
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 137–147
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

137

Transformer-GCRF: Recovering Chinese Dropped Pronouns with
General Conditional Random Fields

Jingxuan Yang1, Kerui Xu1, Jun Xu2,3∗, Si Li1∗, Sheng Gao1, Jun Guo1,
Ji-Rong Wen2,3 and Nianwen Xue4

1School of Artificial Intelligence, Beijing University of Posts and Telecommunications
2Gaoling School of Artificial Intelligence, Renmin University of China

3Beijing Key Laboratory of Big Data Management and Analysis Methods
4Department of Computer Science, Brandeis University

{yjx, xukerui, lisi, gaosheng, guojun}@bupt.edu.cn
junxu@ruc.edu.cn, jirong.wen@gmail.com, xuen@brandeis.edu

Abstract

Pronouns are often dropped in Chinese conver-
sations and recovering the dropped pronouns
is important for NLP applications such as Ma-
chine Translation. Existing approaches usually
formulate this as a sequence labeling task of
predicting whether there is a dropped pronoun
before each token and its type. Each utterance
is considered to be a sequence and labeled in-
dependently. Although these approaches have
shown promise, labeling each utterance inde-
pendently ignores the dependencies between
pronouns in neighboring utterances. Model-
ing these dependencies is critical to improving
the performance of dropped pronoun recovery.
In this paper, we present a novel framework
that combines the strength of Transformer
network with General Conditional Random
Fields (GCRF) to model the dependencies be-
tween pronouns in neighboring utterances. Re-
sults on three Chinese conversation datasets
show that the Transformer-GCRF model out-
performs the state-of-the-art dropped pronoun
recovery models. Exploratory analysis also
demonstrates that the GCRF did help to cap-
ture the dependencies between pronouns in
neighboring utterances, thus contributes to the
performance improvements.

1 Introduction

In pro-drop languages such as Chinese, pronouns
can be dropped as the identity of the pronoun can
be inferred from the context, and this happens more
frequently in conversations (Yang et al., 2015).
Recovering dropped pronouns (DPs) is a critical
task for many NLP applications such as Machine
Translation where the dropped pronouns need to be
translated explicitly in the target language (Wang
et al., 2016a,b, 2018). Recovering dropped pro-
noun is different from traditional pronoun resolu-
tion tasks (Zhao and Ng, 2007; Yin et al., 2017,
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A1:        (你) 去 巴西 的 时候 需要 提供 回程 机票 吗 ？
Do (you) need to provide the return ticket when you go to Brazil?

B1:        (我) 需要
Yes, (I) do.

B2:        (我) 要 把 ⾏程单 和 邀请函 打印 出来 带着 。

A2:       电⼦ ⾏程单 可以 吗 ？
Is electronic itinerary OK?

B3:        (你) 最好 还是 打印 ⼀ 份 吧 ， 省得 麻烦 。
(You)’d better print one copy to save trouble.

A3:       (previous utterance) 是的
Fine.

A4:       (我) 打印 两 份 吧 ， 张帆 是不是 也 需要 ？
(I) will print two copies. Does Fan Zhang also need it?

B4:        我 打电话 问问 (他)
I will ask (him) about it by phone.

(I) need to print out the travel itinerary and invitation letter and 
bring them with me.

Reply

Expansion

Acknowledge

Figure 1: A conversation snippet between participant A
and B. The dropped pronouns are shown in the brackets,
and the dialogue patterns are marked with blue arrows.

2018), which aim to resolve the anaphoric pro-
nouns to their antecedents. In dropped pronoun
recovery, we consider both anaphoric and non-
anaphoric pronouns, and we do not directly resolve
the dropped pronoun to its antecedent, which is
infeasible for non-anaphoric pronouns. We recover
the dropped pronoun as one of 17 types pronouns
pre-defined in (Yang et al., 2015), which include
five types of abstract pronouns corresponding to
the non-anaphoric pronouns. Thus traditional rule-
based pronoun resolution methods are not suitable
for recovering dropped pronouns.

Existing approaches formulate dropped pronoun
recovery as a sequence labeling task of predicting
whether a pronoun has been dropped before each
token and the type of the dropped pronoun. For ex-
ample, Yang et al. (2015) first studied this problem
in SMS data and utilized a Maximum Entropy clas-
sifier to recover dropped pronouns. Deep neural
networks such as Multi-Layer Perceptrons (MLPs)
and structured attention networks have also been
used to tackle this problem (Zhang et al., 2016;
Yang et al., 2019). Giannella et al. (2017) used
a linear-chain CRF to model the dependency be-
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tween the sequence of predictions in a utterance.

