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Abstract
We present BlockBERT, a lightweight and ef-
ficient BERT model for better modeling long-
distance dependencies. Our model extends
BERT by introducing sparse block structures
into the attention matrix to reduce both mem-
ory consumption and training/inference time,
which also enables attention heads to cap-
ture either short- or long-range contextual in-
formation. We conduct experiments on lan-
guage model pre-training and several bench-
mark question answering datasets with vari-
ous paragraph lengths. BlockBERT uses 18.7-
36.1% less memory and 12.0-25.1% less time
to learn the model. During testing, BlockBERT
saves 27.8% inference time, while having com-
parable and sometimes better prediction accu-
racy, compared to an advanced BERT-based
model, RoBERTa.

1 Introduction
Recent emergence of the pre-training and fine-

tuning paradigm, exemplified by methods like
ELMo (Peters et al., 2018), GPT-2/3 (Radford et al.,
2019; Brown et al., 2020), BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019) and ALBERT (Lan et al., 2019), has
drastically reshaped the landscape of the natural
language processing research. These methods first
pre-train a deep model with language model objec-
tives using a large corpus and then fine-tune the
model using in-domain supervised data for target
applications. Despite its conceptual simplicity, this
paradigm has re-established the new state-of-the-
art baselines across various tasks, such as question
answering (Devlin et al., 2019), coreference resolu-
tion (Joshi et al., 2019b), relation extraction (Soares
et al., 2019) and text retrieval (Lee et al., 2019;
Nogueira and Cho, 2019), to name a few.

⇤This work was partially done when the first author was
an intern at Facebook AI. Code is available at https://
github.com/xptree/BlockBERT

Building such models in practice, however, is
an extremely resource-intensive process. For in-
stance, the training of BERT-family models is noto-
riously expensive. Devlin et al. (2019) report that
it takes four days to pre-train BERT-Base/BERT-
Large on 4/16 Cloud TPUs. In order to reduce the
pre-training time of RoBERTa to 1 day, Liu et al.
(2019) use 1,024 V100 GPUs. One crucial factor
contributing to the long training time is the memory
consumption of these deep models, as it directly
affects the batch size. Although the fine-tuning
stage is relatively inexpensive, the memory issue
still restricts the scenarios in which BERT can be
used. For instance, “it is currently not possible
to re-produce most of the BERT-Large results on
the paper using a GPU with 12GB-16GB of RAM,
because the maximum batch size that can fit in
memory is too small.1”

Although one may think that model size is the
main contributor to the large memory consump-
tion, our analysis (Section 2.1) shows that one of
the main bottlenecks is actually dot-product self-
attention, operated in multiple layers of Transform-
ers (Vaswani et al., 2017), the building block of
BERT. As the attention operation is quadratic to
the sequence length, this fundamentally limits the
maximum length of the input sequence, and thus
restricts the model capacity in terms of capturing
long-distance dependencies. As a result, down-
stream tasks have to either truncate their sequences
to leading tokens (Nogueira and Cho, 2019) or split
their sequences with a sliding window (Joshi et al.,
2019a,b). Ad-hoc handling of long sequences is
also required in the pre-training stage, such as up-
dating the model using only short sequences in the
early stage (Devlin et al., 2019).

Common strategies for reducing memory con-
sumption, unfortunately, do not work. For instance,

1github.com/google-research/bert

https://github.com/xptree/BlockBERT
https://github.com/xptree/BlockBERT
github.com/google-research/bert
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shrinking the model by lowering the number of lay-
ers L, attention heads A, or hidden units H leads
to significant performance degradation (Vaswani
et al., 2017; Devlin et al., 2019) and does not
address the long sequence issue. Alternatively,
general low-memory training techniques, such as
microbatching (Huang et al., 2018) and gradient
checkpointing (Chen et al., 2016) essentially trade
off training time for memory consumption, pro-
longs the already lengthy training process.

In this work, we explore a different strategy,
sparsifying the attention layers, intending to de-
sign a lightweight and effective BERT that can
model long sequences in a memory-efficient way.
Our BlockBERT extends BERT by introducing
sparse block substructures into attention matrices
to reduce both memory consumption and the num-
ber of floating-point operations (FLOPs), which
also enables attention heads to capture either short-
or long-range contextual information. Compared
to the previous method that also enforces spar-
sity (Child et al., 2019), our approach is much
simpler mathematically and very easy to imple-
ment. More importantly, the results of experiments
conducted on several benchmark question answer-
ing datasets with various paragraph lengths show
that BlockBERT performs comparably or even bet-
ter than the original BERT-family models, while
enjoying an 18.7-36.1% reduction in memory us-
age, a 12.0-25.1% reduction in training time, and a
27.8% reduction in inference time.

