .016 .020 .053 .052 .055

rgr

Aggregate .300 .280 .330 .022 .021 .024 .059 .055 .064
word2vec .350 .350 .360 .069 .069 .069 .077 .081 .070
ELMo .280 .250 .330 .079 .080 .077 .077 .081 .070
BERT .260 .260 .240 .079 .076 .085 .077 .081 .070
NumBERT .230 .230 .240 .083 .081 .086 .077 .081 .070

H
ou

se
ho

ld
Pr

od
uc

tP
ri

ce
s

mcc

Aggregate .470 - - .010 - - .046 - -
word2vec .510 .490 .540 .008 .008 .008 .041 .041 .041
ELMo .540 .520 .570 .007 .007 .007 .038 .038 .039
BERT .570 .560 .580 .007 .007 .007 .038 .038 .039
NumBERT .550 .530 .570 .007 .007 .007 .038 .038 .039

rgr

Aggregate .470 - - .010 - - .046 - -
word2vec .450 .430 .480 .056 .058 .055 .092 .094 .090
ELMo .420 .400 .460 .058 .059 .057 .092 .094 .090
BERT .440 .420 .460 .057 .059 .055 .092 .094 .090
NumBERT .420 .390 .460 .060 .062 .057 .092 .094 .090

Table 6: Evaluation on all datasets.