Although these models have achieved various de-
grees of success, they all assume that each utterance
in a conversation should be labeled independently.
This practice overlooks the dependencies between
dropped pronouns in neighboring utterances, and
results in sequences of predicted dropped pronouns
are incompatible with one another. We illustrate
this problem through an example in Figure 1, in
which the dropped pronouns are shown in brack-
ets. The pronoun can be dropped as a subject at
the beginning of a utterance, or as an object in the
middle of a utterance. Pronouns dropped at the
beginning of consecutive utterances usually have
strong dependencies that pattern with three types
of dialogue transitions (i.e., Reply, Expansion and
Acknowledgment) presented in (Xue et al., 2016).
For example, in Figure 1, the pronoun in the sec-
ond utterance B1 is “我 (I)”, the dropped pronoun
in the third utterance B2 should also be “我 (I)”
since B2 is an expansion of B1 by the same speaker.
Thus modeling the dependency between pronouns
in adjacent sentences is helpful to recover pronoun
dropped at utterance-initial positions. In contrast,
the pronoun “他 (him)” dropped as an object in ut-
terance B4 should be recovered by capturing refer-
ent semantics from the context and modeling token
dependencies in the same utterance.

To model the dependencies between predic-
tions in the conversation snippet, we propose
a novel framework called Transformer-GCRF
that combines the strength of the Transformer
model (Vaswani et al., 2017) in representation
learning and the capacity of general Conditional
Random Fields (GCRF) to model the dependen-
cies between predictions. In the GCRF, a vertical
chain is designed to capture the pronoun depen-
dencies between the neighboring utterances, and
horizontal chains are used for modeling the pre-
diction dependencies inside each utterance. In
this way, Transformer-GCRF successfully mod-
els the cross-utterance pronoun dependencies as
well as the intra-utterance prediction dependencies
simultaneously. Experimental results on three con-
versation datasets show that Transformer-GCRF
significantly outperforms the state-of-the-art re-
covery models. We also conduct ablative exper-
iments that demonstrate the improvement in per-
formance of our Transformer-GCRF model de-
rives both from the Transformer encoder and the
ability of GCRF layer to model the dependencies

between dropped pronouns in neighboring utter-
ances. All code is available at https://github.
com/ningningyang/Transformer-GCRF.

The major contributions of the paper are summa-
rized as follows:

• We conduct statistical study on pronouns
dropped at the beginning of consecutive utter-
ances in conversational corpus, and observe
that modeling the dependencies between pro-
nouns in neighboring utterances is important
to improve the performance of dropped pro-
noun recovery.
• We propose a novel Transformer-GCRF ap-

proach to model both intra-utterance depen-
dencies between predictions in a utterance
and cross-utterance dependencies between
dropped pronouns in neighboring utterance.
The model jointly predicts all dropped pro-
nouns in an entire conversation snippet.
• We apply the Transformer-GCRF model on

three conversation datasets. Results show that
our Transformer-GCRF outperforms the base-
line models on all datasets. Exploratory ex-
periments also show that the improvement is
attributed to the capacity of the model to cap-
ture cross-utterance dependencies.

2 Related Work

2.1 Dropped pronoun recovery
As pronouns are frequently dropped in informal
genres, Yang et al. (2015) first introduced dropped
pronoun recovery as an independent task and used
a Maximum Entropy classifier to recover DPs in
text messages. Giannella et al. (2017) employed
a linear-chain CRF to jointly predict the position,
person, and number of the dropped pronouns in a
single utterance, to exploit the sequential nature of
this problem. With the powerful representation ca-
pability of neural network (Xu et al., 2020), Zhang
et al. (2016) introduced a MLP neural network to
recover the dropped pronouns based on the concate-
nation of word embeddings within a fixed-length
window. Yang et al. (2019) proposed a neural net-
work with structured attention to model the interac-
tion between dropped pronouns and their referents
using both sentence-level and word-level context,
and again each dropped pronoun is predicted inde-
pendently. Tong et al. (2019) further incorporated
specific external knowledge to identify the referent
more accurately. None of these methods consider

https://github.com/ningningyang/Transformer-GCRF
https://github.com/ningningyang/Transformer-GCRF
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Figure 2: Overall architecture of our Transformer-GCRF model.

the dependencies between pronouns in neighboring
utterances.