The rest of the paper is organized as follows.
Section 2 gives a brief introduction of the BERT
model, along with an in-depth analysis of its mem-
ory usage during training time. We describe our
proposed model in Section 3 and contrast it with ex-
isting methods that aim for creating a lighter model.
Section 4 presents the experimental results and ab-
lation studies, followed by a survey of other related
work in Section 5 and the conclusion in Section 6.

2 Background: Memory Bottleneck in
Training BERT

We briefly review BERT and introduce its memory
profiling in this section. Following the paradigm
of language model pre-training and down-stream
task fine-tuning, BERT (Devlin et al., 2019) con-
sists of multiple layers of bidirectional Transform-
ers (Vaswani et al., 2017), where each Transformer
encoder has a multi-head self-attention layer and a
position-wise feed-forward layer. Using the same

notation as in (Devlin et al., 2019), we denote the
number of Transformer layers by L, the number of
hidden units by H , the number of attention heads
by A, the sequence length by N , and the batch size
by B. We also assume the feed-forward hidden
unit size to be 4H .2

2.1 Memory Profiling

Training BERT is a memory-intensive process. In
order to identify the bottleneck, we follow the mem-
ory model proposed by Sohoni et al. (2019), where
memory usage throughout neural network train-
ing is categorized into three main types: (1) Model
memory is used to store model parameters; (2) Op-
timizer memory is the additional memory used by
the specific learning algorithm during the process;
(3) Activation memory consists of the outputs of
each layer, which are cached for reuse in backprop-
agation to compute gradients.

Take BERT-Base training as an example. The
model has 110 million parameters, so model mem-
ory occupies 0.2 GB if parameters are stored in
half-precision floating-point format (FP16). For
Adam (Kingma and Ba, 2014), the optimizer needs
additional memory to store the gradients, first mo-
ments, and second moments of model parameters.
If stored using the same precision, the optimizer
memory should be three times of model memory.3

To calculate the exact size of activation memory
is not trivial because it depends heavily on the im-
plementation of the toolkit. Instead, we measure
it empirically by training BERT-Base using Adam
with a memory profiler (more details are provided
in Appendix A.2).

We use 32 NVIDIA V100 GPUs for train-
ing. Every single GPU thus consumes a mini-
batch of size b = B/32 = 8. Figure 1(a)
shows the profiling result for a single GPU, where
the model/optimizer/activation memory consumes
0.21/1.03/8.49 GB, respectively. We can see that
activation memory accounts for the vast majority of
the total GPU memory (87.6%) and is thus the bot-
tleneck. Notice that although our analysis is done
on BERT-Base, it can also be generalized to BERT-
Large and other models such as RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019).

2The default parameter settings for BERT-Base and BERT-
Large can be found in Appendix A.1

3In the current PyTorch Adam implementation, the first
and second moments are stored in single precision. Conse-
quently, BERT’s optimizer memory (1 GB) is five times of
model memory (0.2 GB).
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Figure 1: Memory Profiling for BERT.

2.2 A Regression Analysis on Activation
Memory

For BERT, or more specifically, Transformer, the
activation memory corresponds to intermediate re-
sults of different layers. It grows linearly in all
the model hyper-parameters, except the sequence
length N , due to the attention layers. To quan-
tify the linear and quadratic components in the
activation memory more clearly, we conduct a re-
gression analysis as follows. Assume that the ac-
tivation memory (in each GPU) is a polynomial
a2bN2 + a1bN + a0, where b is the batch size
in each GPU and ai (i = 0, 1, 2) are coefficients
to be determined. If we fix the total number of
tokens in a GPU to be constant (in our case, we
fix b ⇥ N = 4096), we should have a linear func-
tion w.r.t. N , i.e., 4096a2N + 4096a1 + a0. We
enumerate N from {128, 256, 512, 1024} in our
experiments, and plot the corresponding profiled
activation memory in Figure 1(b). Using ordi-
nary least squares (OLS), with b ⇥ N = 4096,
the estimated linear function for activation mem-
ory is 0.00715 ⇥ N + 4.83, where the first term
corresponds to the O(N2) component. When
N = 512 (i.e., b = 8), we can see that for
BERT-Base, the O(N2) component accounts for
3.66 GB, and the O(N) component accounts for
4.83 GB. When the sequence length N increases to
1024 (i.e., b = 4), the O(N2) component increases
to 7.32 GB, while the O(N) part is unchanged.

2.3 Techniques for Reducing Traing Memory

Observing that activation memory is the training
bottleneck, we discuss common memory reduction
techniques below.

Low Precision (Micikevicius et al., 2017) Low
precision is to use half-precision/mixed-precision
for training neural networks. This technique has
been widely used in Transformer training (Ott et al.,
2019; Liu et al., 2019). In this work, we already

assume to use mixed-precision training by default,
as indicated in the aforementioned analysis.

Microbatching (Huang et al., 2018) Micro-
batching is to split a batch into small micro-
batches (which can be fit into memory), and then
run forward and backward passes on them sepa-
rately with gradients for each micro-batch accu-
mulated. Because it runs forward/backward pass
multiple times for a single batch, it trades off time
for memory.

Gradient Checkpointing (Chen et al., 2016) Gra-
dient checkpointing saves memory by only caching
activations of a subset of layers. The un-cached
activations will be recomputed during backpropaga-
tion from the latest checkpoint. This strategy trades
off time for memory by repeating computations and
will obviously extend training time.

Knowledge Distillation (Hinton et al., 2015)
Knowledge distillation aims to compress and trans-
fer knowledge from a teacher model to a simpler
student model. However, knowledge distillation
relies on a teacher model (which is still expensive
in training time) and usually suffers from a certain
degree of performance degradation.

As common techniques are limited in reducing
both the training time and memory usage, we in-
vestigate how to optimize the dot-product attention
layers and introduce our approach next.

3 Model: BlockBERT

Following (Vaswani et al., 2017), the dot-product
attention in Transformer is defined as:

Attention(Q,K,V ) = softmax

✓
QK>
p
d

◆
V ,

where Q,K,V 2 RN⇥d with N to be the se-
quence length and d to be a hidden dimension. As
we can see, the inner product between Q and K
consumes O(N2) memory. One simple way to re-
duce the memory consumption of attention is to
sparsify the attention matrix. Suppose we have
a masking matrix M 2 {0, 1}N⇥N , we define a
masked version of attention as follows:

Attention(Q,K,V ,M) = softmax

✓
QK>
p
d

�M

◆
V ,

(1)
with operator � defined by

(A�M)ij =

(
Aij if Mij = 1

�1 if Mij = 0
.
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In this work, we design M to be a sparse block

matrix, which not only reduces memory and the
number of floating-point operations (FLOPs) but
also benefits from efficient dense matrix support
from deep learning frameworks, such as PyTorch
and Tensorflow. More formally, we split the length-
N input sequence into n blocks, with each block
of length N

n .4 The N ⇥ N attention matrix is then
partitioned into n⇥n blocks, where each block ma-
trix is of the size N

n ⇥ N
n . We define a sparse block

matrix M by a permutation ⇡ of {1, 2, · · · , n}:

Mij =

(
1 if ⇡

⇣
b (i�1)n

N
+ 1c

⌘
= b (j�1)n

N
+ 1c,

0 otherwise.
(2)

By writing Q,K,V as block matrices, such that
Q = [Q>

1 · · · Q>
n ]> ,K = [K>

1 · · · K>
n ]> and

V = [V >
1 · · · V >

n ]> and pluging them into Equa-
tion 1, we can formally define Blockwise Attention
as follows:

Blockwise-Attention(Q,K,V ,M)

=

2

666664

softmax

✓
Q1K

>
⇡(1)p
d

◆
V⇡(1)

...

softmax

✓
QnK>

⇡(n)p
d

◆
V⇡(n)

3

777775
.

(3)

Equation 3 only needs to compute and store
QiK>

⇡(i) (i = 1, · · ·n), each has size N
n ⇥ N

n .
In other words, BlockBERT reduces both O(N2)
memory consumption and FLOPs by a factor of n,
since N

n ⇥ N
n ⇥ n = N⇥N

n .

3.1 Blockwise Multi-Head Attention
Analogous to Multi-head Attention (Vaswani et al.,
2017), we allow queries, keys, and values to be
projected multiple times and perform blockwise at-
tentions in parallel. Moreover, different blockwise
attention heads can use different masking matrices.
The outputs of multiple heads are then concate-
nated and aggregated with another linear projection.
Let A be the number of attention heads and H the
number of hidden units. Blockwise multi-head at-

tention is formally defined as follows:

Blockwise-Multi-head-Attention(Q,K,V )

=Concat(head1, · · · headA)W
O,

where for each head i, i = 1, 2, · · · , A,

headi = Blockwise-Attention(QWQ

i
,KWK

i ,V W V

i ,Mi),

4We assume N can be divided by n. If not, we pad the
input sequence to make N divisible.