2.2 Zero pronoun resolution

Zero pronoun resolution (Zhao and Ng, 2007; Kong
and Zhou, 2010; Chen and Ng, 2016; Yin et al.,
2017, 2018) is a line of research closely related to
dropped pronoun recovery. The difference between
these two tasks is that zero pronoun resolution fo-
cuses on resolving anaphoric pronouns to their an-
tecedents assuming the position of the dropped
pronoun is already known. However, in dropped
pronoun recovery, we consider both anaphoric and
non-anaphoric pronouns, and attempt to recover
the type of dropped pronoun but not its referent. Su
et al. (2019) also presented a new utterance rewrit-
ing task which improves the multi-turn dialogue
modeling through recovering missing information
with coreference.

2.3 Conditional random fields

Conditional Random Fields (CRFs) are commonly
used in sequence labeling. It models the con-
ditional probability of a label sequence given a
corresponding sequence of observations. Lafferty
et al. (2001) made a first-order Markov assumption
among labels and proposed a linear-chain structure
that can be decoded efficiently with the Viterbi al-
gorithm. Sutton et al. (2004) introduced dynamic
CRFs to model the interactions between two tasks
and jointly solve the two tasks when they are con-
ditioned on the same observation. Zhu et al. (2005)
introduced two-dimensional CRFs to model the
dependency between neighborhoods on a 2D grid
to extract object information from the web. Sut-

ton et al. (2012) also explored how to generalize
linear-chain CRFs to general graphs. CRFs have
also been combined with powerful neural networks
to tackle sequence labeling problems in NLP tasks
such as POS tagging and Named Entity Recogni-
tion (NER) (Lample et al., 2016; Ma and Hovy,
2016; Liu et al., 2018), but existing research has
not explored how to combine deep neural networks
with general CRFs.

3 Our Approach: Transformer-GCRF

We start by formalizing the dropped pronoun re-
covery task as follows. Given a Chinese con-
versation snippet X = (x1, · · · ,xn) which con-
sists of n pro-drop utterances, where the i-th ut-
terance xi = (xi1, · · · , ximi) is a sequence of mi

tokens, and additionally given a set of k possible
labels Y = {y1, · · · , yk−1} ∪ {None} where each
yj corresponds to a pre-defined pronoun (Yang
et al., 2015) or ‘None’, which means no pronoun
is dropped, the goal of our task is to assign a label
y ∈ Y to each token in X to indicate whether a
pronoun is dropped before this token and the type
of pronoun. We model this task as the problem
of maximizing the conditional probability p(Y|X),
where Y is the label sequence assigned to the to-
kens in X. The conditional probability of a label
assignment Y given the whole conversation snippet
X can be written as:

p(Y|X) = es(X,Y)∑
Ỹ∈YX es(X,Ỹ)

,

where s(X,Y) denotes score of the sequences of
predictions in the conversation snippet. The de-
nominator is known as partition function, and YX
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contains all possible tag sequences for the conver-
sation snippet X.

3.1 Overview of Transformer-GCRF
We score each pair of (X,Y) with our proposed
Transformer-GCRF, as shown in Figure 2. When
pre-processing the inputs, we attach a context to
each pro-drop utterance xn in the snippet X. The
context Cn = {xn−5, ...xn−1,xn+1,xn+2} con-
sists of the previous five utterances as well as
the next two utterances following the practices
in (Yang et al., 2019), and provides referent related
contextual information to help recover the dropped
pronouns. The representation layer uses the Trans-
former structure to encode the context Cn and gen-
erates representations for tokens in utterance xn

from the decoder. The prediction layer then utilizes
a generalized CRF to model the cross-utterance and
inter-utterance dependencies between the predic-
tions in the conversation snippet, and outputs the
predicted sequence for tokens in the snippet.

3.2 Representation layer
We employ the encoder-decoder structure of Trans-
former (Vaswani et al., 2017) to generate the repre-
sentations for the tokens in pro-drop utterance xi

and context Ci separately.