Masking Matrices

Blockwise Attention

Linear Linear Linear

Concat

Linear

Q K V

Mask

n=3

n=2

(1, 2)      (2, 1)

(1, 2, 3)    (2, 3, 1)     (3, 1, 2)

Figure 2: Architecture of Blockwise Multi-head Atten-
tion, which acts as building blocks of BlockBERT. The
key idea is to introduce a sparse block masking matrix
to the N ⇥ N attention matrix. The right panel shows
the masking matrices we use when n = 2, 3. For n = 2,
the masking matrices are defined by permutation (1, 2),
(2, 1) and have 50% non-zeros. For n = 3, the masking
matrices are defined by permutation (1, 2, 3), (2, 3, 1),
and (3, 1, 2) and have 33.33% non-zeros.

with d = H
A ,WQ

i ,WK
i ,W V

i 2 RH⇥d and the
projection matrix WO 2 RH⇥H . Each mask-
ing matrix Mi is determined by a permutation
⇡i according to Equation 2. In particular, we
choose ⇡ from permutations generated by shifting

one position: � = (2, 3, · · · , n, 1), i.e., we select
⇡ 2 {�, �2, · · · , �n}. For example, with 12 atten-
tion heads (A = 12) and 2 blocks (n = 2), we can
assign 10 heads to permutation (1, 2) and the other
2 heads to permutation (2, 1). Figure 2 illustrates
the blockwise multi-head attention with block num-
ber n 2 {2, 3}. Blockwise sparsity captures both
local and long-distance dependencies in a memory-
efficiency way, which is crucial for long-document
understanding tasks. For instance, the identity per-
mutation, i.e., (1, 2, · · · , n), enables each token to
attend to its nearby tokens in self-attention, while
other permutations allow tokens within the same
block attending to tokens in another block. Our
proposed BlockBERT essentially replaces the multi-
head attention layers in Transformer/BERT with
blockwise multi-head attention.

3.2 Analysis of Memory Usage Reduction
To validate our claim that BlockBERT with n ⇥ n
blocks can reduce the O(N2) memory usage by a
factor of n, we perform the same memory profiling
as described in sections 2.1 and 2.2. Again, We fix
the number of tokens in each GPU (b⇥N = 4096)
and choose N from {128, 256, 512, 1024, 2048}.5

As we can see from Figure 3 and Table 1, the em-
pirical results align well with the theoretical values.

5We use GPUs of 16 GB memory for profiling. BERT
with N = 2048 fails due to an out-of-memory error.
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When we set the number of blocks to be 2 and 3 for
BlockBERT, the estimated O(N2) activation mem-
ory decreases to 1/2 and 1/3 of BERT’s O(N2) acti-
vation memory, respectively. As shown in Table 2,
for the sequence length N = 512, BlockBERT
with 2 and 3 blocks saves 18.7% and 23.8% overall
memory, respectively. The saving is more signifi-
cant for longer sequences. When N = 1024, the
overall memory reduction of BlockBERT with 2
and 3 blocks is 27.3% and 36.1%, respectively.
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Figure 3: Regression analysis on activation memory for
BERT and BlockBERT.

Act. Mem. (GB)
N b Model O(N) O(N2)

512 8
BERT 4.83 3.66
BlockBERT n=2 4.84 1.83
BlockBERT n=3 4.87 1.22

1024 4
BERT 4.83 7.32
BlockBERT n=2 4.84 3.66
BlockBERT n=3 4.87 2.44

Table 1: Estimated O(N2) and O(N) activation mem-
ory for BERT and BlockBERT.

4 Experiments

We evaluate the pre-training and fine-tuning perfor-
mance of BlockBERT. In particular, when n = 2,
we denote 10:2 to be the configuration which as-
signs 10 heads to permutation (1, 2) and 2 to per-
mutation (2, 1); when n = 3, we denote 8:2:2 to be
the configuration which assigns 8, 2, 2 heads to per-
mutation (1, 2, 3), (2, 3, 1), and (3, 1, 2), respec-
tively. We compare BlockBERT with the following
baselines:

Google BERT Google BERT is the official pre-
trained model from (Devlin et al., 2019).

RoBERTa-2seq & RoBERTa-1seq We compare
with two versions of RoBERTa (Liu et al., 2019).
RoBERTa-2seq is trained with both masked lan-
guage model (MLM) task and next sentence pre-

diction (NSP) task, while RoBERTa-1seq refers to
the pre-training model with only the MLM task.

SparseBERT We pre-train BERT models with its
Transformer encoder replaced by a Sparse Trans-
former encoder (Child et al., 2019). We set its
sparsity hyper-parameters stride ` = 128 and ex-
pressivity c = 32.6 The attention masking matrix
used in Sparse Transformer and more implemen-
tation details are discussed in Appendix A.3. A
similar architecture was adopted in GPT-3 (Brown
et al., 2020).

4.1 Pre-training
All the models follow the BERT-Base setting, i.e.,
L = 12, H = 768, A = 12, and are trained
on the same corpus — BooksCorpus and English
Wikipedia with uncased word piece tokens. Thus
all models use the same vocabulary as Google
BERT (uncased version) with vocabulary size
30,522. We fix the number of tokens per batch
B ⇥ N = 131, 072, i.e., if sequence length N =
512 then batch size B = 256, if sequence length
N = 1024 then batch size B = 128. The detailed
pre-training configuration is listed in Appendix A.1.
Moreover, the pre-training of SparseBERT and
BlockBERT follows the RoBERTa-1seq setting, i.e.,
we drop the NSP (Next Sentence Prediction) task,
and an input sequence is up to N tokens until it
reaches a document boundary.

A summary of the pre-training performance com-
parison between BlockBERT and RoBERTa-1seq
is shown in Table 2. Besides memory saving, we
also achieve a significant speedup. For example,
when N = 1024, BlockBERT (n = 2) reduces the
training time from RoBERTa’s 9.7 days to 7.5 days.

4.2 Fine-tuning Tasks
We evaluate BlockBERT on several question an-
swering tasks, including SQuAD 1.1/2.0 (Ra-
jpurkar et al., 2018) and five other tasks from
the MrQA shared task7 — HotpotQA (Yang
et al., 2018), NewsQA (Trischler et al., 2017),
SearchQA (Dunn et al., 2017), TriviaQA (Joshi
et al., 2017) and NaturalQA (Kwiatkowski et al.,
2019). Since MrQA does not have an official test
set, we follow Joshi et al. (2019a) to split the devel-

6We adopt Sparse Transformer implemented by Fairseq,
which first computes the N ⇥ N attention matrix, and then
masks it to be a sparse one. This implementation cannot
avoid the O(N2) attention computation, and thus has a similar
training time/memory cost to RoBERTa.

7mrqa.github.io

mrqa.github.io
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N Model Training Time (day) Memory (per GPU, GB) Heads Config. Valid. ppl

512
RoBERTa-1seq 6.62 9.73 - 3.58
BlockBERT n=2 5.83 (-12.0%) 7.91 (-18.7%) 10:2 3.56
BlockBERT n=3 5.80 (-12.5%) 7.32 (-23.8%) 8:2:2 3.71

1024
RoBERTa-1seq 9.66 13.39 - 3.60
BlockBERT n=2 7.51 (-22.3%) 9.73 (-27.3%) 9:3 3.57
BlockBERT n=3 7.23 (-25.1%) 8.55 (-36.1%) 8:2:2 3.63

Table 2: Pre-training Performance Analysis.

opment set evenly to build a new development set
and test set.

These QA datasets have different paragraph
length distributions and are thus ideal for testing
the effectiveness of BlockBERT8. For example,
SQuAD, NaturalQA, and HotpotQA consist of
mostly short paragraphs (shorter than 512), while
paragraphs in SearchQA (average length 1,004)
and TriviaQA (average length 934) have around
1,000 tokens. When the input sequence is longer
than N , we follow the common practice (Joshi
et al., 2019a) to split it using a sliding window
of size N and stride 128. This means that for
SearchQA and TriviaQA, a model with N = 512
can only capture half of the context, while a model
with N = 1024 can accept the whole paragraph as
input.

For all models, we adopt the same fine-tuning
QA setup from Devlin et al. (2019). The
tokenized paragraph (p1, · · · , ps) and question
(q1, · · · , qt) are concatenated to be a sequence
[CLS]q1 · · · qt[SEP]p1 · · · ps[SEP]. The se-
quence is then fed into the pre-trained model with
two extra linear layers for predicting the start and
end positions of the answer spans. The detailed
fine-tuning setting is listed in Appendix A.4. Ta-
ble 3 and Table 4 report the experimental results.