3.2.1 Context encoder
The context encoder first unfolds all tokens
in the context Ci into a linear sequence as:
(xi−5,1, xi−5,2, ..., xi+2,mi+2), and then inserts the
delimiter ‘[SEP]’ between each pair of utterances.
Following the Transformer model (Vaswani et al.,
2017), the input embedding of each token xk,l is
the sum of its word embedding WE(xk,l), position
embedding POE(xk,l), and speaker embedding
PAE(xk,l) as:

E(xk,l) = WE(xk,l) +POE(xk,l) +PAE(xk,l).

The token embeddings E(xk,l) are then fed into
the encoder, which is a stack of L encoding blocks.
Each block contains two sub-layers (i.e., a self-
attention layer and a feed-forward layer) as:

H(l) = FNN(SelfATT(H
(l−1)
Q ,H

(l−1)
K ,H

(l−1)
V )), (1)

for l = 1, · · · , L, where ‘FNN’ and ‘SelfATT’ de-
notes the feed-forward and self-attention networks
respectively, and

H(0) = [E(xi−2,1),E(xi−2,2), · · · ,E(xi+1,mi+1)].

In Equation 1, the self-attention layer first
projects the input as a query matrix (H(l−1)

Q ), a

key matrix (H(l−1)
K ), and a value matrix (H(l−1)

V ).
A multi-head attention mechanism is then applied
to these three matrices to encode the input tokens
in the context.

3.2.2 Utterance decoder

To generate the representations for tokens in the
pro-drop utterance xi and exploit referent informa-
tion from its context Ci, we utilize the decoder com-
ponent of the Transformer to represent xi. Similar
to the context encoder, the inputs to the utterance
decoder are the embeddings of the tokens. Each
embedding E(xi,j) is also a sum of its word embed-
ding, position embedding, and speaker embedding.
Then, the input to the decoder, denoted as S(0), is
a concatenation of all the token embeddings:

S
(0)
i = [E(xi,1),E(xi,2), · · · ,E(xi,mi)].

The decoder is still a stack of L decoding blocks.
Each decoding block Dec(·) contains three sub-
layers (i.e., a self-attention layer, an interaction
attention layer, and a feed-forward layer) as:

S
(l)
i =Dec(S

(l−1)
i ,H

(L)
i )

=FFN(InterATT(SelfATT(S
(l−1)
i ),H

(L)
i )),

for l = 1, · · · , L, where FFN is a feed-forward
network, SelfATT is a self-attention network.

Finally, the output states of the decoder S(L) are
transformed into logits through a two-layer MLP
network as:

P = W1 · tanh(W2 · S(L) + b2) + b1, (2)

where the logits matrix P of size n×m× k will
be fed into a subsequent prediction layer. k is the
number of distinct tags, and each element Pi,j,l

refers to the emission score of the l-th tag of the
j-th word in the i-th utterance.

3.3 GCRF layer

We utilize an elaborately designed general con-
ditional random fields (GCRF) layer to recover
dropped pronouns by modeling cross-utterance and
intra-utterance dependencies between dropped pro-
nouns.
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能 听见 吗 ?

我 听 不 见 。
(I)    (hear) (not)

(Can)  (hear)

(Aha)

插错耳机 了 吧 ?
(plug wrong) (earphone)

哈哈

Step 1: initial graph                 Step 2-1 : after processing an OVP         Step 2-2 : after processing an interjection

，

Figure 3: The GCRF graph construction. Step 1 constructs a initial graph. The tokens in each utterance are shown
and the nodes corresponding to the first token in each utterance are highlighted in red; step 2-1 processes an OVP
(in the second utterance) and adds an observed (shaded) node for token “我/(I)”; step 2-2 processes an interjection
(in the third utterance) and skips the node corresponding to the token “哈哈/(Aha)”.

3.3.1 Graph construction in GCRF
Given a conversation snippet, a graph is constructed
where each node, corresponding to a token, is a
random variable y that represents the type of the
pronoun defined in Y . The edges in the graph are
defined by the following two steps:
Step 1: Initial graph construction: We first split
each compound utterance into several simple utter-
ances by punctuation, and connect the nodes corre-
sponding to the tokens in the same simple utterance
with horizontal edges to model intra-utterance de-
pendencies. Then we link the first tokens in consec-
utive utterances with a vertical chain to model the
cross-utterance dependencies. Step 1 in Figure 3
shows an initial graph for a conversation snippet.
Step 2: Vertical edge refinement: Though the
vertical chain constructed in Step 1 can capture
most of the cross-utterance dependencies, they can
be further refined considering the following two
general cases in conversation:

• Overt pronouns (OVP): If an OVP appears
as the first token in a utterance, it is clear
that there is a dependency between the OVP
and the dropped pronoun in neighboring ut-
terances. To model this phenomenon, an ob-
served node (with the value of its pronoun
type) is inserted in the graph, and the vertical
chain linked to the original node is moved to
this new node. Step 2-1 in Figure 3 shows the
refined graph after OVPs are processed.

• Interjections: If the first token in an utter-
ance is an interjection (e.g., “嗯/ Well”, “哈
哈/ Aha” etc.), it is better to skip the utterance
in the vertical chain because the short utter-
ance consisting of only interjections and punc-
tuation does not provide useful information
about the dependencies between pronouns.

Step 2-2 in Figure 3 shows the refined graph
after interjections are processed.

3.3.2 Pronoun prediction
It is obvious that the GCRF is a special case of
the 2D CRFs. To predict the labels of the nodes
following the practices in (Zhu et al., 2005), we
employ a modified Viterbi algorithm in which the
nodes in the vertical chain are decoded first. Specif-
ically, the constructed graph consists of two types
of cliques: one from the horizontal chains and the
other from the vertical chain. Given the emission
score matrix P outputted from the decoder layer
(see Section 3.2.1), the joint score s(X,Y) of the
predictions can be computed by first computing
the sum of horizontal chains and then summing up
scores of the transitions in the vertical chain as:

s(X,Y) =
n∑

i=1

shi +
n−1∑
i=1

A
(2)
Ti,Ti+1

, (3)

shi =
m−1∑
j=1

A(1)
yi,j ,yi,j+1

+
m∑
j=1

Pi,j,yi,j ,

where A(1) and A(2) are the transition matrices of
the horizontal chains and the vertical chain, respec-
tively; Ai,j indicates the transition score from tag i
to tag j; and the node Ti is defined as,

Ti =

{
yOVP if the node is an observed OVP
yi,1 otherwise

where yOVP ∈ Y is the observed label corresponds
to the specific OVP. The first term in Eq. (3) is the
score corresponding to the horizontal chain cliques,
and the second term corresponds to the vertical
chain clique.
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Algorithm 1 Transformer-GCRF Decoding.
Input: The emission score matrix P; Transition

matrices A(1) and A(2).
Output: The best path Y∗

1: for i = 1, . . . , n do
2: shi, bpi← ForwardScore(Pi, A(1))
3: end for
4: Ph = [sh1, sh2, · · · , shn]
5: s(X,Y), bpv ← ForwardScore(Ph, A(2))
6: Y∗n,1← argmax (s(X,Y))
7: {Y∗1,1, · · · ,Y∗n−1,1}←TraceBack (Y∗n,1, bpv)
8: for i = 1, ..., n do
9: {Y∗i,2, · · · ,Y∗i,mi

}←TraceBack(Y∗i,1, bpi)
10: end for
11: function TRACEBACK(y, bp)
12: t = length(bp)
13: z1← y
14: for j = 2, · · · , t do
15: zj ← bpj,zj−1

16: end for
17: return {z2, · · · , zt}
18: end function
19: return Y∗

3.4 Decoding the GCRF and Model training

The sequence that maximizes the conditional prob-
ability p(Y|X) is outputted as the prediction:

Y∗ = argmax
Y∈YX

p(Y|X).

A modified Viterbi algorithm is used to find the
best labeling sequence. Specifically, we first ap-
plies the Viterbi algorithm to decode the vertical
chain. Then, the vertical chain decoding results
are used as the observed nodes in the graph, and
the standard Viterbi algorithm is applied to each
horizontal chain in parallel. Algorithm 1 shows the
Transformer-GCRF decoding process.

Given a set of labeled conversation snippets D,
the model parameters are learned by jointly maxi-
mizing the overall log-probabilities of the ground-
truth label sequences:

max
∑

(X,Y)∈D log(p(Y|X)).

4 Datasets and Experimental Setup

Datasets: We evaluate the performance of
Transformer-GCRF on three conversation bench-
marks: Chinese text message dataset (SMS),
OntoNotes Release 5.0, and BaiduZhidao. The

Training Test
#Sentences #DPs #Sentences #DPs

SMS 35,933 28,052 4,346 3,539
TC 6,734 5,090 1,122 774

Zhidao 7,970 5,097 1,406 786

Table 1: Statistics of training and test sets on three
conversational benchmarks.