BlockBERT (n=2) v.s. RoBERTa-1seq Compar-
ing BlockBERT with RoBERTa-1seq when N =
512, we observe an absolute F1 difference from
0.04 (in NaturalQA) to 1.18 (in NewsQA), with
an average of 0.55. For N = 1024, BlockBERT
achieves more comparable or even better perfor-
mance to RoBERTa-1seq, In SearchQA, NewsQA
and HotpotQA, BlockBERT achieves absolute F1
improvement of 0.39, 0.44 and 0.23, respectively.

BlockBERT v.s. SparseBERT For N = 512, it is
interesting that BlockBERT with 3 blocks (density
33.33%) performs better then SparseBERT (den-

8The detailed paragraph length distributions can be found
in Appendix A.5

SQuAD 1.1 SQuAD 2.0
N Model EM F1 EM F1

- Human Perf. 82.30 91.20 86.80 89.40

512

Google BERT 81.19 88.45 74.08 77.16
XLNet - - 78.46 81.33
RoBERTa-2seq 82.91 89.78 75.79 79.17
RoBERTa-1seq 84.43 91.48 79.22 82.27
SparseBERT 80.49 88.09 74.15 76.96
BlockBERT n=2 84.08 90.77 78.34 81.46

BlockBERT n=3 82.37 89.64 77.33 80.33

1024

RoBERTa-1seq 84.58 91.14 79.34 82.26
SparseBERT 81.02 88.37 74.51 77.57
BlockBERT n=2 83.65 90.74 78.55 81.45

BlockBERT n=3 82.74 90.05 76.79 79.84

Table 3: Dev set results on SQuAD 1.1/2.0. The re-
sult of XLNet(-Base) is from Yang et al. (2019). For
BlockBERT models, their attention head configurations
are the same as Table 2.

sity 44.20%) in both SQuAD and MrQA tasks.
Similar results can be observed for N = 1024,
too. These results show that off-diagonal masking
matrices, e.g., the masking matrix defined by per-
mutation (2, 3, 1) and (3, 1, 2), play crucial roles
in BlockBERT. Furthermore, BlockBERT with 2
blocks achieve a more significant improvement.

Effect of Long Sequence Pre-training Our obser-
vations are twofold: (1) Long sequence pre-training
benefits long sequence fine-tuning. In TriviaQA
and SearchQA, of which paragraph lengths are
around 1024, pre-training models with N = 1024
achieve significantly better performance. (2) The
heterogeneity of pre-training and fine-tuning se-
quence length may hurt performance. For example,
in SQuAD, we do not see significant performance
gain by using pre-trained models with N = 1024;
in HotpotQA and NewsQA, longer sequence pre-
training even hurts performance.

Effect of #Blocks It is not surprising that
BlockBERT with 2 blocks (n = 2) performs bet-
ter than that with 3 blocks (n = 3), because it
keeps more attention matrix entries. The biggest
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difference is in SQuAD 2.0 and NewsQA with
N = 1024, where we observe an absolute loss
of 1.6 F1 by increasing block number from 2 to 3.

Efficient inference with BlockBERT We bench-
mark test efficiency of RoBERTa and BlockBERT.
The benchmark code follows huggingface9. All ex-
periments are run 30 times on a 32GB V100 GPU
with half precision (FP16). We report the average
running time in Table 5. As we can see, BlockBERT
does achieve speedup and memory reduction dur-
ing test time. Take 8⇥1024, i.e., batch size B = 8,
sequence length N = 1024, as an example, we
can see that BlockBERT with 2 blocks saves 27.8%
of test time, and BlockBERT with 3 blocks saves
more (30.4%). As for memory, we can observe that
RoBERTa cannot handle an input of size 16⇥1024,
while it is possible for BlockBERT to work on it.

In summary, not only BlockBERT saves train-
ing/inference time and memory, but it also has
a competitive and sometimes better performance,
especially for tasks with longer sequences. This
demonstrates the effectiveness of our blockwise
multi-head attention approach.

4.3 Ablation Study
We fix the assignment of attention heads in the
above experiments. For example, BlockBERT with
sequence length N = 512 and 2 blocks is trained
with ten heads using permutation (1, 2) and the
other two using permutation (2, 1). However, there
are other ways to assign twelve attention heads,
e.g., seven heads for permutation (1, 2) and the
other five for permutation (2, 1). It would be inter-
esting to see how the assignment of heads affects
model performance. In this section, we grid search
attention head assignments and plot their best val-
idation performance in 1.2M training steps. The
results are shown in Figure 4.