SMS dataset is described in (Yang et al., 2015) and
contains 684 text message documents generated
by users via SMS or Chat. Following (Yang et al.,
2015, 2019), we reserved 16.7% of the training set
as the development set, and a separate test set was
used to evaluate the models. The OntoNotes Re-
lease 5.0 was released in the CoNLL 2012 Shared
Task. We used the TC section which consists
of transcripts of Chinese telephone conversation
speech. The BaiduZhidao dataset is a question an-
swering dialogue corpus collected by (Zhang et al.,
2016). Ten types of dropped pronouns are anno-
tated according to the pronoun annotation guide-
lines. The statistics of these three benchmarks are
reported in Table 1.

Baselines: State-of-the-art dropped pronoun
recovery models are used as baselines: (1)
MEPR (Yang et al., 2015) which leverages a
set of elaborately designed features and trains
a Maximum Entropy classifier to predict the
type of dropped pronoun before each token; (2)
NRM (Zhang et al., 2016) which employs two sep-
arate MLPs to predict the position and type of a
dropped pronoun utilizing representation of words
in a fixed-length window; (3) BiGRU which uti-
lizes a bidirectional RNN to encode each token in
a pro-drop sentence and makes prediction based on
the encoded states; (4) NDPR (Yang et al., 2019)
which models dropped pronoun referents by attend-
ing to the context and independently predicts the
presence and type of DP for each token.

We also compare three variants of Transformer-
GCRF as: (1) Transformer-GCRF(w/o refine)
which removes Step 2 in Section 3.3.1 during the
graph construction process, for exploring the effec-
tiveness of processing OVP and interjections; (2)
Transformer which removes the whole GCRF layer
that globally optimizes the prediction sequences,
and directly adds a MLP layer on the top of Trans-
former encoder to predict the dropped pronouns. It
aims to explore the contribution of Transformer en-
coder among the total effectiveness of Transformer-
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Model
Chinese SMS TC of OntoNotes BaiduZhidao

P(%) R(%) F P(%) R(%) F P(%) R(%) F
MEPR (Yang et al., 2015) 37.27 45.57 38.76 - - - - - -
NRM (Zhang et al., 2016) 37.11 44.07 39.03 23.12 26.09 22.80 26.87 49.44 34.54
BiGRU 40.18 45.32 42.67 25.64 36.82 30.93 29.35 42.38 35.83
NDPR (Yang et al., 2019) 49.39 44.89 46.39 39.63 43.09 39.77 41.04 46.55 42.29
NDPR-GCRF 51.27 45.45 47.73 39.45 43.55 40.53 39.60 49.54 43.39
Transformer 51.53 46.18 48.21 39.91 43.98 41.79 42.13 46.63 43.58
Transformer-GCRF(w/o refine) 52.32 47.50 49.23 40.18 44.02 42.01 42.41 47.76 43.62
Transformer-GCRF 52.51 48.12 49.81∗ 40.48 44.64 42.45∗ 43.30 46.54 43.92∗

Table 2: Results in terms of precision, recall and F-score produced by the baseline systems and variants of our
proposed Transformer-GCRF framework. ‘∗’ indicates the improvement over the best baseline NDPR is significant
(t-tests and p-value ≤ 0.05).

GCRF; (3) NDPR-GCRF which replaces the Trans-
former structure in the presentation layer with the
NDPR model (Yang et al., 2019).

Training details: In all of the experiments,
a vocabulary was first generated based on the en-
tire dataset, and the out-of-vocabulary words are
represented as “UNK”. The length of utterances in
a conversation snippet is set as 8 in our work. In
Transformer-GCRF, both the encoder and decoder
in the Transformer have 512 units in each hidden
layer. We augment each utterance with a context
consisting of seven neighboring utterances accord-
ing to the practice in (Yang et al., 2019). In each
experiment, we trained the model for 30 epochs on
one GPU, which took more than five hours, and the
model with the highest F-score on the development
set was selected for testing. Following (Glorot
and Bengio, 2010), in all of the experiments the
weight matrices were initialized with uniform sam-

ples from [−
√

6
r+c ,+

√
6

r+c ], where r and c are the
number of rows and columns in the corresponding
matrix. Adam optimizer (Kingma and Ba, 2015) is
utilized to conduct the optimization.

5 Results and Analysis

5.1 Performance Evaluation

We apply our Transformer-GCRF model to all three
conversation datasets to demonstrate the effective-
ness of the model. Table 2 reports the results of our
Transformer-GCRF model as well as the baseline
models in terms of precision (P), recall (R), and
F-score (F).

From the results, we can see that our proposed
model and its variants outperformed the baselines
on all datasets. The best model Transformer-GCRF

achieves a gain of 2.58% average absolute improve-
ment across all three datasets in terms of F-score.
We also conducted significance tests on all three
datasets in terms of F-score. The results show that
our method significantly outperforms the best base-
line NDPR (p < 0.05). The proposed Transformer-
GCRF suffers from performance degradation when
Step 2 is removed from the graph construction pro-
cess (i.e., referring to the results of Transformer-
GCRF(w/o refine) in Table 2), which demonstrates
the important role of OVPs in modeling dependen-
cies between different utterances, and the contri-
bution of noise reduction resulting from skipping
short utterances starting with interjections. Both
our proposed Transformer-GCRF model and the
variant Transformer-GCRF(w/o refine) model out-
perform the variant Transformer, which demon-
strates that the effectiveness comes from not only
the powerful Transformer encoder, but also the
elaborately designed GCRF layer. Moreover, the
variant NDPR-GCRF, which encodes the pro-drop
utterances with BiGRU as NDPR (Yang et al.,
2019), still outperforms the original NDPR. This
shows that the proposed GCRF is effective in mod-
eling cross-utterance dependencies regardless of
the underlying representation.

5.2 Motivation and Effects of GCRF

5.2.1 Motivation by statistical results
The GCRF model is motivated with a quantitative
analysis of our data, which shows that 79.6% of
the dropped pronouns serve as the subject of a sen-
tence, and occur at utterance-initial positions. The
pronouns dropped at the beginning of consecutive
utterances are strongly correlated with dialogue pat-
terns and thus modeling conversational structures
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Figure 4: Visualization of the transition weight be-
tween each pair of pronouns among 16 types of pre-
defined pronouns (i.e., except the category ‘None’), ob-
tained from the vertical chain transition matrix A(2).
Darker color indicates higher transition weight between
these two types of pronouns.

helps improve recover dropped pronouns. Other
pronouns dropped as objects in the middle of a
utterance should be recovered by modeling intra-
utterance dependencies.

To further explore the cross-utterance pronoun
dependencies, we collected all pronoun pairs occur-
ring at the beginning of consecutive utterances and
classified the dependencies into one of the three di-
alogue transitions defined in (Xue et al., 2016). We
found that 27.33% of the pairs correspond to reply
transition, where the second utterance is a response
to the first utterance, and 18.60% of pairs corre-
spond to the acknowledgment transition, where the
second utterance is an acknowledgment of the first
utterance. In both cases, the utterances involve a
shift of speaker, which is accompanied by a shift
in the use of personal pronouns. Another 47.79%
of the pairs correspond to the expansion transition,
where the second utterance is an elaboration of the
first utterance and the same pronoun is used.

5.2.2 Visualizing transition matrix of GCRF
To investigate whether our GCRF model actually
learned the dependencies revealed by the quan-
titative analysis of our corpus, we visualize the
transition matrix A(2) of the vertical chain in Fig-
ure 4. We can see that the learned transition matrix
matches well with the distribution of dialogue pat-
terns. The matrix shows that the higher transition
weights on diagonal correspond to the strong ex-
pansion transition in which the same pronoun is

A:    只要 有 原件 就 行

(you) As long as (you) have the original.
A:    只要 有 原件 就 行

As long as (you) have the original.

你 你 None None None

None None None你 None

NDPR:

NDPR-
GCRF:

A:    出货 几 年 了

How many years has (it) been manufactured?

A:    出货 几 年 了

B:    不 是 刚 出 的 吗

How many years has (it) been manufactured?

Didn’t (they) just come out?

B:    不 是 刚 出 的 吗

Didn’t (it) just come out?

它 None None None

None None None他们 None None

它 None None None

None None None它 None None

NDPR:

NDPR-
GCRF:

Figure 5: Example results of NDPR and NDPR-GCRF.
The recovered pronouns are marked with red color and
shown in brackets.

used in consecutive utterances and the transition
weights between “我(I)” and “你(you)” (top-left
corner) are high as well, indicating the strong reply
transition. Moreover, the acknowledgement tran-
sition usually exists from the pronoun “previous
utterance” to “我(I)” or “你(you)”.