Our observations are threefold: (1) Identity per-
mutations, i.e., (1, 2) and (1, 2, 3), are important.
As shown in Figure 4, all optimal solutions assign
considerable attention heads to block-diagonal ma-
trices, since those matrices enable each token to at-
tend to its nearby tokens; (2) Non-identity permuta-
tions follow the rule of “vital few and trivial many.”
Although identity permutations are important, as-
signing all attention heads to them (corresponding
to 12:0 and 12:0:0 in Figure 4) significantly hurts
performance, since the model can not learn long-

9github.com/huggingface/transformers/
blob/master/examples/benchmarks.py

term dependencies with only identity permutation;
(3) Pre-training performance and fine-tuning per-
formance are correlated but not always consistent.
When n = 3, pre-training performance suggests
10:1:1 to be the best head assignment — ten heads
for permutation (1, 2, 3), one head for (2, 3, 1) and
one head for (3, 1, 2), but we observe that the con-
figuration of 8:2:2 achieves better performance in
fine-tuning tasks.

5 Related Work

In this section, we review the related work of mem-
ory optimization for neural network training and
recent efforts to simplify Transformer and BERT.

5.1 Low-memory neural networks training
Due to the large size of model parameters and deep
architectures, modern neural networks training re-
quires significant amounts of computing resources.
As a result, there is an increasing interest in training
neural networks with low memory (Sohoni et al.,
2019). Mainstream techniques mostly address this
problem with a better system or engineering de-
sign, such as low-precision training (Micikevicius
et al., 2017), microbatching (Huang et al., 2018)
and gradient checkpointing (Chen et al., 2016). Al-
ternatively, there also exists some research focusing
on the theoretical aspect, including the recently pro-
posed lottery ticket hypothesis (Frankle and Carbin,
2018).

5.2 Efficient Transformer
Since the invention of Transformer (Vaswani et al.,
2017) and its successful application to masked lan-
guage model pre-training (Devlin et al., 2019; Rad-
ford et al., 2019; Yang et al., 2019; Liu et al., 2019;
Lan et al., 2019), several approaches have been pro-
posed to simplify the model and its training process.
We summarize these attempts as follows:

Attention layer simplification There are cur-
rently two lines of research trying to simplify
the multi-head attention layers. The first one
focuses on attention matrix sparsification. No-
table examples include Star Transformer (Guo
et al., 2019), Sparse Transformer (Child et al.,
2019), Adaptive Sparse Transformer (Correia et al.,
2019; Sukhbaatar et al., 2019), Log-Sparse Trans-
former (Li et al., 2019) , Reformer (Kitaev et al.,
2020) and Longformer (Beltagy et al., 2020). How-
ever, due to the insufficient support for sparse ten-
sors from the current deep learning platforms, some

github.com/huggingface/transformers/blob/master/examples/benchmarks.py
github.com/huggingface/transformers/blob/master/examples/benchmarks.py
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SearchQA TriviaQA NewsQA NaturalQA HotpotQA
N Model EM F1 EM F1 EM F1 EM F1 EM F1

512

Google BERT 74.94 80.37 70.18 75.35 51.27 66.25 66.13 78.29 60.50 77.08
RoBERTa-2seq 76.12 81.74 71.92 76.79 52.45 66.73 66.98 78.63 61.52 77.81
RoBERTa-1seq 77.09 82.62 73.65 78.22 56.13 70.64 67.14 79.07 62.77 79.28
SparseBERT 73.36 79.01 68.71 73.15 51.18 65.47 65.53 77.46 58.54 74.85
BlockBERT n=2 76.68 82.33 72.36 77.53 54.66 69.46 66.94 79.03 62.13 79.15

BlockBERT n=3 75.54 81.07 72.05 76.74 53.82 68.39 66.14 78.47 60.64 77.46

1024

RoBERTa-1seq 77.47 83.12 75.29 80.20 55.00 69.64 68.28 80.35 61.89 78.71
SparseBERT 74.83 80.54 70.56 75.34 51.67 67.16 65.07 77.31 59.65 76.02
BlockBERT n=2 77.95 83.51 75.06 79.41 55.44 70.08 67.31 79.39 62.13 78.94
BlockBERT n=3 76.98 82.76 74.78 79.28 53.48 68.50 65.91 78.20 61.89 78.18

Table 4: MrQA test results (Tasks are sorted decreasingly by average paragraph length). For BlockBERT models,
their attention head configurations are the same as Table 2.
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(a) N = 512, n = 2
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(b) N = 1024, n = 2
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(c) N = 512, n = 3
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(d) N = 1024, n = 3

Figure 4: Ablation over blockwise attention heads assignment.