5.2.3 Case studies
We demonstrate the effectiveness of GCRF by com-
paring the outputs of NDPR and NDPR-GCRF on
the entire test set, and present some concrete cases
in Figure 5. The examples show that the horizontal
chains in GCRF contributes by preventing redun-
dant predictions in the same utterance. For exam-
ple, in the first case, the second pronoun “你(you)”
is repeatedly recovered by NDPR since the depen-
dency between the predictions of the first two to-
kens is ignored. The vertical chain contributes by
predicting coherent dropped pronouns at the begin-
ning of the utterances. For example, in the second
case, the second utterance is a reply of the first one,
and NDPR-GCRF recovers these two pronouns cor-
rectly by considering their dependency.

5.3 Effects of the Transformer architecture
We further study the effectiveness of multi-head
attention in Transformer structure. Figure 6 shows
an example conversation snippet with three utter-
ances and the pronoun “它(it)” in the last utterance
is dropped. The Transformer’s attention weights
corresponding to three heads which are shown in
blue, and the NDPR’s attention weights are shown
in brown. From the results, we can see that “head 1”
is responsible for associating “股票(stock)” with
“它(it)” (in utterance A1), “head 2” is responsible
for associating “它(it)” with “它(it)”, and “head
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A1:       股票 最近 如何 了
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Figure 6: Visualization of multi-head attention in
Transformer-GCRF and structured attention in NDPR.

3” is responsible for collecting noisy information,
which is helpful for the training process (Michel
et al., 2019; Correia et al., 2019). This is consistent
with the observation in (Vig, 2019) that multi-head
attention is powerful because it uses different heads
to capture different relations. NDPR, on the other
hand, captures all these the relations with a single
attention structure. The results explain why Trans-
former is suitable for dropped pronoun recovery.

5.4 Error Analysis
Besides conducting the performance evaluation and
analyzing the effects of different components, we
also investigate some typical mistakes made by our
Transformer-GCRF model. The task of recovering
dropped pronouns consists of first identifying the
referent of each dropped pronoun from the con-
text and then recovering the referent as a concrete
Chinese pronoun based on the referent semantics.
Existing work has focused on modeling referent
semantics of the dropped pronoun from context,
and globally optimizing the prediction sequences
by exploring label dependencies. However, there is
also something need to do about how to recover the
referent as a proper pronoun based on the referent
semantics. For example, in two cases of Figure 7,
the referents of the dropped pronouns are correctly
identified, while the final pronoun was recovered as
“(他们/they)” and “(它/it)” by mistake. We attribute
this to that the model needs to be augmented with
some common knowledge about how to recover a
referent to the proper Chinese pronoun.

6 Conclusion and Future Work

In this paper, we presented a novel model for re-
covering the dropped pronouns in Chinese conver-
sations. The model, referred to as Transformer-
GCRF, formulates dropped pronoun recovery as

A1: 我 给 爷爷 买 的 药 他 吃 了 吗 ？
Did my grandfather take the medicine I bought for him?

Context

B1:  (他) 吃 了
(He) had taken the medicine.

B1:  (他们) 吃 了
(They) had taken the medicine.

Gold

Transformer-
GCRF

A1: 复合式 听写 是 怎么 做 ？
How should I finish compound dictation questions?

A2:  (它们) 就 是 听写 句⼦ 吗？
Do (they) require to write down the sentence you hear?

A2:  (它) 就 是 听写 句⼦ 吗？
Do (it) require to write down the sentence you hear?

Gold

Context

Transformer-
GCRF

Figure 7: Example errors made by Transformer-GCRF.

a sequence labeling problem. Transformer is em-
ployed to represent the utterances and GCRF is
used to make the final predictions, through captur-
ing both cross-utterance and intra-utterance depen-
dencies between pronouns. Experimental results
on three Chinese conversational datasets show that
Transformer-GCRF consistently outperforms state-
of-the-art baselines.

In the future, we will do some extrinsic eval-
uation by applying our proposed model in some
downstream applications like pronoun resolution,
to further explore the effectiveness of modeling
cross-utterance dependencies in practical applica-
tions.
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