B ⇥N 8⇥1024 16⇥1024 24⇥1024 32⇥1024

RoBERTa 0.1371 OOM OOM OOM
BlockBERT n=2 0.0990 0.1869 OOM OOM
BlockBERT n=3 0.0954 0.1790 0.2634 OOM

Table 5: Test time statistics (sec) for different input size.
OOM indicates out-of-memory.

of them have to represent a sparse matrix using a
dense matrix with a binary mask or rely on cus-
tomized CUDA kernels (Gray et al., 2017). As a
result, the speed-up or reduction in memory con-
sumption is sometimes limited in practice. The
second line of research prunes redundant attention
heads. Examples include (Voita et al., 2019) and
(Michel et al., 2019). Our BlockBERT model be-
longs to the first category, as we sparsify the at-
tention matrix by replacing it with a block sparse
matrix.

Reducing model size for pre-training Knowl-
edge distillation (Hinton et al., 2015) is a gen-
eral technique that aims to compress and trans-
fer knowledge from a teacher model to a simpler
student model. There are two recent efforts that
apply knowledge distillation to BERT pre-training
for reducing model size: TinyBERT (Jiao et al.,
2019) distills BERT using a smaller Transformer,

and Tang et al. (2019) distills BERT with a BiL-
STM (Hochreiter and Schmidhuber, 1997). In con-
trast, ALBERT (Lan et al., 2019) is a notable work
that does not take the knowledge distillation ap-
proach. It uses parameter-sharing to reduce the
number of parameters of the BERT model. As dis-
cussed in section 2.1, parameter-sharing reduces
both model memory and optimizer memory. These
two parts account for about 12.4% of total train-
ing memory for BERT-base. As for efficiency,
parameter-sharing reduces communication com-
plexity in distributed training and thus saves train-
ing time as well.

In the aforementioned efficient Transformers, the
model quality is often demonstrated by compara-
ble language model perplexity, or equivalently the
bits per word/byte. It is often implicitly assumed
that similar language model perplexity implies sim-
ilar pre-training model quality, namely the same
performance on the downstream tasks. We would
like to point out that this assumption does not nec-
essarily hold. For example, the experiments on
the Enwik8 dataset by Child et al. (2019) demon-
strates that Sparse Transformer “surpasses the 1.03
state-of-the-art (bits per byte) for a similarly-sized
Transformer-XL and matching the 0.99 (bits per
byte) of a model trained with more than double
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the number of parameters”. However, if we com-
pare SparseBERT (pre-training model with Sparse
Transformer backbone) against XLNet (Yang et al.,
2019) (pre-training model with Transformer-XL
backbone) in SQuAD, Table 3 shows that XLNet
still outperforms SparseBERT significantly. There-
fore, we believe that it is necessary to conduct a
comprehensive study and evaluation of existing ef-
ficient Transformer models when used for masked
language model pre-training. Limited by resources,
in this work, we mainly compare BlockBERT to
pre-training using Sparse Transformer (Child et al.,
2019), which is the earliest attempt to design effi-
cient Transformer models and also the key contrib-
utor to the success of GPT-3 (Brown et al., 2020).
We plan to benchmark more models in the future.

6 Conclusion

In this work, we study the lightweight BERT model
with the goal of achieving both efficiency and ef-
fectiveness. We profile and analyze the memory
bottlenecks of BERT and focus on optimize dot-
product self-attention, which consumes quadratic
memory with respect to the sequence length. To
reduce both time and memory consumption, we
present BlockBERT, which sparsifies the attention
matrices to be sparse block matrices. The proposed
model achieves time and memory saving without
significant loss of performance.

In the future, we plan to benchmark more effi-
cient Transfomers in language model pre-training
and fine-tuning. We also would like to explore
more applications of BlockBERT on NLP tasks
involving long sequences such as coreference res-
olution (Joshi et al., 2019b) and document-level
machine translation (Miculicich et al., 2018), and
also non-NLP tasks such as protein sequence mod-
eling (Rives et al., 2019; Rao et al., 2019).
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